首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
目的 系统评价高呼气末正压(PEEP)与低PEEP机械通气对急性肺损伤/急性呼吸窘迫综合征(ALI/ARDS)患者预后的影响.方法 通过检索美国<医学索引>、荷兰<医学文摘>、Cochrane临床试验数据库、中国生物医学文献数据库(CBM)和中国期刊网全文数据库(CNKI)等文献数据库,全面收集全世界范围内高PEEP与低PEEP治疗ALI/ARDS患者的随机对照试验(RCT),提取文献中的相关资料和评估方法学质量,而后采用Cochrane协作网RevMan 5.0软件对资料进行荟萃分析(Meta分析).结果 最终纳入6个RCT共2484例ALI/ARDS患者.A亚组的3个RCT中试验组采用了高PEEP(相对于对照组),对照组采用了低PEEP(相对于试验组),两组均采用了小潮气量(6 ml/kg)通气;B亚组的3个RCT中试验组采用了高PEEP加小潮气量,对照组采用了低PEEP加传统潮气量通气.合并结果显示,B亚组中高PEEP加小潮气量通气策略可以降低患者的28 d病死率[Peto比值比(OR)=0.40,95%可信区间(95%CI)0.22~0.72,P=0.003]和气压伤发生率(OR=0.20,95%CI 0.05~0.82,P=0.02);A亚组中,两组患者的28 d病死率(OR=0.86,95%CI 0.72~1.02,P=0.08)和气压伤发生率(OR=1.19,95%CI 0.89~1.58,P=0.25)差异无统计学意义.结论 高PEEP加小潮气量通气可以改善ALI/ARDS患者的28 d病死率和气压伤发生率,单独高PEEP的作用需要进一步评价.
Abstract:
Objective To compare the effects of high and low positive end-expiratory pressure (PEEP) levels on prognosis of patients with acute lung injury/acute respiratory distress syndrome (ALI/ARDS). Methods The data in PubMed, EMbase, Cochrane Library, CBM and CNKI were retrieved. All randomized controlled trials (RCTs) of treatment of ALI/ARDS with PEEP with high or low level were included. Study selection and assessment, data collection and analyses were undertaken by two independent reviewers. Meta-analyses were done using Cochrane Collaboration's RevMan 5.0 software.Results Six RCTs, involving a total of 2 484 patients of ALI/ARDS were included in the review. According to ventilation strategy, all trials were divided into subgroup A (high PEEP+low tidal volume of 6 ml/kg vs.low PEEP+low tidal volume) and subgroup B (high PEEP+low tidal volume vs. low PEEP+traditional tidal volume). In subgroup B, there were three RCTs, and high PEEP was found to be associated with a lower 28-day mortality [odds ratio (OR)=0. 40, 95% confidence interval (95%CI) 0.22 -0.72, P=0.003]and a lower barotraumas (OR = 0.20,95%CI 0.05 - 0.82, P = 0.02) in patients with ALI/ARDS. In subgroup A, there were three RCTs, and it was found that the differences in 28-day mortality (OR=0.86,95%CI 0.72 - 1.02, P = 0.08) and barotraumas (OR = 1.19, 95%CI 0.89 - 1.58, P= 0.25) were not significant. Conclusion As compared with conventional ventilation, high PEEP and low tidal volume ventilation are associated with improved survival and a lower rate of barotrauma in patients with ALI/ARDS.It is necessary to further confirm the role of high PEEP only in the ventilation strategy in patients with ALI/ARDS.  相似文献   

