首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 882 毫秒
1.

Introduction

The female sex steroids estrogen and progesterone are important in breast cancer etiology. It therefore seems plausible that variation in genes involved in metabolism of these hormones may affect breast cancer risk, and that these associations may vary depending on menopausal status and use of hormone therapy.

Methods

We conducted a nested case-control study of breast cancer in the California Teachers Study cohort. We analyzed 317 tagging single nucleotide polymorphisms (SNPs) in 24 hormone pathway genes in 2746 non-Hispanic white women: 1351 cases and 1395 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) were estimated by fitting conditional logistic regression models using all women or subgroups of women defined by menopausal status and hormone therapy use. P values were adjusted for multiple correlated tests (PACT).

Results

The strongest associations were observed for SNPs in SLCO1B1, a solute carrier organic anion transporter gene, which transports estradiol-17β-glucuronide and estrone-3-sulfate from the blood into hepatocytes. Ten of 38 tagging SNPs of SLCO1B1 showed significant associations with postmenopausal breast cancer risk; 5 SNPs (rs11045777, rs11045773, rs16923519, rs4149057, rs11045884) remained statistically significant after adjusting for multiple testing within this gene (PACT = 0.019-0.046). In postmenopausal women who were using combined estrogen-progestin therapy (EPT) at cohort enrollment, the OR of breast cancer was 2.31 (95% CI = 1.47-3.62) per minor allele of rs4149013 in SLCO1B1 (P = 0.0003; within-gene PACT = 0.002; overall PACT = 0.023). SNPs in other hormone pathway genes evaluated in this study were not associated with breast cancer risk in premenopausal or postmenopausal women.

Conclusions

We found evidence that genetic variation in SLCO1B1 is associated with breast cancer risk in postmenopausal women, particularly among those using EPT.  相似文献   

2.

Objective

Estrogen plays a key role in breast cancer development and functionally relevant genetic variants within the estrogen metabolic pathway are prime candidates for a possible association with breast cancer risk. We investigated the independent and the combined effects of commonly occurring polymorphisms in four genes encoding key proteins of estrogen metabolic pathway on their potential contribution to breast cancer risk.

Methods

We studied 530 breast cancer cases and 270 controls of the same age and ethnicity participating in a case-control study of postmenopausal women. Genotyping was conducted for CYP1B1 (rs1056836), COMT (rs4680), GSTP1 (rs1695), and MnSOD (rs4880) polymorphisms by polymerase chain reaction based restriction fragment length polymorphism and TaqMan allelic discrimination method. Adjusted ORs and 95% CIs were calculated using logistic regression.

Results

None of the 4 genetic variants examined contributed to breast cancer risk individually. When the combined effects of the risk genotypes were investigated, significant associations were observed among women with two high-risk genotypes in CYP1B1 and COMT (OR, 2.0; 95% CI, 1.1 to 3.5) and two high-risk genotypes in COMT and MnSOD (OR, 2.0; 95% CI, 1.0 to 3.8), compared to those with low-risk genotypes.

Conclusion

Our results suggest that individual susceptibility to breast cancer incidence may be increased by combined effects of the high-risk genotypes in CYP1B1, COMT, and MnSOD estrogen metabolic genes.  相似文献   

3.

Introduction

Several common alleles have been shown to be associated with breast and/or ovarian cancer risk for BRCA1 and BRCA2 mutation carriers. Recent genome-wide association studies of breast cancer have identified eight additional breast cancer susceptibility loci: rs1011970 (9p21, CDKN2A/B), rs10995190 (ZNF365), rs704010 (ZMIZ1), rs2380205 (10p15), rs614367 (11q13), rs1292011 (12q24), rs10771399 (12p11 near PTHLH) and rs865686 (9q31.2).

Methods

To evaluate whether these single nucleotide polymorphisms (SNPs) are associated with breast cancer risk for BRCA1 and BRCA2 carriers, we genotyped these SNPs in 12,599 BRCA1 and 7,132 BRCA2 mutation carriers and analysed the associations with breast cancer risk within a retrospective likelihood framework.

