首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
OBJECTIVE: Since albumin has the ability to detoxify, we assessed whether low-dose albumin could protect against trauma/hemorrhagic shock (T/HS)-induced endothelial cell, lung, gut, and red blood cell (RBC) injury in vivo and endothelial cell injury in vitro. SUMMARY BACKGROUND DATA: T/HS cause ischemic insult to the gut, resulting in the release of biologically active factors into the mesenteric lymph, which then cause injury to multiple distant organs. METHODS: In vitro experiments tested the ability of albumin to reduce the cytotoxicity of mesenteric lymph from male rats subjected to T/HS (laparotomy + MAP 30 mm Hg for 90 minutes) for human umbilical vein endothelial cell (HUVEC). In subsequent in vivo experiments, the ability of albumin given as part of the resuscitation regimen to protect against T/HS-induced injury was tested by comparing the magnitude of injury in T/HS rats receiving human albumin (shed blood + 0.12, 0.24, or 0.36 g/kg) or lactated Ringer's solution (shed blood + 2 x volume of shed blood as LR) with that observed in rats subjected to trauma/sham shock. Rats were killed after a 3-hour recovery period and had lung permeability evaluated by bronchoalveolar lavage and myeloperoxidase assays, intestinal microvillous injury by histology, and RBC deformability using ektacytometry. RESULTS: Both bovine and human albumin prevented T/HS lymph-induced HUVEC cytotoxicity in vitro, even when added 30 minutes after the lymph (viability 15 +/- 4% to 88 +/- 3%, P < 0.01). In vivo RBC deformability was better preserved by blood plus albumin than blood plus lactated Ringer's solution (P < 0.01). Likewise, albumin administration reduced T/HS-induced lung permeability and neutrophil sequestration in a dose-dependent fashion, with 0.36 g/kg of albumin effecting total lung protection (P < 0.01). In contrast, albumin treatment did not prevent T/HS-induced gut injury. CONCLUSIONS: Low-dose albumin protects against gut lymph-induced lung, HUVEC, and RBC injury by neutralizing T/HS lymph toxicity.  相似文献   

2.
BACKGROUND: Gut-derived factors in intestinal lymph have been recently shown to cause lung injury, activate neutrophils, and injure endothelial cells in rats subjected to hemorrhagic shock (T/HS). However, the time course of the appearance and disappearance of these factors in intestinal lymph is unclear. Thus the goal of this study was to characterize the biologic activity of T/HS lymph collected at various times during and after shock. METHODS: Male rats subjected to trauma (laparotomy) plus hemorrhagic shock (mean arterial pressure, 90 mm Hg x 90 min) (T/HS) or trauma plus sham shock (T/SS) had their mesenteric lymph duct catheterized. Mesenteric lymph collected before shock, during shock, and hourly for 6 hours after shock was assayed for cytokine levels (tumor necrosis factor, granulocyte-macrophage colony-stimulating factor, interleukin-1, and transforming growth factor-beta) as well as biologic activity on endothelial cells (cytotoxicity and permeability) and neutrophils (CD11b adhesion molecule expression and respiratory burst activity). RESULTS: T/HS, but not T/SS, lymph injured endothelial cells and activated neutrophils, although the cytokine levels did not differ between the T/HS and T/SS lymph samples. The biologic activity of T/HS lymph appeared during the shock (gut ischemic) period. The temporal pattern of activity varied on the basis of the biologic activity being tested, with the neutrophil-activating properties of the T/HS lymph persisting longest. CONCLUSIONS: These results suggest that gut ischemia itself is sufficient to induce the production of biologically active T/HS lymph and that the temporal pattern of biologic activity varies over time on the basis of the property being tested. Consequently, studies directed at identifying the active factors in T/HS lymph must take these temporal patterns of activity into account.  相似文献   

3.

Background

Lactoferrin (LF) is a pleiotropic glycoprotein that is found in bodily secretions and is postulated to enhance the gastrointestinal barrier and promote mucosal immunity. Thus, the ability of talactoferrin, an oral recombinant form of human LF, to limit gut injury and the production of biologically active gut-derived products was tested using a rat model of trauma–hemorrhagic shock (T/HS).

Methods

Male rats were orally dosed with vehicle or talactoferrin (1000 mg/kg, every day) for 5 d before being subjected to T/HS or trauma–sham shock (T/SS). Subsequently, rats were subjected to a laparotomy (trauma) and hemorrhagic shock (mean arterial pressure, 30–35 mm Hg × 90 min) or to T/SS, followed by resuscitation with their shed blood. Before inducing shock, the mesenteric lymphatic duct was catheterized for collection of mesenteric lymph. Four hours after the end of the shock or sham-shock period, rats were sacrificed, a segment of the distal ileum was collected for morphologic analysis, and lymph samples were processed and frozen. Subsequently, lymph samples were tested in several pharmacodynamic assays, including endothelial cell permeability, neutrophil respiratory burst activity, and red blood cell (RBC) deformability. Total white blood cell counts in lymph samples were also quantified.

