首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we evaluated the immunogenicity and protective efficacy of a candidate attenuated H5N1 pre-pandemic influenza vaccine of clade 2.3.4, rgAnhui, which was reverse genetically generated from highly virulent A/Anhui/01/2005 (H5N1) wild-type virus. When a low-dose antigen (0.3 μg HA) vaccine was combined with aluminum hydroxide adjuvant, virus neutralization and anti-HA IgG antibodies induced in the sera of vaccinated mice showed similar levels as those in mice vaccinated with non-adjuvanted high-dose antigen (3 μg HA) vaccine. Serum antibodies had broad reactivity against highly pathogenic H5N1 viruses of both homologous and heterologous clades. All mice vaccinated with adjuvanted and non-adjuvanted rgAnhui vaccines at low and high antigen doses survived, without any significant weight loss, lethal challenge infection with homologous clade 2.3.4 viruses, including antigenic variant virus and heterologous clade 2.1.3. Mice vaccinated with low-dose antigen without adjuvant, however, exhibited 20% and 60% survival rates against clade 1 and clade 2.2 viruses, respectively; but, addition of adjuvant improved these rates to 80% and 100%, respectively. The data strongly suggest that aluminum hydroxide-adjuvanted rgAnhui vaccine can elicit broad cross-reactive and protective immunities against homologous and heterologous clades, and that the rgAnhui vaccine is a useful pre-pandemic H5N1 vaccine.  相似文献   

2.
Recent findings indicate that seasonal influenza vaccination or infection of healthy humans may contribute to heterosubtypic immunity against new influenza A subtypes, such as H5N1. Here, we investigated whether seasonal influenza vaccination in a mouse model could induce any immunity against the H5N1 subtype. It could be demonstrated that, largely due to the H1N1 component strain A/NewCaledonia/20/99, parenteral immunization of mice with a trivalent seasonal influenza vaccine elicited heterosubtype H5-reactive antibodies able to confer partial protection against H5N1 influenza virus infection. Furthermore, the trivalent seasonal influenza vaccine was found to be compatible with a whole virus H5N1 vaccine in a heterologous prime-boost immunization regimen, achieving superior efficacy compared to a single immunization with an equivalent low-dose of the H5N1 vaccine.  相似文献   

3.
《Vaccine》2021,39(34):4903-4913
This study describes the protective efficacy of a novel influenza plasmid DNA vaccine in the ferret challenge model. The rationally designed polyvalent influenza DNA vaccine encodes haemagglutinin and neuraminidase proteins derived from less glycosylated pandemic H1N1 (2009) and H3N2 (1968) virus strains as well as the nucleoprotein (NP) and matrix proteins (M1 and M2) from a different pandemic H1N1 (1918) strain. Needle-free intradermal immunisation with the influenza DNA vaccine protected ferrets against homologous challenge with an H1N1pdm09 virus strain, demonstrated by restriction of viral replication to the upper respiratory tract and reduced duration of viral shedding post-challenge. Breadth of protection was demonstrated in two heterologous efficacy experiments in which animals immunised with the influenza DNA vaccine were protected against challenge with a highly pathogenic avian influenza H5N1 virus strain with reproducible survival and clinical outcomes.  相似文献   

4.
Previous studies have shown that a recombinant vaccine expressing four highly conserved influenza virus epitopes has a potential for a broad spectrum, cross-reactive vaccine; it induced protection against H1, H2 and H3 influenza strains. Here, we report on the evaluation of an epitope-based vaccine in which six conserved epitopes, common to many influenza virus strains are expressed within a recombinant flagellin that serves as both a carrier and adjuvant. In an HLA-A2.1 transgenic mice model, this vaccine induced both humoral and cellular responses and conferred some protection against lethal challenge with the highly pathogenic H5N1 avian influenza strain. Hence, it is expected to protect against future strains as well. The data presented, demonstrate the feasibility of using an array of peptides for vaccination, which might pave the way to an advantageous universal influenza virus vaccine that does not require frequent updates and/or annual immunizations.  相似文献   