Results

Only SNP rs10771399 near PTHLH was associated with breast cancer risk for BRCA1 mutation carriers (per-allele hazard ratio (HR) = 0.87, 95% CI: 0.81 to 0.94, P-trend = 3 × 10-4). The association was restricted to mutations proven or predicted to lead to absence of protein expression (HR = 0.82, 95% CI: 0.74 to 0.90, P-trend = 3.1 × 10-5, P-difference = 0.03). Four SNPs were associated with the risk of breast cancer for BRCA2 mutation carriers: rs10995190, P-trend = 0.015; rs1011970, P-trend = 0.048; rs865686, 2df-P = 0.007; rs1292011 2df-P = 0.03. rs10771399 (PTHLH) was predominantly associated with estrogen receptor (ER)-negative breast cancer for BRCA1 mutation carriers (HR = 0.81, 95% CI: 0.74 to 0.90, P-trend = 4 × 10-5) and there was marginal evidence of association with ER-negative breast cancer for BRCA2 mutation carriers (HR = 0.78, 95% CI: 0.62 to 1.00, P-trend = 0.049).

Conclusions

The present findings, in combination with previously identified modifiers of risk, will ultimately lead to more accurate risk prediction and an improved understanding of the disease etiology in BRCA1 and BRCA2 mutation carriers.  相似文献   

4.

Introduction

Previous studies have demonstrated that common breast cancer susceptibility alleles are differentially associated with breast cancer risk for BRCA1 and/or BRCA2 mutation carriers. It is currently unknown how these alleles are associated with different breast cancer subtypes in BRCA1 and BRCA2 mutation carriers defined by estrogen (ER) or progesterone receptor (PR) status of the tumour.

Methods

We used genotype data on up to 11,421 BRCA1 and 7,080 BRCA2 carriers, of whom 4,310 had been affected with breast cancer and had information on either ER or PR status of the tumour, to assess the associations of 12 loci with breast cancer tumour characteristics. Associations were evaluated using a retrospective cohort approach.

Results

The results suggested stronger associations with ER-positive breast cancer than ER-negative for 11 loci in both BRCA1 and BRCA2 carriers. Among BRCA1 carriers, single nucleotide polymorphism (SNP) rs2981582 (FGFR2) exhibited the biggest difference based on ER status (per-allele hazard ratio (HR) for ER-positive = 1.35, 95% CI: 1.17 to 1.56 vs HR = 0.91, 95% CI: 0.85 to 0.98 for ER-negative, P-heterogeneity = 6.5 × 10-6). In contrast, SNP rs2046210 at 6q25.1 near ESR1 was primarily associated with ER-negative breast cancer risk for both BRCA1 and BRCA2 carriers. In BRCA2 carriers, SNPs in FGFR2, TOX3, LSP1, SLC4A7/NEK10, 5p12, 2q35, and 1p11.2 were significantly associated with ER-positive but not ER-negative disease. Similar results were observed when differentiating breast cancer cases by PR status.

Conclusions

The associations of the 12 SNPs with risk for BRCA1 and BRCA2 carriers differ by ER-positive or ER-negative breast cancer status. The apparent differences in SNP associations between BRCA1 and BRCA2 carriers, and non-carriers, may be explicable by differences in the prevalence of tumour subtypes. As more risk modifying variants are identified, incorporating these associations into breast cancer subtype-specific risk models may improve clinical management for mutation carriers.  相似文献   

5.

Background

Emerging evidence suggests that ataxia telangiectasia-mutated (ATM) is involved in numerous damage repair signaling pathways and cell-cycle checkpoints. Heterozygous carriers of ATM-mutations have an increased risk for the development of breast cancer. The purpose of this study is to evaluate the association between ATM exon39 5557G > A (D1853N, rs1801516) polymorphism and breast cancer susceptibility with the use of a meta-analysis.

Methods

By searching PubMed and Embase databases, a total of 9 epidemiological studies with 4,191 cases and 3,780 controls were identified. Crude odds ratios (ORs) and their corresponding 95% confidence intervals (CIs) for ATM D1853N polymorphism and breast cancer risk were calculated using fixed- or random-effects model based on the degree of heterogeneity among studies.