5.
OBJECTIVE: To determine whether positive end-expiratory pressure (PEEP) and prone position present a synergistic effect on oxygenation and if the effect of PEEP is related to computed tomography scan lung characteristic. DESIGN: Prospective randomized study. SETTING: French medical intensive care unit. PATIENTS: Twenty-five patients with acute respiratory distress syndrome. INTERVENTIONS: After a computed tomography scan was obtained, measurements were performed in all patients at four different PEEP levels (0, 5, 10, and 15 cm H2O) applied in random order in both supine and prone positions. MEASUREMENTS AND MAIN RESULTS: Analysis of variance showed that PEEP (p <.001) and prone position (p <.001) improved oxygenation, whereas the type of infiltrates did not influence oxygenation. PEEP and prone position presented an additive effect on oxygenation. Patients presenting diffuse infiltrates exhibited an increase of Pao2/Fio2 related to PEEP whatever the position, whereas patients presenting localized infiltrates did not have improved oxygenation status when PEEP was increased in both positions. Prone position (p <.001) and PEEP (p <.001) reduced the true pulmonary shunt. Analysis of variance showed that prone position (p <.001) and PEEP (p <.001) reduced the true pulmonary shunt. The decrease of the shunt related to PEEP was more pronounced in patients presenting diffuse infiltrates. A lower inflection point was identified in 22 patients (88%) in both supine and prone positions. There was no difference in mean lower inflection point value between the supine and the prone positions (8.8 +/- 2.7 cm H2O vs. 8.4 +/- 3.4 cm H2O, respectively). CONCLUSIONS: PEEP and prone positioning present additive effects. The prone position, not PEEP, improves oxygenation in patients with acute respiratory distress syndrome with localized infiltrates.  相似文献   

6.
7.
OBJECTIVE: To assess the safety and potential efficacy of a mechanical ventilation strategy designed to reduce stretch-induced lung injury in acute respiratory distress syndrome. DESIGN: Prospective, randomized, controlled clinical trial. SETTING: Eight intensive care units in four teaching hospitals. PATIENTS: Fifty-two patients with acute respiratory distress syndrome. INTERVENTIONS: Traditional tidal volume patients: tidal volume 10-12 mL/kg ideal body weight, reduced if inspiratory plateau pressure was > 55 cm H2O (7.3 kPa). Small tidal volume patients: tidal volume 5-8 mL/kg ideal body weight, to keep plateau pressure < 30 cm H2O (4.0 kPa). MEASUREMENTS AND MAIN RESULTS: Mean tidal volumes during the first 5 days in traditional and small tidal volume patients were 10.2 and 7.3 mL/kg, respectively (p < .001), with mean plateau pressure = 30.6 and 24.9 cm H2O (3.3 kPa), respectively (p < .001). There were no significant differences in requirements for positive end-expiratory pressure or FIO2, fluid intakes/outputs, requirements for vasopressors, sedatives, or neuromuscular blocking agents, percentage of patients that achieved unassisted breathing, ventilator days, or mortality. CONCLUSIONS: The reduced tidal volume strategy used in this study was safe. Failure to observe beneficial effects of small tidal volume ventilation treatment in important clinical outcome variables may have occurred because a) the sample size was too small to discern small treatment effects; b) the differences in tidal volumes and plateau pressures were modest; or c) reduced tidal volume ventilation is not beneficial.  相似文献   

8.
IntroductionLung recruitment maneuvers followed by an individually titrated positive end-expiratory pressure (PEEP) are the key components of the open lung ventilation strategy in acute respiratory distress syndrome (ARDS). The staircase recruitment maneuver is a step-by-step increase in PEEP followed by a decremental PEEP trial. The duration of each step is usually 2 minutes without physiologic rationale.MethodsIn this prospective study, we measured the dynamic end-expiratory lung volume changes (ΔEELV) during an increase and decrease in PEEP to determine the optimal duration for each step. PEEP was progressively increased from 5 to 40 cmH2O and then decreased from 40 to 5 cmH2O in steps of 5 cmH2O every 2.5 minutes. The dynamic of ΔEELV was measured by direct spirometry as the difference between inspiratory and expiratory tidal volumes over 2.5 minutes following each increase and decrease in PEEP. ΔEELV was separated between the expected increased volume, calculated as the product of the respiratory system compliance by the change in PEEP, and the additional volume.ResultsTwenty-six early onset moderate or severe ARDS patients were included. Data are expressed as median [25th-75th quartiles]. During the increase in PEEP, the expected increased volume was achieved within 2[2-2] breaths. During the decrease in PEEP, the expected decreased volume was achieved within 1 [1–1] breath, and 95 % of the additional decreased volume was achieved within 8 [2–15] breaths. Completion of volume changes in 99 % of both increase and decrease in PEEP events required 29 breaths.ConclusionsIn early ARDS, most of the ΔEELV occurs within the first minute, and change is completed within 2 minutes, following an increase or decrease in PEEP.  相似文献   

9.