5.
BackgroundAvian influenza A(H5N1) viruses have caused sporadic infections in humans and thus they pose a significant global health threat. Among symptomatic patients the case fatality rate has been ca. 50%. H5N1 viruses exist in multiple clades and subclades and several candidate vaccines have been developed to prevent A(H5N1) infection as a principal measure for preventing the disease.MethodsSerum antibodies against various influenza A(H5N1) clade viruses were measured in adults by ELISA-based microneutralization and haemagglutination inhibition tests before and after vaccination with two different A(H5N1) vaccines in 2009 and 2011.ResultsTwo doses of AS03-adjuvanted A/Indonesia/5/2005 vaccine induced good homologous but poor heterologous neutralizing antibody responses against different clade viruses. However, non-adjuvanted A/Vietnam/1203/2004 booster vaccination in 2011 induced very strong and long-lasting homologous and heterologous antibody responses while homologous response remained weak in naïve subjects.ConclusionsSequential vaccination with two different A(H5N1) pre-pandemic vaccines induced long-lasting high level cross-clade immunity against influenza A(H5N1) strains, thus supporting a prime-boost vaccination strategy in pandemic preparedness plans.  相似文献   

6.
《Vaccine》2022,40(48):6998-7008
The current study aimed to develop broadly protective vaccines for avian influenza. In an earlier study, HA stalk (universal flu vaccine) was found to be broadly protective against different subtypes of influenza virus in mice. Hence, we were interested to know its breadth of protective efficacy either alone or combined with inactivated rgH5N2 (clade 2.3.2.1a) vaccine against challenge viruses of homologous H5N1, heterologous H5N8 (clade 2.3.4.4) and heterosubtypic H9N2 virus in specific pathogen-free chickens. The rgH5N2 vaccine alone or in combination with HA stalk elicited sufficient pre-challenge immunity in the form of haemagglutination inhibiting (HI) antibodies and neutralizing antibodies (MNT) against H5N1, H5N8, and H9N2 in chickens. The rgH5N2 vaccine alone or in combination with HA stalk also attenuated the shedding of H5N1, H5N8 and H9N2 in chickens and protected against the lethal challenge of H5N1 or H5N8. In contrast, all HA stalk immunised chickens died upon H5N1 or H5N8 challenge and H9N2 challenged chickens survived. Our study suggests that the rgH5N2 vaccine can provide clinical protection against H5N1, H5N8 and can attenuate the viral shedding of H9N2 in chickens.  相似文献   

7.
The combination of rapid evolution and high mortality in human cases of infections has raised concerns that the H5N1 avian influenza virus may become a new, possibly severe, pandemic virus. Vaccination is likely to be the most efficient strategy to mitigate the impact of the next influenza pandemic. The present study evaluates B and T cell immune responses generated by the H5N1 viral antigens, hemagglutinin (HA), neuraminidase (NA), nucleoprotein (NP), or the M2 ion channel in parallel, expressed from a DNA vaccine vehicle. Protection studies of immunized mice challenged with 100 LD50 of homologous or heterologous H5N1 viruses indicate that HA afforded better protection than the NA, NP or M2 DNA vaccines. The antibody response was also higher in HA-vaccinated mice as determined by hemagglutination inhibition (HI) and neutralizing antibodies (NAB) assays. Interestingly, the T cell response was higher against HA than against NA, NP or M2 and was detectable at low doses of the DNA–HA vaccine capable of inducing complete protection, despite the absence of a detectable B cell response. This study emphasizes the need to evaluate the relationship between both arms of the adaptive immune responses in regards to protective efficacy against influenza virus.  相似文献   

8.
The highly pathogenic avian H5N1 influenza virus has the potential to incite a global pandemic. Therefore, there is an urgent need to develop effective vaccines against these viruses. Because it is difficult to predict which strain of influenza will cause a pandemic, it is advantageous to develop vaccines that will confer cross-protective immunity against variants of the influenza virus. Recently, we reported that the Toll-like receptor 3 agonist, polyI:polyC12U (Ampligen®), has been proven to be safe in a Phase III human trial, and is an effective mucosal adjuvant for intranasal H5N1 influenza vaccination. Intranasal administration of an Ampligen® adjuvanted pre-pandemic H5N1 vaccine (NIBRG14), which was derived from the A/Vietnam/1194/2004 strain, resulted in the secretion of vaccine-specific IgA and IgG in nasal mucosa and serum, respectively, and protected mice against homologous A/Vietnam/1194/2004 and heterologous A/Hong Kong/483/97 and A/Indonesia/6/2005 viral challenge.  相似文献   