Results

No significant association between the ATM D1853N polymorphism and breast cancer risk was observed in overall analysis (GA versus GG: OR = 1.18; 95% CI, 0.90-1.53; AA versus GG: OR = 0.77; 95% CI, 0.58-1.03; dominant model: OR = 1.16; 95% CI, 0.89-1.51; and recessive model: OR = 0.78; 95% CI, 0.59-1.04, respectively).

Conclusion

Our results indicate that ATM D1853N polymorphism is not a risk factor for developing breast cancer.  相似文献   

6.

Background

The fibroblast growth factor (FGF) receptor pathway is activated in many tumors. FGFR2 has been identified as a breast cancer susceptibility gene. Common variation in other FGF receptors might also affect breast cancer risk. We carried out a case-control study to investigate associations of variants in FGFR3 and FGFR4 with breast cancer in women from Heilongjiang Province.

Methods

SNP rs2234909 and rs3135848 in FGFR3 and rs1966265 and rs351855 in FGFR4 were successfully genotyped in 747 breast cancer patients and 716 healthy controls using the SNaPshot method. The associations between SNPs and breast cancer were examined by logistic regression. The associations between SNPs and disease characteristics were examined by chi-square tests or one-way ANOVA as needed.

Results

The minor alleles of rs1966265 and rs351855 in FGFR4 were strongly associated with breast cancer in the population, with odds ratios of 1.335 (95%CI = 1.154-1.545) and 1.364 (95%CI = 1.177-1.580), respectively. However, no significant associations were detected between other SNPs and breast cancer. Analyses of the disease characteristics showed that SNP rs351855 was associated with lymph-node-positive breast cancer with a dose-dependent effect of the minor allele (P = 0.008).

Conclusions

SNPs rs1966265 and rs351855 in FGFR4 were associated with breast cancer in a northern Chinese population.  相似文献   

7.

Introduction

Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production. Individuals with different mitochondrial haplogroups differ in their metabolism and sensitivity to oxidative stress. Variability in mitochondrial genetic background can alter reactive oxygen species production, leading to cancer risk. In the present study, we tested the hypothesis that mitochondrial haplogroups modify breast cancer risk in BRCA1/2 mutation carriers.

Methods

We genotyped 22,214 (11,421 affected, 10,793 unaffected) mutation carriers belonging to the Consortium of Investigators of Modifiers of BRCA1/2 for 129 mitochondrial polymorphisms using the iCOGS array. Haplogroup inference and association detection were performed using a phylogenetic approach. ALTree was applied to explore the reference mitochondrial evolutionary tree and detect subclades enriched in affected or unaffected individuals.

Results

We discovered that subclade T1a1 was depleted in affected BRCA2 mutation carriers compared with the rest of clade T (hazard ratio (HR) = 0.55; 95% confidence interval (CI), 0.34 to 0.88; P = 0.01). Compared with the most frequent haplogroup in the general population (that is, H and T clades), the T1a1 haplogroup has a HR of 0.62 (95% CI, 0.40 to 0.95; P = 0.03). We also identified three potential susceptibility loci, including G13708A/rs28359178, which has demonstrated an inverse association with familial breast cancer risk.

Conclusions

This study illustrates how original approaches such as the phylogeny-based method we used can empower classical molecular epidemiological studies aimed at identifying association or risk modification effects.

Electronic supplementary material

The online version of this article (doi:10.1186/s13058-015-0567-2) contains supplementary material, which is available to authorized users.  相似文献   

8.

Introduction

Studies suggest that high circulating levels of prolactin increase breast cancer risk. It is unclear if genetic variations in prolactin (PRL) or prolactin receptor (PRLR) genes also play a role. Thus, we examined the relationship between single nucleotide polymorphisms (SNPs) in PRL and PRLR, serum prolactin levels and breast cancer risk in a population-based case-control study.