Results

Pretreatment with talactoferrin reduced the incidence of T/HS-induced morphologic injury of ileum to T/SS levels. Post-T/HS lymph from vehicle-treated rats increased endothelial monolayer permeability and neutrophil priming for an augmented respiratory burst, and induced loss of RBC deformability, compared with T/SS groups. Talactoferrin pretreatment significantly reduced the biological activity of T/HS lymph on respiratory burst activity and RBC deformability, but had no effect on the lymph cell count or endothelial cell permeability.

Conclusions

These results provide a proof of principle that prophylactic dosing of oral talactoferrin can potentially protect the gut in a T/HS model and limit the production of biologically active factors in rat gastrointestinal tissue subjected to ischemia-reperfusion–type injuries.  相似文献   

4.
Senthil M  Brown M  Xu DZ  Lu Q  Feketeova E  Deitch EA 《The Journal of trauma》2006,60(5):958-65; discussion 965-7
BACKGROUND: Trauma-hemorrhagic shock (T/HS) mesenteric lymph from rats has multiple biological properties and appears to cause organ injury via the activation of neutrophils and endothelial cells. As the next step in testing the potential clinical relevance of these rodent studies, we utilized a swine T/HS model to determine whether the intestinal lymph results observed in the rodent could be replicated in swine. A porcine model was chosen because the pig and human cardiovascular and gastrointestinal physiology are similar. METHODS: Male pigs were subjected to T/HS and a major intestinal lymph duct was cannulated. Hemorrhagic shock (mean arterial pressure, 40 mm Hg) was performed by withdrawing blood, for 3 hours or until the base deficit reached -5. Animals were then resuscitated in two stages to mimic the prehospital and hospital phases of resuscitation. Mesenteric lymph was collected hourly throughout the experiment and its biological activity was tested on neutrophils (respiratory burst) and endothelial cells (monolayer permeability and cytotoxicity). RESULTS: T/HS lymph but not trauma-sham shock lymph (T/SS) increased neutrophil activation as reflected by an augmented respiratory burst. Likewise T/HS lymph collected at all time points up to 5 hours postshock significantly increased endothelial cell permeability by twofold or greater (p < 0.05), whereas T/HS lymph produced during the first 2 hours postshock was cytotoxic for endothelial cells (viability 70%, p < 0.05 vs. preshock). In contrast, T/SS lymph had no effect on the endothelial cells. CONCLUSION: This large animal model validates rodent studies showing that the shock-injured gut releases biologically active factors into the mesenteric lymph and these factors activate neutrophils and injure endothelial cells.  相似文献   

5.
Adams CA  Sambol JT  Xu DZ  Lu Q  Granger DN  Deitch EA 《The Journal of trauma》2001,51(4):625-31; discussion 631-2
BACKGROUND: Previous studies have shown that mesenteric lymph duct interruption prevents lung injury and decreases lung neutrophil sequestration after hemorrhagic shock (HS). Since endothelial cells rapidly express P-selectin after ischemia/reperfusion injury and HS-induced lung injury appears to involve neutrophil-endothelial cell interactions, we tested the following two hypotheses. First, that HS increases endothelial cell P-selectin expression and that interruption of mesenteric lymph flow in vivo would diminish this expression. Second, that incubation of human umbilical vein endothelial cells with post-HS mesenteric lymph but not sham shock (SS) lymph or postshock portal vein plasma would up-regulate P-selectin expression. METHODS: Pulmonary microvascular P-selectin expression was measured in male rats subjected to 90 minutes of HS (30 mm Hg), SS, or HS with lymphatic ligation, with a dual radiolabeled monoclonal antibody technique. The lungs from these animals were subsequently harvested and P-selectin expression was expressed as mean +/- SEM nanograms of monoclonal antibody per gram of tissue. RESULTS: Pulmonary P-selectin expression was 2.0 +/- 0.4 after SS, 9.7 +/- 3.0 after HS, but decreased to 2.3 +/- 0.3 after HS with lymph interruption (p < 0.05 HS vs. SS or HS plus lymph ligation). Incubation of human umbilical vein endothelial cells with shock lymph collected 3 to 4 hours after shock resulted in a nearly fivefold increase in P-selectin expression (p < 0.001) as compared with SS lymph, lymph collected 6 hours after shock, or postshock portal vein plasma. CONCLUSION: These results support the concept that gut-derived lymph promotes HS-induced lung injury through up-regulation of microvascular adhesion molecules and that intestinal lymph duct interruption may prevent distant organ injury by blunting the expression of these molecules.  相似文献   

