首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Emerging mosquito-borne alphavirus infections caused by chikungunya virus (CHIKV) or o'nyong-nyong virus (ONNV) are responsible for sporadic and sometimes explosive urban outbreaks. Currently, there is no licensed vaccine against either virus. We have developed a highly attenuated recombinant CHIKV candidate vaccine (CHIKV/IRES) that in preclinical studies was demonstrated to be safe, immunogenic and efficacious. In this study we investigated the potential of this vaccine to induce cross-protective immunity against the antigenically related ONNV. Our studies demonstrated that a single dose of CHIKV/IRES elicited a strong cross-neutralizing antibody response and conferred protection against ONNV challenge in the A129 mouse model. Moreover, CHIKV/IRES immune A129 dams transferred antibodies to their offspring that were protective, and passively transferred anti-CHIKV/IRES immune serum protected AG129 mice, independently of a functional IFN response. These findings highlight the potential of the CHIKV/IRES vaccine to protect humans against not only CHIKV but also against ONNV-induced disease.  相似文献   

2.
《Vaccine》2023,41(27):3976-3988
Mosquito-transmitted chikungunya virus (CHIKV) is the causal pathogen of CHIKV disease and is responsible for global epidemics of arthritic disease. CHIKV infection can lead to severe chronic and debilitating arthralgia, significantly impacting patient mobility and quality of life. Our previous studies have shown a live-attenuated CHIKV vaccine candidate, CHIKV-NoLS, to be effective in protecting against CHIKV disease in mice vaccinated with one dose. Further studies have demonstrated the value of a liposome RNA delivery system to deliver the RNA genome of CHIKV-NoLS directly in vivo, promoting de novo production of live-attenuated vaccine particles in vaccinated hosts. This system, designed to bypass live-attenuated vaccine production bottlenecks, uses CAF01 liposomes. However, one dose of CHIKV-NoLS CAF01 failed to provide systemic protection against CHIKV challenge in mice, with low levels of CHIKV-specific antibodies. Here we describe CHIKV-NoLS CAF01 booster vaccination regimes designed to increase vaccine efficacy. C57BL/6 mice were vaccinated with three doses of CHIKV-NoLS CAF01 either intramuscularly or subcutaneously. CHIKV-NoLS CAF01 vaccinated mice developed a systemic immune response against CHIKV that shared similarity to vaccination with CHIKV-NoLS, including high levels of CHIKV-specific neutralising antibodies in subcutaneously inoculated mice. CHIKV-NoLS CAF01 vaccinated mice were protected against disease signs and musculoskeletal inflammation when challenged with CHIKV. Mice given one dose of live-attenuated CHIKV-NoLS developed a long lasting protective immune response for up to 71 days. A clinically relevant CHIKV-NoLS CAF01 booster regime can overcome the challenges faced by our previous one dose strategy and provide systemic protection against CHIKV disease.  相似文献   

3.
《Vaccine》2022,40(34):5060-5068
Currently there is no clinically approved chikungunya virus (CHIKV) vaccine for immunization. Though definite need is felt, long disappearance of CHIKV has been a concern. Inactivated CHIKV (I-CHIKV) is an attractive antigen to develop effective vaccines within a short period of time. However, highly purified inactivated CHIKV do not contain necessary triggers for induction of robust antibody response. Monophosphoryl lipid A (MPLA) is a TLR4 ligand which is expressed on immune cells and is known to enhance immune response. Additionally, route of delivery also plays a critical role in modulating the immune response. Thus, antigen, adjuvant and route of delivery might modulate immune response if combined. Therefore in this study, we explored the immunogenicity of inactivated CHIKV-MPLA combination in mice after administration by intradermal or intramuscular route. Long term immune response study was also conducted by varying the antigen concentration and keeping the adjuvant concentration constant. Our study showed that the CHIKV-MPLA combination induced higher binding antibodies as well as neutralizing antibody titers as compared to unadjuvanted CHIKV. No difference in antibody titers was observed after delivery by either of the routes. However, difference in IFNγ and IL4 profiles was observed when a supernatant from stimulated splenocytes was analyzed. Taken together, these data show that both routes could be used for administration of the I-CHIKV-MPLA combination.  相似文献   