Methods

We genotyped 8 PRL and 20 PRLR tag SNPs in 1965 breast cancer cases and 2229 matched controls, aged 20-74, and living in Warsaw or Łódź, Poland. Serum prolactin levels were measured by immunoassay in a subset of 773 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) for genotype associations with breast cancer risk were estimated using unconditional logistic regression, adjusted for age and study site. Geometric mean prolactin levels were estimated using linear regression models adjusted for age, study site, blood collection time, and menstrual cycle day (premenopausal women).

Results

Three SNPs were associated with breast cancer risk: in premenopausal women, PRLR rs249537 (T vs. C per-allele OR 1.39, 95% CI 1.07 - 1.80, P = 0.01); and in postmenopausal women, PRLR rs7718468 (C vs. T per-allele OR 1.16, 95% CI 1.03 - 1.30, P = 0.01) and PRLR rs13436213 (A vs. G per-allele OR 1.13 95% CI 1.01 - 1.26, P = 0.04). However, mean serum prolactin levels for these SNPs did not vary by genotype (P-trend > 0.05). Other SNPs were associated with serum prolactin levels: PRLR rs62355518 (P-trend = 0.01), PRLR rs10941235 (P-trend = 0.01), PRLR rs1610218 (P-trend = 0.01), PRLR rs34024951 (P-trend = 0.02), and PRLR rs9292575 (P-trend = 0.03) in premenopausal controls and PRL rs849872 (P-trend = 0.01) in postmenopausal controls.

Conclusions

Our data provide limited support for an association between common variations in PRLR and breast cancer risk. Altered serum prolactin levels were not associated with breast cancer risk-associated variants, suggesting that common genetic variation is not a strong predictor of prolactin-associated breast cancer risk in this population.  相似文献   

9.

Background:

The variable penetrance of breast cancer in BRCA1/2 mutation carriers suggests that other genetic or environmental factors modify breast cancer risk. Two genes of special interest are prohibitin (PHB) and methylene-tetrahydrofolate reductase (MTHFR), both of which are important either directly or indirectly in maintaining genomic integrity.

Methods:

To evaluate the potential role of genetic variants within PHB and MTHFR in breast and ovarian cancer risk, 4102 BRCA1 and 2093 BRCA2 mutation carriers, and 6211 BRCA1 and 2902 BRCA2 carriers from the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA) were genotyped for the PHB 1630 C>T (rs6917) polymorphism and the MTHFR 677 C>T (rs1801133) polymorphism, respectively.

Results:

There was no evidence of association between the PHB 1630 C>T and MTHFR 677 C>T polymorphisms with either disease for BRCA1 or BRCA2 mutation carriers when breast and ovarian cancer associations were evaluated separately. Analysis that evaluated associations for breast and ovarian cancer simultaneously showed some evidence that BRCA1 mutation carriers who had the rare homozygote genotype (TT) of the PHB 1630 C>T polymorphism were at increased risk of both breast and ovarian cancer (HR 1.50, 95%CI 1.10–2.04 and HR 2.16, 95%CI 1.24–3.76, respectively). However, there was no evidence of association under a multiplicative model for the effect of each minor allele.

Conclusion:

The PHB 1630TT genotype may modify breast and ovarian cancer risks in BRCA1 mutation carriers. This association need to be evaluated in larger series of BRCA1 mutation carriers.  相似文献   

10.

Purpose:

The objective of this study was to estimate the risk of contralateral breast cancer in BRCA1 and BRCA2 carriers; and measure the extent to which host, family history, and cancer treatment-related factors modify the risk.

Patients and methods:

Patients were 810 women, with stage I or II breast cancer, for whom a BRCA1 or BRCA2 mutation had been identified in the family. Patients were followed from the initial diagnosis of cancer until contralateral mastectomy, contralateral breast cancer, death, or last follow-up.