6.
OBJECTIVE: We have previously documented that gut-derived lymph from rats subjected to trauma plus hemorrhagic shock (T/HS) is injurious to vascular endothelial cells and activates neutrophils (PMNs), two key events in postshock organ injury. Because T/HS leads to gut injury, intestinal bacterial overgrowth, and the loss of gut barrier function, the relative role of gut injury as opposed to intestinal bacterial overgrowth per se in the pathogenesis of biologically active intestinal lymph is unclear. We therefore studied whether mesenteric lymph can injure endothelial cells and/or active PMNs in an intestinal bacterial overgrowth model where there is no gut injury (monoassociation). METHODS: Bacterial overgrowth was established in male rats by treating the animals with 4 days of oral antibiotics followed by administration of a nonpathogenic, streptomycin-resistant strain of Escherichia coli C25. Mesenteric lymph was then collected from rats with normal flora and from E. coli C25 monoassociated rats. Its effects were tested on human umbilical vein endothelial cells (HUVECs) and human PMNs. As an additional control, lymph was collected from antibiotic-decontaminated rats that received antibiotics but were not colonized with E. coli C25. RESULTS: As compared with medium, normal flora intestinal lymph, antibiotic-decontaminated lymph, or portal plasma from the monoassociated rats, mesenteric lymph from the monoassociated rats killed HUVECs and increased the permeability of a HUVEC monolayer. In contrast to the effects on HUVECs, lymph from the monoassociated rats did not increase PMN CD11b expression or prime PMNs for an augmented respiratory burst, as compared with lymph from the rats with normal flora or from antibiotic-decontaminated rats. The effects of lymph from the monoassociated rats was not caused by bacteria, because these lymph samples were sterile. CONCLUSION: These results indicate that disruption of the normal intestinal microflora resulting in bacterial overgrowth with enteric bacilli may participate in the production of mesenteric lymph that is injurious to endothelial cells in shock, but this mechanism does not appear to be significantly involved in the activation of PMNs.  相似文献   

7.
BACKGROUND: Recognition of the limitations of standard crystalloid resuscitation has led to the search for alternative resuscitation strategies that might better limit the development of trauma-hemorrhage-induced organ dysfunction and systemic inflammation. Thus, the goal of this study was to compare the effects of two resuscitation strategies alone, and in combination, with those of standard resuscitation with Ringers lactate (RL). The two strategies were small volume resuscitation with hypertonic saline (HTS) and intraluminal inhibition of pancreatic proteases with the serine protease inhibitor nafamostat. METHODS: Male rats were subjected to trauma-hemorrhagic shock (T/HS) or trauma sham-shock (T/SS) and resuscitated with RL, HTS, nafamostat, or the combination of HTS and nafamostat. The T/HS model consisted of a laparotomy plus 90 minutes of shock (MAP 30 mm Hg). Three hours after the end of the shock or sham-shock period, lung permeability, pulmonary neutrophil sequestration, neutrophil activation, red blood cell deformability, and gut injury were assessed. RESULTS: Both HTS and nafamostat reduced T/HS-induced pulmonary permeability and neutrophil sequestration, as well as neutrophil activation as compared with resuscitation with RL. However, HTS was more effective than nafamostat in reducing T/HS-induced acute lung injury and neutrophil activation. Additionally, HTS, but not nafamostat, reduced T/HS-induced RBC rigidification. Lastly, gut injury after T/HS was reduced to the greatest extent by the combination of HTS plus nafamostat. CONCLUSION: Small volume resuscitation with HTS is more effective than RL and nafamostat in limiting T/HS-induced acute lung injury, neutrophil activation and red blood cell injury.  相似文献   