Introduction

The beneficial effect of low tidal volume (TV) ventilation strategy on mortality in patients with acute respiratory distress syndrome (ARDS) has been attributed to the protective effect on ventilator-induced lung injury, and yet its effect on cardiovascular function might also play an important role. The aim of this study was to assess whether low TV ventilation improves cardiac output and oxygen delivery compared with high TV ventilation strategy in patients with ARDS.

Methods

In this crossover randomized clinical trial 16 ARDS patients were recruited in an intensive care unit at a university-affiliated hospital. Each patient was ventilated for 30 min with low (6 mL/kg) and 30 min with high (12 mL/kg) TV. The two experimental periods, applied in random order and with allocation concealment, were separated by 30 min of basal ventilation. Minute ventilation was constantly maintained by appropriate respiratory rate changes.

Results

Compared with high TV ventilation, low TV ventilation showed decreased pH (7.37 vs. 7.41, P = 0.001) and increased PaCO2 (49 vs. 43 mmHg; P = 0.002). Cardiac index and oxygen delivery index were increased with low compared with high TV ventilation (3.9 vs. 3.5 L.min-1.m-2, P = 0.012, and 521 vs. 463 mL.min-1.m-2, P = 0.002, respectively), while oxygen extraction ratio decreased (0.36 vs. 0.44, P = 0.027). In four patients oxygen extraction ratio was >0.5 during high TV but not during low TV strategy. The magnitude of the change in cardiac index was positively associated with PaCO2 variation (P = 0.004), while it was unrelated to the magnitude of changes in TV and airway pressure. The decrease of cardiac index was predicted by PaCO2 reduction, with and area under ROC curve of 0.72.

Conclusions

Our findings suggest that a low TV ventilation strategy increases cardiac index and oxygen delivery, thus supporting the hypothesis that the beneficial effect of low TV ventilation in patients with ARDS could be partially explained by hemodynamic improvement. In other words, low tidal volume ventilation could be protective also for the cardiovascular system and not only for the lung. The slight increase of PaCO2 during low TV ventilation seems to predict the increase of cardiac index.

Trial registration

ClinicalTrials.gov: NCT00713713  相似文献   

10.
11.
BACKGROUND: Current ventilator management for acute respiratory distress syndrome (ARDS) incorporates low tidal volume (V(T)) ventilation in order to limit ventilator-induced lung injury. Low V(T) ventilation in supine patients, without the use of intermittent hyperinflations, may cause small airway closure, progressive atelectasis, and secretion retention. Use of high positive end-expiratory pressure (PEEP) levels with low V(T) ventilation may not counter this effect, because regional differences in intra-abdominal hydrostatic pressure may diminish the volume-stabilizing effects of PEEP. CASE SUMMARY: A 35-year-old man with abdominal compartment syndrome (intra-abdominal pressure > 48 cm H2O developed ARDS and was treated with V(T) of 4.5 mL/kg and PEEP of 20 cm H2O. Despite aggressive fluid therapy, appropriate airway humidification and tracheal suctioning, the patient developed complete bronchial obstruction, involving the entire right lung and left upper lobe. After bronchoscopy the patient was placed on a higher V(T) (7.0 mL/kg). Intermittent PEEP was instituted at 30 cm H2O for 2 breaths every 3 minutes. This intermittently raised the end-inspiratory plateau pressure from 38 cm H2O to 50 cm H2O. With the same airway humidity and tracheal suctioning practices bronchial obstruction did not reoccur. CONCLUSION: Low V(T) ventilation in ARDS may increase the risk of small airway closure and retained secretions. This adverse effect highlights the importance of pulmonary hygiene measures in ARDS during lung-protective ventilation.  相似文献   