4.
Wang E  Volkova E  Adams AP  Forrester N  Xiao SY  Frolov I  Weaver SC 《Vaccine》2008,26(39):5030-5039
Chikungunya virus (CHIKV) is an emerging alphavirus that has caused major epidemics in India and islands off the east coast of Africa since 2005. Importations into Europe and the Americas, including one that led to epidemic transmission in Italy during 2007, underscore the risk of endemic establishment elsewhere. Because there is no licensed human vaccine, and an attenuated Investigational New Drug product developed by the U.S. Army causes mild arthritis in some vaccinees, we developed chimeric alphavirus vaccine candidates using either Venezuelan equine encephalitis attenuated vaccine strain TC-83, a naturally attenuated strain of eastern equine encephalitis virus (EEEV), or Sindbis virus as a backbone and the structural protein genes of CHIKV. All vaccine candidates replicated efficiently in cell cultures, and were highly attenuated in mice. All of the chimeras also produced robust neutralizing antibody responses, although the TC-83 and EEEV backbones appeared to offer greater immunogenicity. Vaccinated mice were fully protected against disease and viremia after CHIKV challenge.  相似文献   

5.
M Kumar  AB Sudeep  VA Arankalle 《Vaccine》2012,30(43):6142-6149

Objectives

With the re-emergence of chikungunya virus (CHIKV) in an explosive form and in the absence of a commercially available vaccine, we aimed to develop candidate vaccines employing recombinant E2 protein or chemically inactivated whole virus.

Design and methods

E2 gene of CHIKV isolate of ECSA genotype was cloned in pET15b vector, expressed and purified (rE2p). The virus was propagated in Vero cell line, purified and inactivated with formalin and BPL individually. Six to eight weeks old female BALB/c mice were immunized intramuscularly with two doses of 10 μg, 20 μg and 50 μg of vaccine formulations with or without adjuvants, 2 weeks apart. The adjuvants evaluated were alum, Mw, CadB (rE2p), alum/Mw (formalin inactivated CHIKV) and alum (BPL-inactivated CHIKV). Humoral immunity was assessed by ELISA and in vitro neutralization test using homologous and heterologous (Asian genotype) strains of CHIKV. Two cohorts of vaccinated mice were challenged separately via intranasal route with homologous virus two and 20 weeks after the 2nd dose. Viral load (CHIKV RNA by real time PCR) was determined in the serum and tissues (muscle, brain, spleen) of the mice challenged with the homologous virus.

Results

Anti-CHIK-antibody titres were dose dependent for all the immunogen formulations. BPL-inactivated vaccines led to the highest ELISA/neutralizing antibody (nAb) titres while alum was the most effective adjuvant. Asian genotype strain could be neutralized by the nAbs. In an adult mouse model, complete protection was offered by the alum-adjuvanted rE2p and both the inactivated vaccines as no virus was detected in the tissues and blood after challenge 2 weeks or 20 weeks-post-2nd dose. However, with rE2p-CadB, very low viremia was recorded on the 2nd day-post-challenge.

Conclusion

Both rE2p and BPL/formalin-inactivated virus are promising candidate vaccines deserving further evaluation.  相似文献   

6.
《Vaccine》2016,34(26):2976-2981
Chikungunya virus (CHIKV) is an arthritogenic alphavirus that during the last decade has significantly expanded its geographical range and caused large outbreaks of human disease around the world. Although mortality rates associated with CHIKV outbreaks are low, acute and chronic illnesses caused by CHIKV represent a significant burden of disease largely affecting low and middle income countries. This report summarizes the current status of vaccine development for CHIKV.  相似文献   