8.
OBJECTIVES: The exact mechanisms that lead to RBC deformability and shape changes after trauma/hemorrhagic shock remain unknown. We hypothesize that RBC injury is caused in part by gut injury and is mediated by gut-derived factors carried in the intestinal lymph. MATERIALS AND METHODS: RBC deformability was measured by a laser-assisted ektacytometer before and after trauma/hemorrhagic shock (T/HS) in 6 rats whose mesenteric lymph duct had been ligated and in 10 rats subjected to T/HS without duct ligation. In this assay a decrease in the elongation index is a marker of decreased RBC deformability. RBC shape was examined by scanning electron microscopy. RESULTS: In the T/HS rats, the RBC elongation index decreased after T/HS from a preshock value of 0.064 +/- 0.011 to 0.052 +/- 0.009 (P < 0.01) and remained low (0.049 +/- 0.010) even at 3 h after resuscitation. In contrast, the elongation index did not decrease after T/HS in the lymph duct-ligated rats (0.062 +/- 0.004 vs. 0.056 +/- 0.005, P = NS). Likewise, the T/HS rats, but not the duct-ligated T/HS rats, had a significant increase in the percentage of abnormally shaped RBCs when studied by electron microscopy. CONCLUSIONS: Interruption of lymph flow from the gut into the bloodstream by lymph duct ligation prevents T/HS-induced RBC damage. Because decreased RBC deformability contributes to impaired perfusion of the microcirculation, preservation of RBC deformability may decrease the incidence of T/HS-induced organ dysfunction.  相似文献   

9.
BACKGROUND: Because the ischemic gut may produce factors that initiate systemic inflammation, we tested the hypothesis that factors released from the gut into the mesenteric lymphatics increase neutrophil (PMN) adhesion molecule expression after trauma and shock. METHODS: At 1 and 4 hours after hemorrhagic shock (30 mm Hg x 90 minutes) plus trauma (laparotomy) (T/HS) or sham-shock (T/SS), with or without mesenteric lymph duct ligation, PMN CD11b and CD18 expression was assessed in male rats. In additional rats, mesenteric lymph samples were tested for their ability to increase PMN CD11b expression in vitro. Lastly, at 4 hours after T/SS or T/HS with or without lymph duct ligation, pulmonary PMN sequestration was measured. RESULTS: Compared with T/SS rats, T/HS was associated with up-regulation of PMN CD11b and CD18 expression, which was largely prevented by ligation of the mesenteric lymph duct (p < 0.01). Lymph duct ligation also prevented T/HS-induced pulmonary leukocyte sequestration (p < 0.01). In addition, mesenteric lymph from rats subjected to T/HS but not T/SS increased CD11b expression (p < 0.01). CONCLUSION: Factors produced or released by the postischemic intestine and carried in the mesenteric lymph appear responsible for PMN activation and pulmonary PMN sequestration after an episode of T/HS.  相似文献   

10.
OBJECTIVE: To test the hypothesis that gut-derived factors carried in trauma-hemorrhagic shock (T/HS) lymph is sufficient to induce lung injury. Additionally, because our previous studies showed that T/HS-induced nitric oxide production was associated with lung injury, we examined whether T/HS lymph-induced lung injury occurs via an inducible nitric oxide synthase (iNOS)-dependent pathway. BACKGROUND: We have previously shown that T/HS-induced lung injury is mediated by gut-derived humoral factors carried in the mesenteric lymph. However, it remains unclear whether T/HS lymph itself is sufficient to induce lung injury, or requires the activation of other factors during the T/HS period to exert its effect. METHODS: Mesenteric lymph collected from T/HS or trauma-sham shock (T/SS) animals was injected intravenously into male rats at a rate of 1 mL/h for 3 hours. At the end of infusion, lung injury was assessed by lung permeability and lung histology. The effect of iNOS inhibition on T/HS lymph-induced lung injury was studied and this was further confirmed in iNOS knockout mice. Finally, iNOS immunohistochemistry was performed to identify the cells of origin of iNOS. RESULTS: The injection of T/HS lymph, but not sham shock lymph, caused lung injury. This was associated with increased plasma nitrite/nitrate levels as well as induction of iNOS protein in the lung, liver, and gut. Treatment with the selective iNOS inhibitor aminoguanidine prevented T/HS lymph-induced lung injury. iNOS knockout mice, but not their wild-type controls, were resistant to T/HS lymph-induced lung injury. By immunohistochemistry, neutrophils and macrophages, rather than parenchymal cells, were the source of T/HS lymph-induced lung iNOS. CONCLUSIONS: These results indicate that T/HS lymph is sufficient to induce acute lung injury and that lymph-induced lung injury occurs via an iNOS-dependent pathway.  相似文献   