Results:

Overall, 149 subjects (18.4%) developed a contralateral breast cancer. The 15-year actuarial risk of contralateral breast cancer was 36.1% for women with a BRCA1 mutation and was 28.5% for women with a BRCA2 mutation. Women younger than 50 years of age at the time of breast cancer diagnosis were significantly more likely to develop a contralateral breast cancer at 15 years, compared with those older than 50 years (37.6 vs 16.8% P=0.003). Women aged <50 years with two or more first-degree relatives with early-onset breast cancer were at high risk of contralateral breast cancer, compared with women with fewer, or no first-degree relatives with breast cancer (50 vs 36% P=0.005). The risk of contralateral breast cancer was reduced with oophorectomy (RR 0.47; 95% CI 0.30–0.76; P=0.002).

Conclusion:

The risk of contralateral breast cancer risk in BRCA mutation carriers declines with the age of diagnosis and increases with the number of first-degree relatives affected with breast cancer. Oophorectomy reduces the risk of contralateral breast cancer in young women with a BRCA mutation.  相似文献   

11.

Purpose

Genetic variation in fibroblast growth factor receptor 2 (FGFR2) is a newly described risk factor for breast cancer. This study aimed to evaluate the association of four single nucleotide polymorphisms (SNPs) in FGFR2 with breast cancer in Han Chinese women.

Methods

Two hundred three women with breast cancer and 200 breast cancer-free age-matched controls were selected. Four SNPs (rs2981579, rs1219648, rs2420946, and rs2981582) and their haplotypes were analyzed to test for their association with breast cancer susceptibility. The presence of the four FGFR2 SNPs was determined by polymerase chain reaction-restriction fragment length polymorphism analysis.

Results

A statistically significant difference was observed in the frequency of rs2981582 in the FGFR2 gene (p<0.05) between case and control groups. In subjects stratified by menopausal status, rs2981582 TT, rs2420946 AA, and rs1219648 CC were significantly associated with the risk of breast cancer in postmenopausal subjects, but no significant associations between these four SNPs and the risk of breast cancer were identified in premenopausal subjects. Further, there was no significant association between hormone receptor status (estrogen receptor and progesterone receptor) and breast cancer risk. Six common (> 3%) haplotypes were identified. Three of these haplotypes, CGTC (odds ratio [OR], 0.613; 95% confidence interval [CI], 0.457-0.82; p=0.001), TGTC (OR, 6.561; 95% CI, 2.064-20.854; p<0.001), and CATC (OR, 12.645; 95% CI, 1.742-91.799; p=0.001) were significantly associated with breast cancer risk.

Conclusion

Our findings indicated that the SNP rs2981582 and haplotypes CGTC, TGTC, and CATC in FGFR2 may be associated with an increased risk of breast cancer in Han Chinese women.  相似文献   

12.

Background:

Genes of the adiponectin pathway are interesting candidates for colorectal cancer risk based on the potential association between colorectal cancer and obesity. However, variants of the adiponectin gene (ADIPOQ) have been demonstrated to be inconsistently associated with risk of colorectal cancer.

Methods:

The current study attempted to evaluate these findings by examining several single nucleotide polymorphisms (SNPs) that were previously genotyped as part of a genome-wide association study in the ADIPOQ gene. Genotyping was also performed for a previously reported risk variant, rs266729, in 1062 individuals with a diagnosis of colorectal cancer and 1062 controls matched on age, gender and ethnicity (Jewish or not Jewish) as part of a population-based case–control study in Israel.

Results:

No evidence was found for an association between ADIPOQ and risk of colorectal cancer. The single nucleotide variant previously associated with decreased risk of colorectal cancer, rs266729, revealed an adjusted odds ratio of 1.04; 95% confidence interval, 0.88–1.23.

Conclusion:

The SNP, rs266729, was not strongly associated with colorectal cancer in patients of Ashkenazi Jewish descent or other ethnic groups in Israel.  相似文献   

13.

Background

Some tumour suppressor genes (BRCA2) and mismatch repair genes (MSH2, MLH1) are correlated with an increased risk for male breast cancer.

Case report

Our patient developed secondary breast cancer after the treatment for Hodgkin’s disease in childhood. DNA was isolated from the patients’ blood and screened for mutations, polymorphisms and variants in BRCA1, BRCA2, p53, CDKN2A, MLH1 and MSH2 genes. We found no mutations but common polymorphisms, and three variants in mismatch repair genes.

