首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
本文介绍了计算机辅助导航骨科手术(CAOS)及医用机器人技术在创伤骨科应用中的主要进展、当前在临床应用中存在的主要问题和相关对策,并对其未来的发展趋势进行了预测,同时简要介绍了北京积水潭医院创伤骨科在计算机辅助导航骨科手术及医用机器人技术方面的研究进展。当前骨科手术导航定位所应用的医学图象导引系统已经由使用单一的C型臂、CT等传统影像设备向应用三维C型臂、多模态图像处理系统等新型影像设备转变,基于多模态图像的导航系统将有可能成为导航手术的主流。医用机器人已经在自动化程度和人机交互模式方面,有了长足进展,摆脱了原有工业机器人的结构模式。医学图像后处理技术及其它相关信息技术极大地丰富了导航和机器人外科,只有在不断完善光学定位技术的同时,加大对其它定位方法的研究,才能够提高定位精度;要对相关设备进行开放式结构设计,使不同导航系统的注册软件能够互相兼容,手术器械能够通用,降低设备成本。骨科医生要正确认识计算机辅助导航骨科手术及医用机器人技术,在充分了解CAOS的技术特点、基本原理、操作程序的基础上,对要实施的手术具有深刻的理解,才能开展CAOS手术。目前,迫切需要建立CAOS技术标准、临床适应证和手术操作规范,进行CAOS产品之间的技术比较和评估,便于医生选择合适的CAOS产品。伴随快速发展的信息技术,数字化手术室、智能化微创导航手术系统、医用机器人辅助的远程医疗将有可能成为未来CAOS技术的主要组成部分。  相似文献   

2.
骨科手术复杂而精细。骨科导航系统的开发旨在通过分析术前、术中和术后数据, 提供增强现实的三维可视化环境, 提高治疗效果。随着数字化技术的迅速发展及临床应用, 人工智能技术被引入到骨科术中导航系统中。人工智能与器械设备、成像技术相结合, 增强了骨科医生的可视化能力, 使他们在手术过程中获得实时反馈和指导, 进而提供最佳临床决策。人工智能在骨科术中导航的应用还能提高手术的可重复性, 降低了人为错误的发生率。本文综述了人工智能在骨科术中导航的应用现状, 并介绍人工智能的基本概念以及基于人工智能的图像配准、实时跟踪和三维可视化技术的发展, 对目前存在的局限和不足进行探讨。  相似文献   

3.
智能化和精准化是当前骨科手术发展的重要方向和研究热点。骨科机器人辅助技术逐渐应用于骨科各专业的手术中, 但在骨肿瘤手术中的应用相对起步较晚, 目前适合于临床应用的场景较为有限。通过检索PubMed、Embase、ScienceDirect、中国知网及万方数据库中有关骨科机器人辅助技术在骨肿瘤手术领域中的应用情况, 分析其智能化和精准化需求, 并对骨科机器人在骨肿瘤手术中的临床应用情况加以整理和分析。机器人辅助下骨肿瘤穿刺活检术, 尤其是对体积较小、位置较深、局部解剖结构较为复杂的肿瘤, 可提高穿刺活检的精确性和阳性率。机器人辅助骨肿瘤精确截骨, 较手动截骨和机器人辅助下截骨的精确性更高、误差更小。机器人辅助技术具有提高解剖结构复杂部位如骶骨和骨盆肿瘤切除的精确性的应用潜力;机器人辅助技术在脊柱肿瘤手术中的应用可提高置入椎弓根钉的精准性和微创椎体成形术的安全性, 并可用于脊柱肿瘤的微创精准手术切除。分析机器人辅助骨肿瘤手术目前存在的问题及发展方向, 如成本效益、配准精度、软组织识别和反馈、误差叠加和纠错等问题, 为深入开展相关临床应用和研究提供参考依据。  相似文献   

4.
在过去的几十年里, 骨科手术中的导航技术取得了巨大的发展。通过协助外科医师定位手术区域, 识别目标骨, 规划内固定策略, 术中引导内固定置入点和方向, 甚至自动执行内固定操作, 该技术在骨科手术中缩短手术时间、减少术中辐射、减轻手术创伤和提高精确度的能力和潜力已经得到了证明。然而, 与导航技术在关节置换、骨肿瘤和脊柱手术中的广泛使用相比, 其在创伤骨科中的应用相对较少。本文旨在介绍导航设备的技术原理, 概述目前导航系统在创伤骨科中的临床应用, 分析当前导航系统在临床实践中进一步推广应用所面临的挑战及未来前景。  相似文献   