9.
《Vaccine》2016,34(41):4875-4883
Highly pathogenic avian H5N1 viruses may give rise to the next influenza pandemic due to their reassortment and mutation of the genome. Vaccine against this virus is important for coping with its potential threat. Chimpanzee adenovirus (Ad) vectors are a novel type of vaccine vectors that share the advantages of human serotype Ad vectors but without being affected by pre-existing human neutralizing antibody to the vaccine vector. Based on a replication-deficient chimpanzee Ad vector, AdC7, we generated a novel H5N1 vaccine candidate AdC7-H5HA that expresses H5N1 Hemagglutinin (HA). When tested in mice, the vaccine significantly reduced the virus load and pathological lesions in the lung tissues, and conferred complete protection against lethal challenge by a homologous virus. Mechanistically, the AdC7-H5HA vaccine can induce both HA-specific humoral and cell-mediated immune responses in mice. Also, sera transfer experiments demonstrated that neutralizing antibodies alone could provide protection. In conclusion, our results show that chimpanzee Ad vector expressing influenza virus HA may represent a promising vaccine candidate for H5N1 viruses and other influenza virus subtypes.  相似文献   

10.
We evaluated the humoral and cellular immunogenicity of adjuvanted and non-adjuvanted H5N1 influenza vaccine in two groups of 300 adults: aged 18–60 and >60 years in a randomized, open-label, uncontrolled phase 2 trial. Participants received two injections (D0, D21) of 7.5 μg hemagglutinin without adjuvant or 30 μg with aluminum hydroxide adjuvant. Antibody responses and cytokine secretion were assessed before and after vaccination. Excluding the 6/300 non-elderly and 47/300 elderly participants with pre-existing antibodies, geometric mean titers (dil−1) on D42 were higher with 30 μg+Ad and were comparable between age groups. Participants with pre-existing antibodies responded strongly to the first vaccination (GMTs in the range 147–228 on D21). Vaccination increased both Th1 and Th2 T-cell responses. The predominantly Th1 profile observed before vaccination was unaffected by vaccination. H5N1 influenza vaccine is no less immunogenic in elderly adults than in younger adults and, due to a higher proportion non-naïve elderly, immunogenicity was higher in this latter group.  相似文献   

11.
Inactivated whole virus influenza A (H5N1) vaccine   总被引:1,自引:0,他引:1  
  相似文献   

12.
《Vaccine》2015,33(30):3456-3462
A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2 μg or 2.3 μg HA and challenged with 106 mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 106 EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9 μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a good alternative for producing high quality antigen for an injectable vaccine against H5N1 HPAI viruses.  相似文献   

13.

Background

Influenza pandemic preparedness involves priming of the population with pre-pandemic vaccines. Such vaccines should be well tolerated and induce a long-lasting immunological memory that can effectively be boosted with a single dose of pandemic vaccine once available. The presented studies assessed different prime-boost regimens with a Vero cell-derived whole virus non-adjuvanted H5N1 vaccine.

Methods

In one study, 281 healthy adult (18–59 years) and 280 elderly (≥60 years) subjects received two vaccinations, 21 days apart, with Vero cell-derived whole virus non-adjuvanted H5N1 vaccine (7.5 μg HA antigen A/Vietnam/1203/2004) followed by a 6, 12–15, or 24 month booster (7.5 or 3.75 μg A/Indonesia/05/2005 or A/Vietnam/1203/2004). In the other study, 230 healthy adults (18–59 years) received single dose priming (7.5 μg A/Vietnam/1203/2004) followed by a 12 month booster (7.5 or 3.75 μg A/Indonesia/05/2005). Antibody responses were assessed by microneutralization (MN) and single radial hemolysis (SRH) assay. Vaccine safety was assessed throughout.