Conclusions

Nucleotide variants c.2006-6T>C and p.G322D in MSH2 might be correlated with male breast cancer.  相似文献   

14.

Background

Breast cancer is the most common cancer in women characterized by a high variable clinical outcome among individuals treated with targeted therapies.

Patients and Methods

In this study, we performed a population-based approach intersecting high-throughput genotype data from Iraqi populations with publicly available pharmacogenomics information to estimate the frequency of genotypes correlated with responsiveness to breast cancer treatment thus improving the clinical management of this disease in an efficient and cost effective way. A total of 50 patients and 25 healthy controls were enrolled in our study. Genotyping of rs4880, rs4244285, and rs1801274 were examined in association with breast cancer in Iraqi women.

Results

We found that individuals carrying the CT genotype of rs4880 manifested an increased risk of breast cancer compared with those carrying the TT genotype (odds ratio [OR], 0.171; 95% confidence interval [CI], 0.053-0.551; P = .002). In the dominant model, we observed that the CT and CC genotype of rs4880 showed an increased risk of breast cancer compared with the TT genotype (OR, 0.248; 95% CI, 0.089-0.690; P = .006). Moreover, subjects with the GA genotype of rs4244285 presented a higher risk of breast cancer than the GG genotype (OR, 0.256; 95% CI, 0.066-0.987; P = .038) and dominant models (OR, 0.025; 95% CI, 0.054-0.775; P = .013).

Conclusion

The analysis revealed that rs1801274 showed linkage disequilibrium and decreased risk of breast cancer. In conclusion, our study suggests that rs4880 and rs4244285 polymorphisms play an important role in development of breast cancer in an Iraqi population, and no significant association was found between rs1801274 and the risk of breast cancer.  相似文献   

15.

Purpose

Although case–control studies have evaluated the role of variant inflammatory-related loci in prostate cancer, their impact is virtually unknown among men of African descent. To address this, we evaluated the impact of inflammatory cytokine single nucleotide polymorphisms (SNPs) on prostate cancer risk for men of African descent.

Methods

Forty-four SNPs in inflammatory cytokine-associated genes were evaluated among 814 African-American and Jamaican men (279 prostate cancer cases and 535 controls) using Illumina’s Golden gate genotyping system. Individual SNP effects were evaluated using logistic regression analysis.

Results

Four SNPs were modestly associated with prostate cancer after adjusting for age. In the total population, inheritance of the IL1R2 rs11886877 AA, IL8RB rs11574752 AA, TNF rs1800629 GA + AA, and TNF rs673 GA genotypes modestly increased prostate cancer risk by 1.45 to 11.7-fold relative to the referent genotype. Among U.S. men, age-adjusted dominant, recessive and additive genetic models for the IL1R2 rs11886877 locus were linked to an increase in prostate cancer susceptibility. However, these main effects did not persist after adjusting for multiple hypothesis testing.

Conclusion

Our preliminary data does not strongly support the hypothesis that inflammatory-related sequence variants influence prostate cancer risk among men of African descent. However, further evaluation is needed to assess whether other variant inflammatory-related genes may contribute to prostate cancer risk and disease progression in larger and ethnically diverse multi-center studies.  相似文献   

16.

Background:

Although many low-penetrant genetic risk factors for breast cancer have been discovered, knowledge about the effect of multiple risk alleles is limited, especially in women <50 years. We therefore investigated the association between multiple risk alleles and breast cancer risk as well as individual effects according to age-approximated pre- and post-menopausal status.

Methods:

Ten previously described breast cancer-associated single-nucleotide polymorphisms (SNPs) were analysed in a joint European biobank-based study comprising 3584 breast cancer cases and 5063 cancer-free controls. Genotyping was performed using MALDI-TOF mass spectrometry, and odds ratios were estimated using logistic regression.