5.
目的 对骨科机器人辅助技术的基本原理及优势、在创伤骨科领域尤其是骨折复位手术机器人的研究进展、临床应用及局限性进行综述和评价。方法 广泛查阅国内外关于骨科机器人辅助技术原理、骨折复位手术机器人相关研究文献,分析技术优势及临床疗效和不足,探讨该领域未来发展趋势。结果 骨科机器人可辅助医生进行直观的术前规划、术中精准控制及微创操作,极大地拓展了医生对骨科创伤的评估和治疗能力;创伤骨科手术机器人已经实现从基础研究到临床应用的突破,初步结果显示该技术可显著提高手术精度、降低手术创伤,但仍存在有效性评价不足、技术实现手段单一、临床适应证窄等问题。结论 骨科机器人辅助技术在创伤骨科有广阔应用前景,但目前尚处于起步阶段,需要加强医工合作研究、医生交流平台建设、规范化培训及数据共享,才能不断推进骨科机器人辅助技术在创伤骨科的发展,更好地发挥其临床应用价值。  相似文献   

6.
随着人工智能(AI)的发展,骨科手术机器人与AI的结合已是目前的研究热点。机器学习与深度学习是AI的重要研究方向,并成功应用于计算机视觉、自然语言处理等领域。传统的骨科手术机器人已实现部分手术的临床应用,但临床手术的精密性、安全性、微创化与智能化等问题均未完全解决。AI作为新兴技术,将为推动当前骨科手术机器人的不断革新提供强大支持。本文概述了骨科机器人的应用现状,阐述了AI在关节骨科手术机器人、脊柱外科手术机器人与创伤骨科手术机器人的应用情况,并根据AI的发展趋势展望了骨科机器人的未来发展方向。  相似文献   

7.
随着近十年来人工智能技术的飞速发展,计算机辅助骨科手术(Computer assisted orthopedic surgery,CAOS)在临床手术中的应用已经较为成熟,但是相对于发达国家,其在国内的发展还处于初级阶段;CAOS最早应用于脊柱手术中,现已经逐步完善了在关节、创伤、运动医学及骨肿瘤等方面的应用.CAOS在骨科手术中的应用具有手术时间短、辐射量少、定位准确等优势,目前已经是骨科发展的重要方向.推动CAOS和自主研发的骨科手术机器人的发展,优化计算机导航技术将是骨科技术程序化、智能化和个体化的关键所在.本文针对CAOS的发展进程及未来的应用前景做一综述.  相似文献   

8.
计算机辅助骨科手术( CAOS)已在临床骨科多个领域得到应用,但面临着手术时间延长、骨块漂移及增加X线暴露等缺点.近年随着对微创、实时及非X线暴露等要求的提高,超声在CAOS中的应用日益受到重视.CAOS中借助超声回波测距原理形成的超声骨点云轮廓与术前三维CT图像进行实时配准,并通过同步动力化技术实现对手术过程的监控....  相似文献   

9.
术前标记在预防骨科错误部位手术中的应用及体会   总被引:1,自引:0,他引:1  
与其他手术风险相比,错误部位手术(wrong site surgery,WSS)虽然发生率很低,但是其后果往往非常严重,不仅可能给患者带来终身残疾,手术医师也常须面临法律诉讼[1].骨科手术尤其是四肢手术,由于涉及解剖部位较多且左右对称,容易混淆手术部位和手术操作,因此较其他临床科室更容易发生WSS.2003年3月开始,我们应用国际卫生组织认证委员会(The Joint Commission on Acerediration of Heahhcare Organizations,JCAHO)关于患者安全的相关知识[2,3],制定了骨科手术患者术前手术部位标记及信息确认的安全流程,并在1908例择期四肢手术的患者中应用,期间未发生WSS.现将我们的操作流程及应用体会报告如下.  相似文献   

10.
计算机辅助骨科手术(Computer assisted orthopedics surgery,CAOS)即利用各种影像设备如CT、MRI、PET、DSA、US等结合导航系统,对人体骨骼解剖结构及手术器械进行显示和定位,通过计算机制订手术计划,在术中进行操作干预的一项技术.最早应用于神经外科领域的立体定位,肿瘤切除化疗等.其最大的优势是:简化了手术操作,缩短了手术时间,减少了手术创伤,减弱了术中放射线的照射,使骨科手术变得更安全、更准确、更微创。  相似文献   