Results

Two dose priming was equally immunogenic in adults and the elderly: >72% of subjects in each population achieved MN titers ≥1:20 after the second vaccination. Booster vaccinations at 6, 12–15, and 24 months induced substantial antibody increases to both strains: after a 7.5 μg A/Indonesia/05/2005 booster, 93–95% of adults and 72–84% of the elderly achieved MN titers ≥ 1:20 against this strain. Homologous and heterologous booster responses were higher in the 7.5 μg dose group than in the 3.75 μg dose group. Booster responses following single dose priming were similar; a 7.5 μg booster dose induced homologous MN titers ≥1:20 in 93% of subjects.

Conclusions

A Vero cell derived whole virus non-adjuvanted H5N1 influenza vaccine is well tolerated and induces long-lasting cross-clade immunological memory that can be effectively boosted 1–2 years after two dose or single dose priming, supporting its suitability for pre-pandemic vaccination.  相似文献   

14.
《Vaccine》2016,34(33):3757-3763
Eurasian avian-like H1N1 (EA H1N1) swine influenza viruses are prevalent in pigs in Europe and Asia, but occasionally cause human infection, which raises concern about their pandemic potential. Here, we produced a whole-virus inactivated vaccine with an EA H1N1 strain (A/swine/Guangxi/18/2011, SW/GX/18/11) and evaluated its efficacy against homologous H1N1 and heterologous H1N1 and H1N2 influenza viruses in mice. A strong humoral immune response, which we measured by hemagglutination inhibition (HI) and virus neutralization (VN), was induced in the vaccine-inoculated mice upon challenge. The inactivated SW/GX/18/11 vaccine provided complete protection against challenge with homologous SW/GX/18/11 virus in mice and provided effective protection against challenge with heterologous H1N1 and H1N2 viruses with distinctive genomic combinations. Our findings suggest that this EA H1N1 vaccine can provide protection against both homologous H1N1 and heterologous H1N1 or H1N2 virus infection. As such, it is an excellent vaccine candidate to prevent H1N1 swine influenza.  相似文献   

15.
To investigate the biological indicator for vaccine efficacy against HPAI H5N1 virus challenge of varying clades, two inactivated whole-virus H5N1 vaccines containing the hemagglutinin (HA) and neuraminidase (NA) genes of either clade 2.2 A/EM/Korea/W149/06 (RgKoreaW149/06xPR8) or clade 2.5 A/Ck/Korea/ES/03 (RgKoreaES223N/03XPR8) virus in the background of A/PR/8/34 (H1N1) were generated by reverse genetics. Administration of the vaccines (2-dose 1.77, 3.5, 7.5 or 15 μg of HA) elicited high HI titers in a dose-dependent manner. Mice immunized with RgKoreaW149/06xPR8 were completely protected from challenge against wild-type A/EM/Korea/W149/06 without clinical signs of infection. RgKoreaES223N/03XPR8 could not protect mice at 1.77 μg while all immunized ferrets were completely protected. Two-dose (7.5 μg) vaccinated mice (HI titer ≥320) and triple dose (7.5 μg) vaccinated ferrets with RgKoreaES223N/03xPR8 (HI titer ≥640) protected vaccine recipients from mortality, inhibited nasal virus shedding and limited influenza virus tropism. Thus, these vaccines provided cross-protectivity in both models. More importantly, these results collectively suggested a positive correlation between vaccine-induced HI titers and inhibition of virus shedding including block of viral proliferation in major organs against a heterologous HPAI H5N1 virus. Although developing technologies or methods that will enable the reduction of administration dose/frequency remains to be resolved, our study demonstrated a considerable biological marker (≥640 HI titer) for full protection of the vaccinated hosts that could provide a preliminary basis for the assessment of complete immunization.  相似文献   