Results:

Significant associations with breast cancer were confirmed for 7 of the 10 SNPs. Analysis of the joint effect of the original 10 as well as the statistically significant 7 SNPs (rs2981582, rs3803662, rs889312, rs13387042, rs13281615, rs3817198 and rs981782) found a highly significant trend for increasing breast cancer risk with increasing number of risk alleles (P-trend 5.6 × 10−20 and 1.5 × 10−25, respectively). Odds ratio for breast cancer of 1.84 (95% confidence interval (CI): 1.59–2.14; 10 SNPs) and 2.12 (95% CI: 1.80–2.50; 7 SNPs) was seen for the maximum vs the minimum number of risk alleles. Additionally, one of the examined SNPs (rs981782 in HCN1) had a protective effect that was significantly stronger in premenopausal women (P-value: 7.9 × 10−4).

Conclusion:

The strongly increasing risk seen when combining many low-penetrant risk alleles supports the polygenic inheritance model of breast cancer.  相似文献   

17.

Purpose

Catechol-O-methyltransferase (COMT) enzyme plays a central role in estrogen-induced carcinogenesis. Emerging evidence from association studies has revealed that the functional Val158Met polymorphism (rs4680 G>A) of the Catechol-O-methyltransferase gene (COMT) has been implicated in susceptibility to breast cancer in the Chinese population, while results of individual published studies remain inconclusive and inconsistent. To assess this association in the Chinese population, a meta-analysis was performed.

Methods

Eligible studies were searched on MEDLINE, Embase, Cochrane Library, China National Knowledge Infrastructure, and the Chinese Biomedicine Database. Odds ratios (ORs) with their corresponding 95% confidence intervals (CIs) were pooled to assess the association between COMT polymorphisms and the risk of breast cancer using RevMan 5.2 and Stata 12.0 software.

Results

The meta-analysis included 14 eligible studies, with a total of 4,626 breast cancer cases and 5,637 controls. Overall, the COMT Val158Met polymorphism (rs4680 G>A) was significantly associated with an increased risk of breast cancer in several genetic models (A/A vs. G/G: OR, 1.59, 95% CI, 1.12-2.27; A/A vs. G/A+G/G: OR, 1.62, 95% CI, 1.14-2.29; A vs. G: OR, 1.15, 95% CI, 1.00-1.32), and a subgroup analysis according to menopausal status showed that this association was especially evident among premenopausal Chinese women (A/A vs. G/G: OR, 1.87, 95% CI, 0.99-3.54; A/A vs. G/A+G/G: OR, 1.94, 95% CI, 1.03-3.63).

Conclusion

The results of this meta-analysis indicated that COMT Val158Met variants contribute to breast cancer susceptibility in the Chinese population, particularly among premenopausal women.  相似文献   

18.

Purpose

Breast cancer is considered as the most frequent female malignancy. Altered gene expressions due to genetic polymorphisms in the BRCA1, BRCA2, RAD51, and HER2 contribute toward the development of breast cancer, and yet, no such type of study has been conducted in the Bangladeshi population. This study was designed to evaluate the role of BRCA1rs80357713, BRCA1rs80357906, BRCA2rs11571653, RAD51rs1801320, and HER2rs1136201 polymorphisms as risk factors in the development of breast cancer in the Bangladeshi population.

Methods

A total 310 patients with invasive breast cancers were recruited as cases from different public and private hospitals of Bangladesh, and 250 Bangladeshi healthy women matching age with the patients were recruited as controls. Polymerase chain reaction–restriction fragment length polymorphism method was used to analyze the genetic polymorphisms.

Results

Patients carrying BRCA1/2 mutations, GC and GC plus CC genotypes of RAD51rs1801320, and AG plus GG genotype of HER2rs1136201 polymorphisms were found to be associated with breast cancer. In subgroup analysis, AG plus GG genotype of HER2rs1136201 was found to be associated with the breast cancer risk in the patients younger than 45 years of age compared with the older patients having more than 45 years of age, and RAD51rs1801320 was related to the tumor size and tumor aggressiveness (higher graded tumor).

Conclusion

Our results indicate that BRCA1/BRCA2, RAD51rs1801320 and HER2rs1136201 polymorphisms were associated with breast cancer in the studied population.
  相似文献   

19.