12.
Objective We examined whether PEEP during the first hours of ARDS can induce such a change in oxygenation that could mask fulfillment of the AECC criteria of a PaO2/FIO2 200 essential for ARDS diagnosis.Design and setting Observational, prospective cohort in two medical-surgical ICU in teaching hospitals.Patients 48 consecutive patients who met AECC criteria of ARDS on 0 PEEP (ZEEP) at the moment of diagnosis.Measurements and results PaO2/FIO2 and lung mechanics were recorded on admission (0 h) to the ICU on ZEEP, and after 6, 12, and 24 h on PEEP levels selected by attending physicians. Lung Injury Score (LIS) was calculated at 0 and 24 h. PaO2/FIO2 rose significantly from 121±45 on ZEEP at 0 h, to 234±85 on PEEP of 12.8±3.7 cmH2O after 24 h. LIS did not change significantly (2.34±0.53 vs. 2.42±0.62). These variables behaved similarly in pulmonary and extrapulmonary ARDS, and in survivors and nonsurvivors. After 24 h only 18 patients (38%) still had a PaO2/FIO2 of 200 or lower. Their mortality was similar to that in the remaining patients (61% vs. 53%).Conclusions The use of PEEP improved oxygenation such that one-half of patients after 6 h, and most after 24 h did not fulfill AECC hypoxemia criteria of ARDS. However, LIS remained stable in the overall series. These results suggest that PEEP level should be taken into consideration for ARDS diagnosis.  相似文献   

13.
高呼气末正压加肺复张治疗急性呼吸窘迫综合征   总被引:2,自引:1,他引:1  
目的 评价高呼气末正压(PEEP)加肺复张(RM)治疗急性呼吸窘迫综合征(ARDS)的临床疗效和安全性.方法 选择2008年6月至2010年5月贵阳医学院附属医院内科重症监护病房(MICU)收治的ARDS患者38例,按信封法随机分为RM组和非RM组,每组19例.两组均采用压力支持通气(PSV)模式行机械通气,尽可能在吸入氧浓度(FiO2)<0.60时达到目标氧合的最小PEEP水平,限制平台压≤30 cm H2O(1 cm H2O=0.098 kPa).RM时FiO2调至1.00,压力支持水平调至0,将PEEP升至40 cm H2O,持续30 s后再降低,8 h 1次,连续5 d.记录基础状态和5 d内的机械通气参数、血气分析结果及生命体征,比较两组氧合改善和肺损伤指标变化,观察RM的不良反应和气压伤发生率.结果 ①两组患者基础状态及机械通气参数均无明显差异.②两组动脉血氧分压(PaO2)和氧合指数(PaO2/FiO2)均明显改善,且RM组明显优于非RM组[PaO2(mm Hg,1 mm Hg=0.133 kPa)2 d:85.8±21.3比73.5±18.7,3 d:88.6±22.8比74.3±19.8,4 d:98.8±30.7比79.3±19.3,5 d:105.5±29.4比84.4±13.8;PaO2/FiO2(mm Hg)4 d:221.8±103.5比160.3±51.4,5 d:239.6±69.0比176.8±45.5,均P<0.05].③两组呼出气冷凝液(EBC)中过氧化氢(H2O2)和白细胞介素-6(IL-6)水平均呈下降趋势,RM组下降幅度更明显[5 d时H2O2(μmol/L):0.04±0.02比0.10±0.03;IL-6(ng/L):4.12±2.09比9.26±3.47,均P<0.05].④两组均无气压伤发生,心率无明显变化,无心律失常发生,中心静脉压和平均动脉压无明显变化.结论 高PEEP加RM可增加气体交换,改善氧合,减少呼吸机相关性肺损伤(VALI).应用RM比较安全,耐受性好,临床观察未见低氧血症、气压伤和血流动力学异常.
Abstract:
Objective To investigate the clinical effects and safety degree of high positive endexpiratory pressure (PEEP) combined with lung recruitment maneuver (RM) in patients with acute respiratory distress syndrome (ARDS). Methods Thirty-eight patients in medical intensive care unit (MICU) of Affiliated Hospital of Guiyang Medical College suffering from ARDS admitted from June 2008 to May 2010 were enrolled in the study. With the envelope method they were randomized into RM group and non-RM group, with n= 19 in each group. All patients received protective ventilation: pressure support ventilation (PSV) with plateau pressure limited at 30 cm H2O (1 cm H2O=0. 098 kPa) or lower. PEEP was set at the minimum level with fraction of inspired oxygen (FiO2) <0. 60 and partial pressure of arterial oxygen (PaO2) kept between 60 and 80 mm Hg (1 mm Hg=0. 133 kPa). RM was conducted by regulating FiO2 to 1.00, support pressure to 0, PEEP increased to 40 cm H2O and maintained for 30 seconds before lowering, and this maneuver was repeated every 8 hours for a total of 5 days. Base status, ventilation parameters, blood gas analysis and vital signs were obtained at baseline and for the next 5 days. Oxygenation status and lung injury indexes were compared between RM group and non-RM group, the adverse effects of (PaO2/FiO2) were both increased in RM group and non-RM group, but the values were higher in RM group [PaO2 (mm Hg) 2 days: 85.8± 21.3 vs. 73. 5± 18. 7, 3 days : 88. 6± 22. 8 vs. 74. 3 ±19. 8, 4 days : 98. 8 ±30. 7 vs. 79. 3±19. 3, 5 days: 105.5±29.4 vs. 84. 4±13. 8; PaO2/FiO2(mm Hg) 4 days: 221.8±103. 5 vs.interleukin-6 (IL-6) concentration in exhaled breath condensate (EBC) decreased in both groups but lower in RM group with significant difference [5 days H2O(μmol/L): 0. 04 ± 0. 02 vs. 0.10 ± 0.03 ; IL-6 (ng/L):No significant changes in heart rate were found during RM. Central venous pressure and mean arterial pressure remained unchanged after RM. Conclusion High level PEEP combined with RM can improve gas exchange and oxygenation, decrease ventilator associated lung injury (VALI). RM was safe and had good tolerance, no hypoxemia, barotrauma and hemodynamic instability were observed.  相似文献   