16.
《Vaccine》2015,33(23):2670-2677
The H5N1 highly pathogenic avian influenza (HPAI) virus was isolated for the first time in Egypt in 2006, since then, the virus has become endemic causing a significant threat to the poultry industry and humans. H5N1 HPAI outbreaks continue to occur despite extensive vaccination programs that have been implemented nationwide in different poultry species. Several studies showed that the co-circulating H5N1 viruses in Egypt are genetically and antigenically distant raising a question on the cross protective efficacy of commercial vaccines. In this study, we introduced mutations at the antigenic sites of the hemagglutinin (HA) to broaden reactivity of the Egyptian H5N1 virus. A reverse genetically created variant H5N1 virus (A/chicken/Egypt/1063/2010) with five amino acid mutations (G140R, Y144F, I190L, K192Q, D43N) in the HA gene showed enhanced cross reactivity. This virus showed up to 16 fold increase in reactivity to the classic-lineageH5N1viruses measured by hemagglutination inhibition (HI) assay while maintaining similar level of reactivity with the variant-lineage viruses compared to wild-type virus. In addition, a single amino acid substitution (N165H), which removes potential glycosylation site at the HA globular head of two classic strains (A/chicken/Egypt/527/2012 and A/chicken/Egypt/102d/2010) broadened the reactivity to antisera generated against H5N1 viruses from different clusters. The broadened reactivity of the mutant viruses were also confirmed by testing reactivity of antisera prepared from the mutant viruses against reference viruses from both classic and variant clades. The virus neutralization test using selected antisera and viruses further confirmed the cross HI results. This study highlights that targeted mutation in the HA may be effectively used as a tool to develop broadly reactive influenza vaccines to cope with the continuous antigenic evolution of viruses.  相似文献   

17.
An influenza vaccine was prepared from inactivated whole particles of the non-pathogenic strain A/duck/Hokkaido/Vac-1/04 (H5N1) virus using an oil adjuvant containing anhydromannitol-octadecenoate-ether (AMOE). The vaccine was injected intramuscularly into five 4-week-old chickens, and 138 weeks after vaccination, they were challenged intranasally with 100 times 50% chicken lethal dose of the highly pathogenic avian influenza (HPAI) virus A/chicken/Yamaguchi/7/04 (H5N1). All 5 chickens survived without exhibiting clinical signs of influenza, although 2 days post-challenge, 3 vaccinated chickens shed limited titres of viruses in laryngopharyngeal swabs.  相似文献   

18.
Preparation for an H5N1 influenza pandemic in humans may involve priming the population with a vaccine produced from an existing, available H5N1 strain. We have used a mouse challenge model to compare the immunogenicity and efficacy of inactivated, Vero cell-derived, whole virus H5N1 vaccines in single immunization and homologous or heterologous prime-boost regimes. A single immunization was sufficient to protect against a lethal challenge with strains from matched and unmatched H5N1 clades. Homologous and heterologous prime-boost regimes induced cross-neutralizing antibodies and cross-protection against representative viruses of H5N1 clade 1, clade 2.1, clade 2.2 and clade 2.3. Moreover, the results indicate that heterologous prime-boost immunization regimes might broaden the specificity of the anti-H5N1 antibody response.  相似文献   

19.
In this study, we have compared the protection afforded by a recombinant turkey herpesvirus vaccine expressing the H5 gene from a clade 2.2 H5N1 strain (rHVT-H5) and a Mexican-origin H5N2 inactivated vaccine, alone or in combination, against two antigenically divergent H5N1 Egyptian strains isolated in 2007 and 2008. Our results confirm the existence of a major antigenic drift among the Egyptian H5N1 strains such that, although protection against the “classical” 2007 HPAI H5N1 Egyptian strain could be obtained with both types of vaccines, only vaccination with the rHVT-H5 vaccine protected against challenge with the “variant” 2008 HPAI H5N1 Egyptian strain.  相似文献   

20.
Influenza virus infections continue to cause production losses in the agricultural industry in addition to being a human public health concern. The primary method to control influenza is through vaccination. However, currently used killed influenza virus vaccines must be closely matched to the challenge virus. The ability of an elastase-dependent live attenuated influenza A virus was evaluated to protect pigs against the pandemic H1N1 2009 influenza virus. Pigs vaccinated intranasally or intratracheally with the elastase-dependent swine influenza virus (SIV) vaccine had significantly reduced macroscopic and microscopic lung lesions and lower viral loads in the lung and in nasal swabs. Thus, elastase-dependent SIV mutants can be used as live-virus vaccines against swine influenza in pigs. In addition, low levels of cross-neutralizing antibodies to H1N1 2009 were elicited prior to challenge by the swine adapted H1N1 avian strain vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号