Introduction

We have previously shown that a tag single nucleotide polymorphism (rs10235235), which maps to the CYP3A locus (7q22.1), was associated with a reduction in premenopausal urinary estrone glucuronide levels and a modest reduction in risk of breast cancer in women age ≤50 years.

Methods

We further investigated the association of rs10235235 with breast cancer risk in a large case control study of 47,346 cases and 47,570 controls from 52 studies participating in the Breast Cancer Association Consortium. Genotyping of rs10235235 was conducted using a custom Illumina Infinium array. Stratified analyses were conducted to determine whether this association was modified by age at diagnosis, ethnicity, age at menarche or tumor characteristics.

Results

We confirmed the association of rs10235235 with breast cancer risk for women of European ancestry but found no evidence that this association differed with age at diagnosis. Heterozygote and homozygote odds ratios (ORs) were OR = 0.98 (95% CI 0.94, 1.01; P = 0.2) and OR = 0.80 (95% CI 0.69, 0.93; P = 0.004), respectively (Ptrend = 0.02). There was no evidence of effect modification by tumor characteristics. rs10235235 was, however, associated with age at menarche in controls (Ptrend = 0.005) but not cases (Ptrend = 0.97). Consequently the association between rs10235235 and breast cancer risk differed according to age at menarche (Phet = 0.02); the rare allele of rs10235235 was associated with a reduction in breast cancer risk for women who had their menarche age ≥15 years (ORhet = 0.84, 95% CI 0.75, 0.94; ORhom = 0.81, 95% CI 0.51, 1.30; Ptrend = 0.002) but not for those who had their menarche age ≤11 years (ORhet = 1.06, 95% CI 0.95, 1.19, ORhom = 1.07, 95% CI 0.67, 1.72; Ptrend = 0.29).

Conclusions

To our knowledge rs10235235 is the first single nucleotide polymorphism to be associated with both breast cancer risk and age at menarche consistent with the well-documented association between later age at menarche and a reduction in breast cancer risk. These associations are likely mediated via an effect on circulating hormone levels.  相似文献   

20.

Objective

p73 and p63 are two structural and functional homologs of p53, and their biological functions in cancer progression have attracted attention due to the presence of variants generated by genetic polymorphisms. Recently, three single nucleotide polymorphisms (SNPs) in the p63 and p73 genes have been associated with female reproduction. In the present study, we aimed to evaluate the relationship between these SNPs and ovarian cancer susceptibility and clinical pathology.

Methods

We genotyped the p63 (rs873330 [Genbank, refSNP ID] T > C [T: original base, C: mutant base]) and p73 (rs4648551 G > A and rs6695978 G > A) SNPs in ovarian cancers and healthy controls and analyzed the distributions of genotype frequencies to evaluate the association of the genotypes with the risk of ovarian cancer and the clinicopathological characteristics. Logistic regression models were applied in statistical analyses.

Results

Our research revealed that p73 rs6695978 G > A was significantly associated with ovarian cancer patients. Women with the A allele were at increased risk of ovarian cancer compared to carriers of the G allele (OR = 1.55; 95% CI:1.07–2.19; P = 0.003). Meanwhile, the at-risk A allele was positively related with the occurrence of mucinous ovarian cancer (OR = 3.48; 95% CI:1.15-6.83; P = 0.001), low degree of differentiation (OR = 1.87; 95% CI:1.03-3.47; P = 0.003), lymph node metastasis (OR = 1.69; 95% CI: 1.14-2.75; P = 0.010) and estrogen receptor positive (OR = 2.72; 95% CI: 1.38-4.81; P = 0.002). However, we were unable to find any associations of the polymorphisms in another two SNPs (rs4648551 G > A, rs873330 T > C) with ovarian cancer risk and clinicopathological parameters.

Conclusions

The p73 rs6695978 G > A polymorphism will serve as a modifier of ovarian cancer susceptibility and prognosis. Further investigations with large sample sizes and of the mechanistic relevance of p73 polymorphism will be warranted  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号