7.
《Vaccine》2019,37(24):3146-3150
Over the past decade, chikungunya virus (CHIKV) has emerged as a major cause of mosquito-borne disease with transmission reported in over 100 countries worldwide. Although several strategies have been pursued for the development of a CHIKV vaccine, none has been approved yet. In this study, we describe the development of several vaccine vectors that express the structural proteins of the La Réunion CHIKV strain LR2006-OPY1. Protection from virus-induced pathologic changes was observed in vaccinated C57BL/6 mice, an important model for CHIKV vaccine development because of their ability to recapitulate several signs shown in infected humans. This study uniquely demonstrates the capacity of a mucosally-administered adenovirus vaccine to induce serum antibody responses and confer protective efficacy in a pre-clinical model. Our data provide further evidence in support of the clinical development of this oral Ad-CHIKV vaccine strategy in populations at high risk of contracting the disease.  相似文献   

8.
The chikungunya virus (CHIKV) is a mosquito-borne virus that has recently re-emerged in several countries. On infection, the first vertebrate cells to come into contact with CHIKV are skin cells; mosquitoes inoculate the virus together with salivary gland protein into host skin while probing and feeding on blood. However, there is little known about the susceptibility of human skin cells to CHIKV infection. To clarify this, we investigated the kinetics of CHIKV in the human keratinocyte cell line, HaCaT. CHIKV actively replicated in HaCaT cells, with virus titers in the supernatant increasing to 2.8 × 104 plaque-forming units (PFU) ml−1 24 h post infection. CHIKV infection suppressed production of interleukin-8 (IL-8) in HaCaT cells. The function of IL-8 is to recruit immune cells to virus-infected sites, a process known as chemotaxis. Furthermore, we assessed the role of mosquito salivary gland protein in CHIKV infections by comparing the levels of CHIKV gene expression and chemokine production in HaCaT cells with and without salivary gland extract (SGE). SGE enhanced both the expression of the CHIKV gene and the suppression effect of CHIKV on IL-8 production. Our data suggest that the HaCaT cell line represents an effective tool for investigating the mechanism of CHIKV transmission and spread in skin cells. At the mosquito bite site, CHIKV works together with SGE to ensure the virus replicates in skin cells and escapes the host immune system by suppression of IL-8 production.  相似文献   

9.
Chikungunya virus, a mosquito-borne alphavirus, recently caused the largest epidemic ever seen for this virus. Chikungunya disease primarily manifests as a painful and debilitating arthralgia/arthritis, and no effective drug or vaccine is currently available. Here we describe a recombinant chikungunya virus vaccine comprising a non-replicating complex adenovirus vector encoding the structural polyprotein cassette of chikungunya virus. A single immunisation with this vaccine consistently induced high titres of anti-chikungunya virus antibodies that neutralised both an old Asian isolate and a Réunion Island isolate from the recent epidemic. The vaccine also completely protected mice against viraemia and arthritic disease caused by both virus isolates.  相似文献   

10.
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes explosive outbreaks of febrile illness associated with rash, and painful arthralgia. The CHIK vaccine strain 181/clone25 (181/25) developed by the United States Army Medical Research Institute of Infectious Diseases (USAMRIID) was shown to be well-tolerated and highly immunogenic in phase I and II clinical trials although it induced transient arthralgia in some healthy adult volunteers. In an attempt to better understand the host factors that are involved in the attenuating phenotype of CHIK 181/25 vaccine virus we conducted studies in interferon (IFN)-compromised mice and also evaluated its immunogenic potential and protective capacity. Infection of AG129 mice (defective in IFN-α/β and IFN-γ receptor signaling) with CHIK 181/25 resulted in rapid mortality within 3-4 days. In contrast, all infected A129 mice (defective in IFN-α/β receptor signaling) survived with temporary morbidity characterized by ruffled appearance and body weight loss. A129 heterozygote mice that retain partial IFN-α/β receptor signaling activity remained healthy. Infection of A129 mice with CHIK 181/25 induced significant levels of IFN-γ and IL-12 while the inflammatory cytokines, TNFα and IL-6 remained low. A single administration of the CHIK 181/25 vaccine provided both short-term and long-term protection (38 days and 247 days post-prime, respectively) against challenge with wt CHIKV-La Reunion (CHIKV-LR). This protection was at least partially mediated by antibodies since passively transferred immune serum protected both A129 and AG129 mice from wt CHIKV-LR and 181/25 virus challenge. Overall, these data highlight the importance of IFNs in controlling CHIK 181/25 vaccine and demonstrate the ability of this vaccine to elicit neutralizing antibody responses that confer short-and long-term protection against wt CHIKV-LR challenge.  相似文献   

