首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
The replication of human cytomegalovirus (HCMV) is characterized by a complex network of virus–host interaction. This involves the regulatory viral protein kinase pUL97, which represents a viral cyclin-dependent kinase ortholog (vCDK) combining typical structural and functional features of host CDKs. Notably, pUL97 interacts with the three human cyclin types T1, H and B1, whereby the binding region of cyclin T1 and the region conferring oligomerization of pUL97 were both assigned to amino acids 231–280. Here, we addressed the question of whether recombinant HCMVs harboring deletions in this region were impaired in cyclin interaction, kinase functionality or viral replication. To this end, recombinant HCMVs were generated by traceless BACmid mutagenesis and were phenotypically characterized using a methodological platform based on qPCR, coimmunoprecipitation, in vitro kinase assay (IVKA), Phos-tag Western blot and confocal imaging analysis. Combined data illustrate the following: (i) infection kinetics of all three recombinant HCMVs, i.e., ORF-UL97 ∆231–255, ∆256–280 and ∆231–280, showed impaired replication efficiency compared to the wild type, amongst which the largest deletion exhibited the most pronounced defect; (ii) specifically, this mutant ∆231–280 showed a loss of interaction with cyclin T1, as demonstrated by CoIP and confocal imaging; (iii) IVKA and Phos-tag analyses revealed strongly affected kinase activity for ∆231–280, with strong impairment of both autophosphorylation and substrate phosphorylation, but less pronounced impairments for ∆231–255 and ∆256–280; and (iv) a bioinformatic assessment of the pUL97–cyclin T1 complex led to the refinement of our current binding model. Thus, the results provide initial evidence for the functional importance of the pUL97–cyclin interaction concerning kinase activity and viral replication fitness.  相似文献   

2.
The human cytomegalovirus (HCMV) is a member of the beta-herpesvirus family and inflicts life-long latent infections in its hosts. HCMV has been shown to manipulate and dysregulate many cellular processes. One major interactor with the cellular host is the viral kinase pUL97. The UL97 gene is essential for viral replication, and kinase-deficient mutants of pUL97 display a severe replication defect. Recently, another group established an analog-sensitive version of the pUL97 protein. This mutant kinase can be treated with a non-hydrolysable ATP analog, thereby inhibiting its kinase function. This process is reversible by removing the ATP analog by media change. We introduced this mutant version of the pUL97 protein into the laboratory strain Ad169 of HCMV, BADwt, creating a BAD-UL97-as1 viral mutant. This mutant virus replicated normally in infected cells in the absence of the ATP analog and maintained its ability to phosphorylate its cellular substrates. However, when treated with the ATP analog, BAD-UL97-as1 displayed a defect in the production of intra- and extracellular viral DNA and in the production of viral progeny. Furthermore, in the presence of 3MB-PP1, a well-established substrate of pUL97 was no longer hyperphosphorylated. This effect was detectable as early as 4 h post treatment, which allows for studies on pUL97 without the complication of low viral titers. Nevertheless, we observed off-target effects of 3MB-PP1 on several cellular processes, which should be considered with this approach.  相似文献   

3.
Replication of human cytomegalovirus (HCMV) is characterized by a tight virus-host cell interaction. Cyclin-dependent protein kinases (CDKs) are functionally integrated into viral gene expression and protein modification. The HCMV-encoded protein kinase pUL97 acts as a CDK ortholog showing structural and functional similarities. Recently, we reported an interaction between pUL97 kinase with a subset of host cyclins, in particular with cyclin T1. Here, we describe an interaction of pUL97 at an even higher affinity with cyclin B1. As a striking feature, the interaction between pUL97 and cyclin B1 proved to be strictly dependent on pUL97 activity, as interaction could be abrogated by treatment with pUL97 inhibitors or by inserting mutations into the conserved kinase domain or the nonconserved C-terminus of pUL97, both producing loss of activity. Thus, we postulate that the mechanism of pUL97-cyclin B1 interaction is determined by an active pUL97 kinase domain.  相似文献   