11.
OBJECTIVE: To determine whether pancreatic digestive enzymes released into the ischemic gut during an episode of T/HS are involved in the generation of distant organ injury. This hypothesis was tested by examining the effect of PDL on T/HS-induced intestinal injury, lung injury, and RBC deformability. SUMMARY BACKGROUND DATA: The effect of pancreatic duct ligation (PDL) on distant organ injury following trauma/hemorrhagic shock (T/HS) was examined. PDL before T/HS decreases lung and red blood cell (RBC) injury and exerts a limited protective effect on the gut. Pancreatic proteases in the ischemic gut appear to be involved in gut-induced lung and RBC injury. Based on recent work, it appears that proinflammatory and/or toxic factors, which are generated by the ischemic intestine, play an important role in the pathogenesis of multiple organ failure. The process by which these toxic factors are generated remains unknown. Previous experimental work has clearly documented that intraluminal inhibition of pancreatic proteases decreases the degree of T/HS-induced lung injury and neutrophil activation. One possible explanation for this observation is that the toxic factors present in intestinal lymph are byproducts of interactions between pancreatic proteases and the ischemic gut. METHODS: Male Sprague-Dawley rats were subjected to a laparotomy (trauma) and 90 minutes of sham (T/SS) or T/HS with or without PDL. At 3 and 24 hours following resuscitation, animals were killed and samples of gut, lung, and blood were collected for analysis. Lung permeability, pulmonary myeloperoxidase levels, and bronchoalveolar fluid protein content were used to quantitate lung injury. Intestinal injury was determined by histologic analysis of terminal ileum (% villi injured). To assess RBC injury, RBC deformability was measured, as the RBC elongation index (RBC-EI), using a LORCA device. RESULTS: At 3 and 24 hours following resuscitation, PDL prevented shock-induced increases in lung permeability to both Evans blue dye and protein in addition to preventing an increase in pulmonary myeloperoxidase levels. T/HS-induced impairments in RBC deformability were significantly reduced at both time points in the PDL + T/HS group, but deformability did not return to T/SS levels. PDL did reduce the magnitude of ileal injury at 3 hours after T/HS, but the protective effect was lost at 24 hours after T/HS. CONCLUSIONS: PDL prior to T/HS decreases lung injury and improves RBC deformability but exerts a limited protective effect on the gut. Thus, the presence of pancreatic digestive enzymes in the ischemic gut appears to be involved in gut-induced lung and RBC injury.  相似文献   

12.
OBJECTIVE: To determine whether gut-derived factors leading to organ injury and increased endothelial cell permeability would be present in the mesenteric lymph at higher levels than in the portal blood of rats subjected to hemorrhagic shock. This hypothesis was tested by examining the effect of portal blood plasma and mesenteric lymph on endothelial cell monolayers and the interruption of mesenteric lymph flow on shock-induced lung injury. SUMMARY BACKGROUND DATA: The absence of detectable bacteremia or endotoxemia in the portal blood of trauma victims casts doubt on the role of the gut in the generation of multiple organ failure. Nevertheless, previous experimental work has clearly documented the connection between shock and gut injury as well as the concept of gut-induced sepsis and distant organ failure. One explanation for this apparent paradox would be that gut-derived inflammatory factors are reaching the lung and systemic circulation via the gut lymphatics rather than the portal circulation. METHODS: Human umbilical vein endothelial cell monolayers, grown in two-compartment systems, were exposed to media, sham-shock, or postshock portal blood plasma or lymph, and permeability to rhodamine (10K) was measured. Sprague-Dawley rats were subjected to 90 minutes of sham or actual shock and shock plus lymphatic division (before and after shock). Lung permeability, pulmonary myeloperoxidase levels, alveolar apoptosis, and bronchoalveolar fluid protein content were used to quantitate lung injury. RESULTS: Postshock lymph increased endothelial cell monolayer permeability but not postshock plasma, sham-shock lymph/plasma, or medium. Lymphatic division before hemorrhagic shock prevented shock-induced increases in lung permeability to Evans blue dye and alveolar apoptosis and reduced pulmonary MPO levels. In contrast, division of the mesenteric lymphatics at the end of the shock period but before reperfusion ameliorated but failed to prevent increased lung permeability, alveolar apoptosis, and MPO accumulation. CONCLUSIONS: Gut barrier failure after hemorrhagic shock may be involved in the pathogenesis of shock-induced distant organ injury via gut-derived factors carried in the mesenteric lymph rather than the portal circulation.  相似文献   