11.
目的讨论计算机辅助骨科手术(computer assisted orthopedic surgery,CAOS)在创伤骨科的应用及其意义。方法分析CAOS在创伤骨科应用的现状,总结其应用的价值及相关问题。结果目前CAOS在创伤骨科主要应用于脊柱、四肢骨折内固定物的植入和人工髋、膝关节置换以及膝关节交叉韧带的重建等,而在骨折复位方面的应用很少且技术不成熟,但已显示明显的优越性。在CAOS应用过程中应注意其缺点、临床医学评价、手术医生的地位、正确的微创观念等相关问题。结论CAOS在创伤骨科手术微创化进程中有重要意义和无可替代的价值,应处理好一些相关的问题,促进其更好地发展。  相似文献   

12.
Langlotz F 《Injury》2004,35(Z1):S-A17-23
Computer aided orthopedic surgery (CAOS) systems are becoming more and more frequently used in operating rooms all over the world. While their clinical benefit is no longer doubted, there is considerable potential for using these devices incorrectly At best, mishandling of a CAOS system may lead to prolonged operating times. In the worst case scenario, incorrect navigational feedback is provided, which carries the potential risk of endangering the patient or resulting in an unacceptable surgical outcome. From an economical point of view only the optimal performance of a navigation system will probably justify its significant investment costs. This article summarizes some of the major pitfalls that may occur during surgical navigation. It is structured to reflect different types of CAOS systems, and it presents guidelines on how to avoid most of the problems. In general, a surgeon who wants to apply this technology needs to be very familiar with the system that is used. It is essential to know the basics and the limitations of the underlying technical principles. Otherwise, the large potential that modern CAOS systems make available cannot be exploited effectively for the benefit of the patient.  相似文献   

13.
Nolte LP  Beutler T 《Injury》2004,35(Z1):S-A6-16
The term computer aided orthopedic surgery (CAOS) stands for approaches that aim to improve visibility to the surgical field and increase application accuracy by means of so-called navigation systems alone or in combination with smart end-effectors when carrying out surgical actions. These goals achieved by linking the bony anatomy being operated on with a virtual representation, such as an image dataset. This article introduces the basic principles of CAOS. Surgical navigation systems that use modern tracking technology are introduced and classified according to the chosen virtual representation of the surgical object, ie, image-free and image-based (preoperative and intraoperative) technology. Within the latter class in particular, CT-and fluoroscopy-based (2-D and 3-D) systems have successfully made their way into the operating room (OR). Challenges during the development of the underlying enabling technologies are presented and references to orthopedic applications in different anatomical areas are given.  相似文献   

14.
Current computer-assisted orthopedic surgery (CAOS) systems typically use preoperative computed tomography (CT) and intraoperative fluoroscopy as their imaging modalities. Because these imaging tools use X-rays, both patients and surgeons are exposed to ionizing radiation that may cause long-term health damage. To register the patient with the preoperative surgical plan, these techniques require tracking of the targeted anatomy by invasively mounting a tracking device on the patient, which results in extra pain and may prolong recovery time. The mounting procedure also leads to a major difficulty of using these approaches to track small bones or mobile fractures. Furthermore, it is practically impossible to mount a heavy tracking device on a small bone, which thus restricts the use of CAOS techniques. This article presents a novel CAOS method that employs 2D ultrasound (US) as the imaging modality. Medical US is non-ionizing and real-time, and our proposed method does not require any invasive mounting procedures. Experiments have shown that the proposed registration technique has sub-millimetric accuracy in localizing the best match between the intraoperative and preoperative images, demonstrating great potential for orthopedic applications. This method has some significant advantages over previously reported US-guided CAOS techniques: it requires no segmentation and employs only a few US images to accurately and robustly localize the patient. Preliminary laboratory results on both a radius-bone phantom and human subjects are presented.  相似文献   