4.
Human cytomegalovirus (HCMV) gene expression during infection is characterized as a sequential process including immediate-early (IE), early (E), and late (L)-stage gene expression. The most abundantly expressed gene at the IE stage of infection is the major IE (MIE) gene that produces IE1 and IE2. IE1 has been the focus of study because it is an important protein, not only for viral gene expression but also for viral replication. It is believed that IE1 plays important roles in viral gene regulation by interacting with cellular proteins. In the current study, we performed protein array assays and identified 83 cellular proteins that interact with IE1. Among them, seven are RNA-binding proteins that are important in RNA processing; more than half are nuclear proteins that are involved in gene regulations. Tumorigenesis-related proteins are also found to interact with IE1, implying that the role of IE1 in tumorigenesis might need to be reevaluated. Unexpectedly, cytoplasmic proteins, such as Golgi autoantigen and GGA1 (both related to the Golgi trafficking protein), are also found to be associated with IE1. We also employed a coimmunoprecipitation assay to test the interactions of IE1 and some of the proteins identified in the protein array assays and confirmed that the results from the protein array assays are reliable. Many of the proteins identified by the protein array assay have not been previously reported. Therefore, the functions of the IE1-protein interactions need to be further explored in the future.  相似文献   

5.
The nucleo-cytoplasmic capsid egress of herpesviruses is a unique regulated process that ensures the efficiency of viral replication and release. For human cytomegalovirus (HCMV), the core of the nuclear egress complex (NEC) consists of the pUL50–pUL53 heterodimer that is able to oligomerize and thus to build hexameric lattices. These structures determine capsid binding and multicomponent protein interaction including NEC-associated host factors. The underlying characteristic of the core NEC formation is based on the N-terminal hook structure of pUL53 that binds into an alpha-helical groove of pUL50, and is thus described as a hook-into-groove interaction. This central regulatory element has recently been validated as a target of antiviral strategies, and first NEC-targeted prototypes of inhibitory small molecules were reported by our previous study. Here, we further analyzed the oligomerization properties of the viral NEC through an approach of chemical protein cross-linking. Findings were as follows: (i) a cross-link approach demonstrated the oligomeric state of the HCMV core NEC using material from HCMV-infected or plasmid-transfected cells, (ii) a Western blot-based identification of NEC-associated kinases using the cross-linked multicomponent NECs was successful, and (iii) we demonstrated the NEC-inhibitory and antiviral activity of specific inhibitors directed to these target kinases. Combined, the results strongly underline the functional importance of the oligomerization of the HCMV-specific NEC that is both phosphorylation-dependent and sensitive to antiviral kinase inhibitors.  相似文献   

6.
PCOS is not only the most frequent cause of oligomenorrhea in young women, but also a metabolic disorder characterized by insulin resistance, glucose intolerance, dyslipidemia, and obesity, especially the visceral phenotype. PCOS represents a broad spectrum of endocrine and metabolic alterations which change with age and with increasing adiposity. In fact, during adolescence and youth the predominant clinical manifestations of PCOS are menstrual abnormalities, hirsutism and acne, whereas in peri-menopausal and post-menopausal periods metabolic disorders and an increased risk for cardiovascular diseases prevail. The pathogenetic links between PCOS and metabolic or cardiovascular complications are still debated. However, recent evidence has been focused on a condition of low-grade chronic inflammation as a potential cause of the long-term consequence of the syndrome.  相似文献   

7.

Background

Coagulation and prothrombotic potential have genuinely been associated with increased cardiovascular risk. However, not all studies in this regard are conclusive. Some clinical trials have shown an increased frequency of cardiovascular complications in patients receiving direct thrombin inhibitors. Previous data from human subjects after acute cardiovascular events showed an inverse association between the thrombin generation marker F1+2 and cardiovascular endpoints indicating that not the lowest, but a slightly elevated propensity for thrombin generation is associated with a lower risk of cardiovascular events. This observation has been supported by findings in animal models of atherosclerosis. Hence, we evaluated the association between the endogenous thrombin potential (ETP) and cardiovascular death (CVD) and markers of vascular dysfunction in a large prospective study with long-term follow up.

Method

After excluding patients receiving anticoagulants we tested ETP in 2196 participants (median follow-up 10 years) for its ability to predict vascular death (CVD). In addition, the association between ETP and sVCAM-1, sICAM-1, LpPLA2, hsCRP and SAA was determined.

Results

We observed an inverse association between ETP and CVD with the lowest hazard ratio in the 4th ETP quartile. The nadirs of sICAM-1 or sVCAM-1 were observed in the 3rd, for LpPLA2 in the 4th ETP quartile. Conversely, hsCRP and SAA were highest in the 4th quartile.