13.
Dayal SD  Hauser CJ  Feketeova E  Fekete Z  Adams JM  Lu Q  Xu DZ  Zaets S  Deitch EA 《The Journal of trauma》2002,52(6):1048-55; discussion 1055
BACKGROUND: After trauma and hemorrhagic shock (T/HS), mesenteric lymph (ML) activates polymorphonuclear neutrophils (PMNs), injures endothelial cells (ECs), and predisposes to lung injury. The involved mediators, however, are unknown. We studied the ability of aqueous (AQ) and lipid (LIP) extracts of rat T/HS ML to activate PMNs and injure ECs. METHODS: ML was collected from male rats undergoing trauma (laparotomy) plus hemorrhagic shock (30 mm Hg, 90 minutes) or sham shock. AQ and LIP ML fractions were separated using the Bligh-Dyer technique. Human umbilical vein endothelial cells were incubated 18 hours in 5% LIP or AQ lymph fractions and viability was assessed using the MTT assay. Rat PMNs incubated 5 minutes with 3% LIP or AQ fractions were assessed for respiratory burst (RB) and cytosolic calcium ([Ca(2+)](i)) using dihydrorhodamine 123 and fura-2AM. Human PMN responses to AQ and LIP T/HS lymph were studied similarly. RESULTS: EC incubated in AQ showed 19 +/- 4% viability as compared with 65 +/- 11% in LIP (p < 0.001). Whole lymph affected ECs comparably to AQ T/HS lymph. Rat PMN basal [Ca(2+)](i) increased after exposure to AQ but not LIP T/HS lymph extracts. AQ T/HS lymph primed [Ca(2+)](i) responses to macrophage inflammatory protein-2 and platelet-activating factor; neither LIP T/HS nor any trauma and sham shock lymph fraction caused PMN priming. Rat PMN RB was elevated after AQ T/HS lymph incubation when compared with buffer (610 +/- 122 U/s vs. 225 +/- 38 U/s, p = 0.01). Rat PMN incubation in LIP T/HS lymph caused minimal activation (289 +/- 28 U/s, p = NS). Conversely, human PMN showed [Ca(2+)](i) and RB priming by rat T/HS LIP and not AQ extracts. CONCLUSION: T/HS mesenteric lymph contains multiple biologically active mediators. Both AQ and LIP extracts of T/HS lymph are toxic to human umbilical vein endothelial cells, with AQ more active than LIP. Only AQ T/HS lymph activates rat PMNs, although LIP rat lymph extract activates human PMNs. These findings demonstrate the complex nature of gut lymph-derived biologic factors as well as species-specific differences on PMN and EC physiology. Therapies directed at any one specific molecule or mediator are therefore unlikely to be successful.  相似文献   

14.
Objective: To examine whether pancreatic proteolytic enzymes involve in lung injury induced by trauma/hemorrhagic shock (T/HS). Methods: Male Sprague-Dawley rats received intraluminal or intravenous pancreatic serine protease inhibitor, 6-amidino-2-naphthyl p-guanidinobenzoate dimethanesulfate (ANGD) during laparotomy (trauma), and were subjected to 90 minutes of T/HS or trauma-sham shock (T/SS). Degree of lung injury was assessed 3 hours after resuscitation with Ringer‘s lactate solution. Results: Lung permeability, pulmonary myeloperoxidase levels and the ratio of bronchoalveolar lavage fluid protein to plasma protein increased after T/HS, and significantly decreased in intraluminal-ANGD treated but not in intravenous-ANGD treated rats. Histological analysis demonstrated fewer injured villi in the intraluminal-ANGD treated rats compared with those in the control rats. Linear regression analysis revealed that the percentage of injured ileal mucosal villi directly related to pulmonary polymorphic neutrophil sequestration and lung permeability to Evans blue dye. Conclusions: Pancreatic proteolytic enzymes in the ischemic gut may be important toxic factors contributing to lnng injury after T/HS.  相似文献   

15.
BACKGROUND: The factors involved in shock-induced loss of gut barrier function remain to be defined fully and studies investigating gut injury have focused primarily on the systemic side of the intestine. METHODS: Male Sprague-Dawley rats were subjected to a laparotomy (trauma) and 90 minutes of trauma sham shock (T/SS) or actual trauma (laparotomy) hemorrhagic shock (T/HS) (30 mm Hg). At 0, 30, 60, or 180 minutes after the end of shock and volume resuscitation (reperfusion), the animals were killed and samples of the ileum were collected for intestinal morphologic analysis, analysis of the unstirred mucus layer, and for barrier function by measuring permeability to flourescein dextran. RESULTS: T/HS-induced morphologic evidence of mucosal injury as well as epithelial apoptosis was present at the end of the shock period and maximal after 60 minutes of reperfusion. At 3 hours after reperfusion, the degree of villous injury and enterocyte apoptosis had decreased. In contrast to the morphologic appearance of the villi, disruption of the mucus layer became progressively more severe over time and was manifest as a decrease in mucus thickness, progressive loss of coverage of the luminal surface by the mucus layer, and a change in mucus appearance from a dense to a loose structure. Studies of intestinal permeability documented that T/HS-induced loss of gut barrier function persisted throughout the 3-hour reperfusion period and were associated with injury to the mucus layer as well as the villi. CONCLUSIONS: T/HS leads to changes in the intestinal mucus layer as well as increased villous injury, apoptosis, and gut permeability. Additionally, increased gut permeability was associated with loss of the intestinal mucus layer suggesting that T/HS-induced injury to the mucus layer may contribute to the loss of gut barrier function.  相似文献   