11.
《Vaccine》2018,36(27):3894-3900
Chikungunya virus (CHIKV) and Zika virus (ZIKV) have recently expanded their range in the world and caused serious and widespread outbreaks of near pandemic proportions. There are no licensed vaccines that protect against these co-circulating viruses that are transmitted by invasive mosquito vectors. We report here on the development of a single-dose, bivalent experimental vaccine for CHIKV and ZIKV. This vaccine is based on a chimeric vesicular stomatitis virus (VSV) that expresses the CHIKV envelope polyprotein (E3-E2-6K-E1) in place of the VSV glycoprotein (G) and also expresses the membrane-envelope (ME) glycoproteins of ZIKV. This vaccine induced neutralizing antibody responses to both CHIKV and ZIKV in wild-type mice and in interferon receptor-deficient A129 mice, animal models for CHIKV and ZIKV infection. A single vaccination of A129 mice with the vector protected these mice against infection with both CHIKV and ZIKV. Our single-dose vaccine could provide durable, low-cost protection against both CHIKV and ZIKV for people traveling to or living in areas where both viruses are circulating, which include most tropical regions in the world.  相似文献   

12.
Chikungunya virus (CHIKV), a mosquito-borne alphavirus, recently re-emerged in Africa and spread to islands in the Indian Ocean, the Indian subcontinent, and to South East Asia. Viremic travelers have also imported CHIKV to the Western hemisphere highlighting the importance of CHIKV in public health. In addition to the great burden of arthralgic disease, which can persist for months or years, epidemiologic studies have estimated case-fatality rates of ∼0.1%, principally from neurologic disease in older patients. There are no licensed vaccines or effective therapies to prevent or treat human CHIKV infections. We have developed a live CHIKV vaccine (CHIKV/IRES) that is highly attenuated yet immunogenic in mouse models, and is incapable of replicating in mosquito cells. In this study we sought to decipher the role of adaptive immunity elicited by CHIKV/IRES in protection against wild-type CHIKV infection. A single dose of vaccine effectively activated T cells with an expansion peak on day 10 post immunization and elicited memory CD4+ and CD8+ T cells that produced IFN-γ, TNF-α and IL-2 upon restimulation with CHIKV/IRES. Adoptive transfer of CHIKV/IRES-immune CD4+ or CD8+ T cells did not confer protection against wtCHIKV-LR challenge. By contrast, passive immunization with anti-CHIKV/IRES immune serum provided protection, and a correlate of a minimum protective neutralizing antibody titer was established. Overall, our findings demonstrate the immunogenic potential of the CHIKV/IRES vaccine and highlight the important role that neutralizing antibodies play in protection against an acute CHIKV infection.  相似文献   

13.
《Vaccine》2022,40(35):5263-5274
Inactivated viral vaccines have long been used in humans for diseases of global health threat (e.g., poliomyelitis and pandemic and seasonal influenza) and the technology of inactivation has more recently been used for emerging diseases such as West Nile, Chikungunya, Ross River, SARS and especially for COVID-19.The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) Working Group has prepared standardized templates to describe the key considerations for the benefit and risk of several vaccine platform technologies, including inactivated viral vaccines. This paper uses the BRAVATO inactivated virus vaccine template to review the features of an inactivated whole chikungunya virus (CHIKV) vaccine that has been evaluated in several preclinical studies and clinical trials.The inactivated whole CHIKV vaccine was cultured on Vero cells and inactivated by ß-propiolactone. This provides an effective, flexible system for high-yield manufacturing. The inactivated whole CHIKV vaccine has favorable thermostability profiles, compatible with vaccine supply chains.Safety data are compiled in the current inactivated whole CHIKV vaccine safety database with unblinded data from the ongoing studies: 850 participants from phase II study (parts A and B) outside of India, and 600 participants from ongoing phase II study in India, and completed phase I clinical studies for 60 subjects. Overall, the inactivated whole CHIKV vaccine has been well tolerated, with no significant safety issues identified. Evaluation of the inactivated whole CHIKV vaccine is continuing, with 1410 participants vaccinated as of 20 April 2022. Extensive evaluation of immunogenicity in humans shows strong, durable humoral immune responses.  相似文献   