15.
Reduction is one of the key procedures in orthopedic trauma surgery and has been acknowledged as one of the conditions for a good outcome in intraarticular and extra-articular fractures. The information available to the surgeon during the reduction maneuver can be divided into visual and tactile information. The optimal implementation of these parameters, combined with the surgeon's individual experience, will significantly affect the results of the operation. Anatomical regions where a limited direct view through the approach is supported by intraoperative imaging are intra-articular fractures of the elbow, forearm, acetabulum, proximal tibia, pilon, and hindfoot, and extra-articular fractures of the spine, pelvis, femur, and tibial shaft. Surgery in these regions is demanding since the approaches limit the visual control of the axes and also the anatomical reduction within the joint. Computer aided orthopedic surgery (CAOS) was introduced to increase the accuracy of selected procedures in orthopedic surgery. One of the most frequently applied applications is pedicle screw insertion in posterior spinal surgery. The current working group has identified computer aided reduction and implant positioning as an unresolved area of CAOS that would be highly relevant to the operative treatment of fractures. The development of tools for computer aided reduction is of major importance and is much desired by the orthopedic community. Such a reduction tool would be a significant step forward in the development of orthopedic trauma care. It would facilitate new procedures and new operations and also help to attain a completely new level with regard to what we can achieve in terms of minimal invasiveness and increased precision. The synergies of the expert group are deployed to develop the required software modules and hardware. Other areas of computer aided orthopedic surgery will certainly benefit from the integration of this technology as well.  相似文献   

16.
AIM: Besides general risks, reorienting periacetabular osteotomies include the risks of over- or under-correction. Therefore, intraoperative computer-assisted control of the pelvic fragment may allow for precise reorientation of the acetabulum in all planes. METHODS: The advantages and problems of a computer assisted periacetabular osteotomy are demonstrated in a 19 year old female with spastic paresis and severe secondary dysplasia of the hip over a postoperative follow up period of 2 years. Because of progressive subluxation of the left femoral head with initial degenerative changes of the hip joint a pelvic triple osteotomy as described by T?nnis and an intertrochanteric derotation-varus osteotomy were performed. The intraoperative control of the acetabular position was optimized by CT based navigation. To compare and evaluate the pre- and postoperative clinical and functional outcome, X-rays, CT scans and a gait analysis were applied. RESULTS: The computer assisted orthopedic surgery (CAOS) technique allows for precise intraoperative control following reorientation of the acetabular fragment in all three planes. The pre- and postoperative clinical and radiological findings were compared and the result was classified as good. CONCLUSION: Although the costs and logistics for pelvic osteotomies are increased by CAOS technology, the authors favor this technique for corrective surgery of complex acetabular deformities, although individual parameters need to be considered in each patient.  相似文献   

17.
It is often difficult to obtain excellent clinical results in complex cases of hip replacement surgery. Over recent years, in order to improve the success rate of this type of surgery, prosthetic implants that are more ductile and more reliable have been developed. At the same time, important progress has been made in improving the accuracy of surgical method. A great deal of effort has been made to improve methods of preoperative planning. The world over, computerized systems that aid the surgeon in his or her clinical practice (CAOS systems) have been developed. The authors present Hip-op, a new CAOS type system, for preoperative planning. In particular, the use of Hip-op in some very complex cases of hip revision surgery is reported. Based on clinical experience, it is believed that Hip-op is a useful system, one that is easy to use, and that it is capable of improving the accuracy of surgery.  相似文献   

18.
Jenny JY 《Der Orthop?de》2006,35(10):1038-1042
Computer assisted orthopaedic surgery (CAOS) was developed to improve the accuracy of surgical procedures. It has improved dramatically over the last years, being transformed from an experimental, laboratory procedure into a routine procedure theoretically available to every orthopaedic surgeon.The first field of application of computer assistance was neurosurgery. After the application of computer guided spinal surgery, the navigation of total hip and knee joints became available. Currently, several applications for computer assisted surgery are available. At the beginning of navigation, a preoperative CT-scan or several fluoroscopic images were necessary. The imageless systems allow the surgeon to digitize patient anatomy at the beginning of surgery without any preoperative imaging. The future of CAOS remains unknown, but there is no doubt that its importance will grow in the next 10 years, and that this technology will probably modify the conventional practice of orthopaedic surgery.  相似文献   

19.
现代骨科手术逐渐向精准和微创方向发展。与传统手术比较,精准化、微创化程度更高的骨科手术机器人逐渐走进医学研究者的视野,并成为当前骨科手术的研究热点。目前,骨科机器人在国际、国内已有丰富的研究成果,并已投入临床应用。伴随着科技的进步,骨科机器人正向智能化、远程化、个体化、普及化发展,并将更广泛地应用于骨科手术。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号