14.
目的 评价呼气末正压 (PEEP)对急性呼吸窘迫综合征 (ARDS)肺复张容积的影响 ,探讨ARDS患者 PEEP的选择方法。方法 以 11例血流动力学稳定、接受机械通气的 ARDS患者为研究对象 ,采用压力容积曲线法分别测定 PEEP为 5、10、15 cm H2 O(1cm H2 O=0 .0 98k Pa)时的肺复张容积 ,观察患者动脉血气、肺机械力学和血流动力学变化。结果  PEEP分别 5、10和 15 cm H2 O时肺复张容积分别为 (4 0 .2±15 .3) ml、 (12 3.8± 4 3.1) ml和 (178.9± 4 3.5 ) m l,随着 PEEP水平的增加 ,肺复张容积亦明显增加 (P均 <0 .0 5 )。动脉氧合指数也随着 PEEP水平增加而增加 ,且其变化与肺复张容积呈正相关 (r=0 .4 83,P<0 .0 1)。不同 PEEP条件下 ,患者的肺静态顺应性无明显变化 (P>0 .0 5 )。将患者按有无低位转折点 (L IP)分为有 L IP组与无 L IP组 ,两组患者的肺复张容积都随着 PEEP水平的增加而增加 ,其中 PEEP15 cm H2 O时 L IP组患者的肺复张容积大于无 L IP组 (P<0 .0 5 )。结论  PEEP水平越高 ,肺复张容积越大 ,肺复张容积增加与动脉氧合指数的变化呈正相关  相似文献   

15.

Introduction  

Positive end-expiratory pressure (PEEP) improves oxygenation and can prevent ventilator-induced lung injury in patients with acute respiratory distress syndrome (ARDS). Nevertheless, PEEP can also induce detrimental effects by its influence on the cardiovascular system. The purpose of this study was to assess the effects of PEEP on gastric mucosal perfusion while applying a protective ventilatory strategy in patients with ARDS.  相似文献   