Conclusions

These results demonstrate that not the lowest ETP possible, but slightly higher levels are associated with a reduced risk of CVD and lower markers of endothelial dysfunction, suggesting a more complex role of thrombin in cardiovascular disease.  相似文献   

8.
Prolonged hyperglycemia leads to a non-enzymatic glycation of proteins, and produces Amadori products, such as glycated albumin (GA) and glycated hemoglobin (HbA1c). The utility of HbA1c in the setting of chronic kidney disease (CKD) may be problematic since altered lifespan of red blood cells, use of iron and/or erythropoietin therapy, uremia and so on. Therefore, as an alternative marker, GA has been suggested as a more reliable and sensitive glycemic index in patients with CKD. In addition to the mean plasma glucose concentration, GA also reflects postprandial plasma glucose and glycemic excursion. Besides, with a half-life of approximately 2–3?weeks, GA may reflect the status of blood glucose more rapidly than HbA1c. GA is also an early precursor of advanced glycation end products (AGEs), which cause alterations in various cellular proteins and organelles. Thus, high GA levels may correlate with adverse outcomes of patients with CKD. In this review, the clinical usefulness of GA was discussed, including a comparison of GA with HbA1c, the utility and limitations of GA as a glycemic index, its potential role in pathogenesis of diabetic nephropathy and the correlations between GA levels and outcomes, specifically in patients with diabetes and CKD.  相似文献   

9.

Objectives

To explore the effect of myriocin on EDVD and atherosclerosis in diabetic rats.

Methods

Rats were fed with a high-fat/high-sucrose/high-cholesterol diet (20% sucrose, 10% animal oil, 1.0% bile salt and 2.5% cholesterol) (hereinafter defined as diabetic groups) or Purina Rodent Chow (NC group), the former was intervened with low dose streptozotocin (30 mg/kg) after feeding 1 month to make diabetic model. The NC group was intervened with citrate buffer and the diabetic rats were intervened with myriocin (0.3 mg/kg Qod) (MTD group) or just solvent (DC group) for 14 weeks. The EDVD, thickness of fatty deposition under endothelium, ceramide, PI3K/PKB/eNOS, NO and other vital parameters were measured after the rats sacrificed.

Results

In DC group, the ceramide contents in serum and aorta increased, the EDVD was impaired, the fatty deposition under endothelium increased, and the phosphorylation of PI3K/PKB/eNOS and NO release decreased all compared with the NC group (P < 0.05). Compared with the DC group, the ceramide contents in MTD group decreased, the EDVD ameliorated, the fatty deposition diminished, and PI3K/PKB/eNOS phosphorylation and NO release (P < 0.05) increased.

Conclusions

After treated with myriocin, the EDVD in diabetic rats has been improved by increasing PI3K/PKB/eNOS phosphorylation and NO release, and meanwhile the atherosclerosis has reversed.  相似文献   

10.
11.
12.
Subject index     
  相似文献   

13.
Keyword index     
  相似文献   

14.
Keyword index     
  相似文献   

15.
Keyword index     
  相似文献   

16.
Respiratory viruses like rhinovirus, influenza virus, respiratory syncytial virus, and coronavirus cause several respiratory diseases, such as bronchitis, pneumonia, pulmonary fibrosis, and coronavirus disease 2019, and exacerbate bronchial asthma, chronic obstructive pulmonary disease, bronchiectasis, and diffuse panbronchiolitis. The production of inflammatory mediators and mucin and the accumulation of inflammatory cells have been reported in patients with viral infection-induced respiratory diseases. Interleukin (IL)-1β, IL-6, IL-8, tumor necrosis factor-α, granulocyte-macrophage colony-stimulating factor, and regulated on activation normal T-cell expressed and secreted are produced in the cells, including human airway and alveolar epithelial cells, partly through the activation of toll-like receptors, nuclear factor kappa B and p44/42 mitogen-activated protein kinase. These mediators are associated with the development of viral infection-induced respiratory diseases through the induction of inflammation and injury in the airway and lung, airway remodeling and hyperresponsiveness, and mucus secretion. Medications used to treat respiratory diseases, including corticosteroids, long-acting β2-agonists, long-acting muscarinic antagonists, mucolytic agents, antiviral drugs for severe acute respiratory syndrome coronavirus 2 and influenza virus, macrolides, and Kampo medicines, reduce the production of viral infection-induced mediators, including cytokines and mucin, as determined in clinical, in vivo, or in vitro studies. These results suggest that the anti-inflammatory effects of these medications on viral infection-induced respiratory diseases may be associated with clinical benefits, such as improvements in symptoms, quality of life, and mortality rate, and can prevent hospitalization and the exacerbation of chronic obstructive pulmonary disease, bronchial asthma, bronchiectasis, and diffuse panbronchiolitis.  相似文献   

17.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号