16.
Adams CA  Magnotti LJ  Xu DZ  Lu Q  Deitch EA 《The American surgeon》2000,66(10):905-12; discussion 912-3
Recent studies have established gut-derived lymph rather than portal blood as the major source of toxic mediators after hemorrhagic shock that causes distant organ injury. Similarly, emerging data have identified sex as a major modifier of the response to injury and illness. Thus we tested the hypothesis that female rats would be more resistant to shock-induced lung injury than male rats because females are more resistant to shock-induced gut injury and produce mesenteric lymph that is less toxic to endothelial cells. Male and female rats were subjected to sham or hemorrhagic shock and lung permeability was quantitated by Evans blue dye and protein extravasation into the alveolar space. Next, mesenteric lymph collected from shocked and sham-shocked rats of both sexes was incubated with human umbilical vein endothelial cells (HUVECs) and assayed for toxicity. Trypan blue dye exclusion and the release of lactate dehydrogenase assessed HUVEC viability and injury respectively. Lastly, sections of the terminal ileum were histologically examined for evidence of shock-induced mucosal injury. Male rats but not female rats subjected to hemorrhagic shock had evidence of increased lung permeability and produced mesenteric lymph that was cytotoxic to HUVECs. Shock caused gut injury in the male rats whereas histological evidence of gut injury was not observed in the female rats. Hemorrhagic shock-induced lung injury depends on gut injury and mesenteric lymph appears to be the route by which gut-derived toxic factors exit the gut to cause lung injury. The resistance of female rats to shock-induced lung injury appears to be secondary to their resistance to shock-induced gut injury.  相似文献   

17.
BACKGROUND: The purpose of this study was to test the hypothesis that trauma-hemorrhagic shock (T/HS)-induced gut and lung injury is modulated by gender and the stage of the estrus cycle at the time of injury. METHODS: We compared the incidence and magnitude of gut and lung injury in male and female rats subjected to a laparotomy (trauma) followed by 90 minutes of shock (mean arterial pressure, 30 mm Hg) (T/HS) or sham shock. RESULTS: Lung injury and pulmonary neutrophil sequestration as well as gut injury were increased after T/HS in the diestrus female and the male rats, but not in the estrus or proestrus female rats. Although T/HS caused gut and lung injury in the male and the female diestrus rats, the magnitude of injury was less in the female diestrus than in the male rats (p < 0.05). A strong correlation was found between intestinal villous injury and lung injury as well as between gut injury and pulmonary leukosequestration in the female rats subjected to T/HS (p < 0.0001). Plasma nitric oxide levels were approximately two- to threefold higher in the male and the diestrus female rats subjected to T/HS than in other groups (p < 0.05), and a high degree of correlation (r2 = 0.68, p < 0.0001) was found between villous injury and plasma nitric oxide levels. Ileal constitutive nitric oxide synthase (NOS) and inducible NOS (iNOS) activity was measured. Ileal constitutive NOS activity was similar between the groups, but iNOS activity was three- to fourfold higher in the T/HS male rats than in the sham shock or the T/HS proestrus groups (p < 0.01). CONCLUSION: Gender and estrus cycle stage influence susceptibility to T/HS-induced gut and lung injury. This difference in susceptibility to organ injury was associated with increased plasma nitric oxide levels and increased ileal iNOS activity.  相似文献   

18.
BACKGROUND: Emerging data suggest a gender dimorphism in resistance and susceptibility to distant organ injury after mechanical and thermal trauma. The aim of this study was to determine the role that testosterone and estradiol play in modulating resistance or susceptibility to distant organ injury, and whether their effects were associated with differences in the production of nitric oxide. METHODS: Adult male, female, castrated male, and ovariectomized female Sprague-Dawley rats were given intraperitoneal pentobarbital sodium anesthesia and subjected to trauma/sham shock or trauma/hemorrhagic shock (T/HS). A second set of animals were subjected to a 40% total body surface area, third-degree burn or sham burn. At 3 hours after resuscitation, plasma levels of nitrite/nitrate were measured, and the extent of lung injury (permeability to Evans Blue dye and neutrophil sequestration by myeloperoxidase) and intestinal injury (morphology) were determined. RESULTS: Proestrus females showed resistance to lung and gut injury after both T/HS and burns, and had low levels of nitrite/nitrate production. This resistance to injury was abrogated by ovariectomy with an associated increase in nitric oxide production. Males showed increased lung and gut injury after both T/HS and burns associated with increased production of nitrite/nitrate. Castration decreased susceptibility to both lung and gut injury, and decreased production of nitrite/nitrate. A correlation was noted between intestinal and lung injury, and both intestinal and lung injury correlated with plasma nitrite/nitrate levels. CONCLUSIONS: Male sex hormones potentiate, while female hormones reduce T/HS and burn-induced lung and gut injury. Production of nitric oxide is associated with increased lung and gut injury after T/HS and burns.  相似文献   