16.
Pathophysiologic changes associated with the Adult Respiratory Distress Syndrome (ARDS), such as the presence of pulmonary vascular occlusions, decreased vascular compressibility, or inceased intrapulmonary shunting, could limit the effect of positive end-expiratory pressure (PEEP) upon pulmonary blood volume (PBV). Accordingly, we determined the effect of 5 and 15 cm H2O PEEP upon the PBV changes of normal volunteers (n = 9) and patients with moderate or severe ARDS associated with acute pulmonary hypertension (n = 10). Changes of PBV were estimated from equilibrium blood pool scans using Technetium-99m-labeled erythrocytes. The change of PBV induced by PEEP was assessed by measuring the count density over a region of the left lung during 0, 5, and 15 cm H2O continuous positive airway pressure in the volunteers and during mechanic ventilation with 5 and 15 cm H2O PEEP in the ARDS patients. Biventricular ejection fractions using gated blood pool angiocardiography and central hemodynamics were also measured in the ARDS patients. In volunteers, 5 and 15 cm H2O continuous positive airway pressure decreased pulmonary activity by 10% ± 4% and 24% ± 9%, respectively (mean ± SD, P = .0001). In ARDS patients, PBV appeared to be unaffected by decreasing PEEP from 15 to 5 cm H2O, despite an increased stroke volume, biventricular end-diastolic volume, and venous admixture. Pulmonary vascular resistance and right and left ventricular ejection fraction were unchanged. The ability of PEEP to reduce PBV appears to be decreased during acute lung injury.  相似文献   

17.
Objective: Positive end-expiratory pressure (PEEP) and recruitment maneuvers (RMs) may partially reverse atelectasis and reduce ventilation-associated lung injury. The purposes of this study were to assess a) magnitude and duration of RM effects on arterial oxygenation and on requirements for oxygenation support (Fio2/PEEP) in patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS) receiving ventilation with low tidal volumes and high levels of PEEP; and b) frequency of adverse respiratory and circulatory events attributable to RMs. Design: Prospective, randomized, crossover study. Setting: Thirty-four intensive care units at 19 hospitals. Patients: Seventy-two patients with early ALI/ARDS. Baseline PEEP and Fio2 were 13.8 +/- 3.0 cm H2O and 0.39 +/- 0.10, respectively (mean +/- sd). Interventions: We conducted RMs by applying continuous positive airway pressure of 35-40 cm H2O for 30 secs. We conducted sham RMs on alternate days. We monitored oxyhemoglobin saturation by pulse oximetry (SpO2), Fio2/PEEP, blood pressure, and heart rate for 8 hrs after RMs and sham RMs. We examined chest radiographs for barotrauma. Measurements and Main Results: Responses to RMs were variable. Greatest increments from baseline SpO2 within 10 mins after RMs were larger than after sham RMs (1.7 +/- 0.2 vs. 0.6 +/- 0.3 %, mean +/- SEM, p < .01). Systolic blood pressure decreased more +/- 1.1 mm Hg, p < .01). Changes in Fio2/PEEP requirements were not significantly different at any time after RMs vs. sham RMs. Barotrauma was apparent on first radiographs after one RM and one sham RM.Conclusions: In ALI/ARDS patients receiving mechanical ventilation with low tidal volumes and high PEEP, short-term effects of RMs as conducted in this study are variable. Beneficial effects on gas exchange in responders appear to be of brief duration. More information is needed to determine the role of recruitment maneuvers in the management of ALI/ARDS.  相似文献   

18.
目的 探讨俯卧位通气联合呼气末正压(PEEP)治疗急性呼吸窘迫综合征(ARDS)的疗效及其机制.方法 12头家猪静脉注射油酸建立ARDS模型,分为仰卧位组和俯卧位组,均给予0(ZEEP)、10(PEEP10)、20 cm H2O(PEEP20,1 cm H2O=0.098 kPa)PEEP的机械通气15 min,监测家猪血流动力学、肺气体交换和呼吸力学指标;处死动物观察肺组织病理学变化.结果 俯卧位组ZEEP、PEEP10时氧合指数(PaO2/FiO2)明显优于仰卧位组[ZEEP:(234.00±72.55)mm Hg比(106.58±34.93)mm Hg,PEEP10:(342.97±60.15) mm Hg比(246.80±83.69)mm Hg,1 mm Hg=0.133 kPa,P均<0.05];PEEP20时两组PaO2/FiO2差异无统计学意义(P>0.05).PEEP10时两组肺复张容积(RV)差异无统计学意义(P>0.05);但PEEP20时俯卧位组RV显著高于仰卧位组[(378.55±101.80)ml比(302.95±34.31)ml,P<0.05].两组间心率(HR)、平均动脉压(MAP)、心排血指数(CI)、呼吸系统顺应性(Cst)及动脉血二氧化碳分压(PaCO2)差异均无统计学意义(P均>0.05);仰卧位组背侧肺组织的肺损伤总评分明显高于俯卧位组[(12.00±1.69)分比(6.03±1.56)分,P<0.05].结论 俯卧位通气联合合适的PEEP可改善ARDS家猪氧合,并且不影响血流动力学和呼吸力学,肺组织损伤的重新分布可能是其机制之一.  相似文献   