19.
OBJECTIVE: To determine the mechanism by which gut-derived factors present in mesenteric lymph from rats subjected to trauma-hemorrhagic shock (T/HS) induce endothelial cell death. SUMMARY BACKGROUND DATA: Intestinal ischemia after hemorrhagic shock results in gut barrier dysfunction and the subsequent production of biologically active and tissue injurious factors by the ischemic gut. These factors are carried in the mesenteric lymph and reach the systemic circulation via the mesenteric lymph, thereby ultimately resulting in distant organ injury. Although studies have established that trauma-hemorrhagic (T/HS) shock but not trauma-sham-shock (T/SS) mesenteric lymph is cytotoxic to endothelial cells, whether T/HS lymph-induced endothelial cell death occurs via an apoptotic or a necrotic pathway is unknown. The mechanisms underlying T/HS lymph-induced cytotoxicity are likewise unknown. METHODS: Human umbilical vein endothelial cell (HUVEC) monolayers were incubated with medium, sham-shock, or post shock mesenteric lymph (5%) for 4 hours, after which the mode of cell death (ie, apoptosis versus necrosis) was determined using morphologic (confocal microscopy), biochemical (nucleosomal release), and DNA-based (gel electrophoresis) assays. To clarify the cellular pathways involved in T/HS lymph-induced HUVEC cell death, caspase-3, caspase-9, caspase-8, and BID activity was measured as was the ability of the pan-caspase inhibitor z-VAD-fmk to prevent T/HS lymph-induced cell death. RESULTS: T/HS, but not T/SS, mesenteric lymph or medium was cytotoxic and caused the appearance of the classic morphologic signs of apoptosis, including membrane blebbing, cell shrinkage, and apoptotic body formation. Nucleosomal release and a DNA laddering pattern was also observed in the HUVECs incubated with T/HS lymph. These signs of apoptosis were associated with increased caspase activity as reflected in activation of the pro-apoptotic caspases, caspase-8, -9, and -3, as well as the pro-apoptotic bcl-2-related protein BID. However, since the broad-spectrum caspase inhibitor z-VAD-fmk delayed T/HS lymph-induced HUVEC cell death, but did not prevent it fully, it appears that other factors besides caspases are involved in the endothelial cell toxicity of T/HS lymph. CONCLUSIONS: Gut-derived factors in T/HS, but not T/SS, mesenteric lymph cause endothelial cell death via an apoptotic mechanism that involves both caspase-dependent and caspase-independent pathways.  相似文献   

20.

Background

Loss of gut barrier function is crucial in mediating lung injury induced by hemorrhagic shock/resuscitation (HS). High-lipid enteral nutrition (HL) can preserve gut barrier function. We hypothesized that HL could also mitigate HS-induced lung injury.

Materials and methods

Forty-eight adult male rats were randomly assigned to one of four experimental groups: HS; HS-HL; Sham; Sham-HL. HS was induced by blood drawing and mean blood pressure was maintained at 40–45 mmHg for 120 min followed by resuscitation with re-infusion of exsanguinated blood/saline mixtures. HL gavage was performed at 45 min before blood drawing and at the end of resuscitation.

Results

Intestinal permeability of the HS group was significantly higher than that of the Sham group (P < 0.001). Pulmonary concentrations of malondialdehyde (lipid peroxidation) and inflammatory molecules, including prostaglandin E2, tumor necrosis factor-α, interleukin-6, and macrophage inflammatory protein-2, of the HS group were significantly higher than those of the Sham group. Histologic analyses, including histopathology, wet/dry weight ratio, and neutrophil infiltration revealed moderate lung injury in the HS group. In contrast, intestinal permeability (P < 0.001) and pulmonary concentrations of tumor necrosis factor-α and macrophage inflammatory protein-2 (P = 0.021 and 0.01) of the HS-HL group were significantly lower than those of the HS group. However, pulmonary concentrations of malondialdehyde, prostaglandin E2, and interleukin-6 of the HS-HL and HS groups were comparable. Moreover, histologic analyses also revealed moderate lung injury in the HS-HL group.

Conclusions

High-lipid enteral nutrition significantly mitigated gut barrier loss and partially mitigated lung inflammation but not oxidation and lung injury in hemorrhagic shock/resuscitation rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号