19.

Purpose

Prone positioning for ARDS has been performed for decades without definitive evidence of clinical benefit. A recent multicenter trial demonstrated for the first time significantly reduced mortality with prone positioning. This meta-analysis was performed to integrate these findings with existing literature and test whether differences in tidal volume explain conflicting results among randomized trials.

Methods

Studies were identified using MEDLINE, EMBASE, Cochrane Register of Controlled Trials, LILACS, and citation review. Included were randomized trials evaluating the effect on mortality of prone versus supine positioning during conventional ventilation for ARDS. The primary outcome was risk ratio of death at 60 days meta-analyzed using random effects models. Analysis stratified by high (>8 ml/kg predicted body weight) or low (≤8 ml/kg PBW) mean baseline tidal volume was planned a priori.

Results

Seven trials were identified including 2,119 patients, of whom 1,088 received prone positioning. Overall, prone positioning was not significantly associated with the risk ratio of death (RR 0.83; 95 % CI 0.68–1.02; p = 0.073; I 2  = 64 %). When stratified by high or low tidal volume, prone positioning was associated with a significant decrease in RR of death only among studies with low baseline tidal volume (RR 0.66; 95 % CI 0.50–0.86; p = 0.002; I 2  = 25 %). Stratification by tidal volume explained over half the between-study heterogeneity observed in the unstratified analysis.

Conclusions

Prone positioning is associated with significantly reduced mortality from ARDS in the low tidal volume era. Substantial heterogeneity across studies can be explained by differences in tidal volume.  相似文献   

20.
OBJECTIVE: To evaluate perceived attitudes, knowledge, and behaviors regarding the use of low tidal volume ventilation in acute respiratory distress syndrome among physicians, nurses, and respiratory therapists in intensive care units. DESIGN: Cross-sectional, self-administered survey. SETTING: Large Acute Respiratory Distress Syndrome Network teaching hospital in Baltimore, MD. PARTICIPANTS: Attending, fellow, and resident physicians; staff nurses; and respiratory therapists in three intensive care units. INTERVENTIONS: A survey was designed to assess barriers related to clinicians' perceived attitudes, knowledge, and behaviors related to low tidal volume ventilation in acute respiratory distress syndrome and intensive care unit organization-related barriers. Survey development was guided by a published framework of barriers to clinician adherence to practice guidelines; individual items were derived through literature review and refined through pilot testing. Content validity, face validity, and ease of use were verified by local clinicians. Psychometric properties were assessed and regression analyses were conducted to examine differences in perceptions and knowledge level by provider discipline and training level. MEASUREMENTS AND MAIN RESULTS: There were 291 completed surveys with a response rate of 84%. Validity and acceptable psychometric properties were demonstrated. Barriers related to clinician attitudes, behaviors, and intensive care unit organization were significantly higher among nurses and respiratory therapists vs. physicians. Knowledge-related barriers also were significantly higher among nurses vs. physicians and respiratory therapists. Barriers were lower and knowledge test scores higher among fellows and attending physicians vs. residents. Similarly, barriers were lower and knowledge test scores higher among nurses with >10 yrs of experience vs. <10 yrs of experience. CONCLUSIONS: Important organizational and clinician barriers, including knowledge deficits, regarding low tidal volume ventilation were reported, particularly among nurses and resident physicians. Addressing these barriers may be important for increasing implementation of low tidal volume ventilation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号