14.
15.
16.
Yadav S  Sharma R  Chhabra R 《Vaccine》2005,23(23):3005-3009
The present study describes the role of recombinant human interleukin-2 (rh IL-2) as immunomodulatory molecule in foot-and-mouth disease (FMD) vaccinal immune response in a murine model. The humoral immune response was evaluated by examining the antibody titre against FMD virus type O, A(22) and Asia 1 in serum samples obtained from different groups of mice inoculated with PBS, FMD vaccine alone; vaccine along with rh IL-2 on 0, 7, 14, 21, and 30 days post vaccination (DPV) by indirect double antibody Sandwich ELISA. The cellular immune response was also examined on different DPV by an MTT based lymphoproliferation assay in splenic mononuclear cells (SMNC) obtained from different groups. IL-2 was able to enhance the specific immune response against FMD virus type O, A(22) and Asia 1 as evident by significantly higher ELISA antibody titres (P<0.05) in serum obtained from mice receiving IL-2 along with vaccine as compared to mice immunized with vaccine alone. Similarly, the same group of mice showed significantly higher lymphoproliferative responses in SMNC against mitogen PHA and FMD virus types O, A(22) and Asia 1 on all DPVs as compared to the group inoculated with vaccine alone.  相似文献   

17.
The recent resurgence of Chikungunya virus (CHIKV) in India and Indian Ocean Islands with unusual clinical severity is a matter of great public health concern. Despite the fact that CHIKV resurgence is associated with epidemic of unprecedented magnitude, no approved licensed vaccine is currently available. In the present study, a Vero cell adapted purified formalin inactivated prototype vaccine candidate was prepared using a current Indian strain implicated with the explosive epidemic during 2006. The bulk preparation of the vaccine candidate was undertaken in microcarrier based spinner culture using cytodex-1 in virus production serum free medium. The inactivation of the virus was accomplished through standard formalin inactivation protocol. The mice were immunized subcutaneously with alhydrogel gel formulation of inactivated virus preparation. The assessment of both humoral and cell-mediated immune response was accomplished through ELISA, plaque reduction neutralization test (PRNT), microcytotoxicity assay and cytokine production assay. The results revealed that formalin inactivated vaccine candidate induced both high titered ELISA (1:51,200) and plaque reduction neutralizing antibodies (1:6400) with peak antibody titer being observed during 6–8 weeks of post-vaccination. In the absence of suitable murine challenge model, the protective efficacy was established by both in vitro and in vivo neutralization tests. Further assessment of cellular immunity through in vitro stimulation of spleenocytes from immunized mice revealed augmentation of high levels of both pro- and anti-inflammatory cytokines, indicating a mixed balance of Th1 and Th2 response. These findings suggest that the formalin inactivated Chikungunya vaccine candidate reported in this study has very good immunogenic potential to neutralize the virus infectivity by augmenting both humoral and cell-mediated immune response.  相似文献   

18.
19.
我国基孔肯雅热的流行状况   总被引:2,自引:0,他引:2  
2010年10月,广东省东莞市暴发了我国首起基孔肯雅热社区聚集性疫情,打破了其长期以来以散在输入性病例为特征的流行现状。基孔肯雅热是一种由基孔肯雅病毒引起的急性传染病,伊蚊是其主要传播媒介。而我国大多数地区拥有其主要传播媒介埃及伊蚊和白纹伊蚊,一旦病原体侵入,可能暴发基孔肯雅热疫情。如何控制该疫情,防止疫情的进一步扩散,是摆在我们面前的当务之急。现就基孔肯雅病毒的病原学特征以及基孔肯雅热在我国历年的流行状况做一概述,以便更好地认识基孔肯雅热,为有效地监测和防治提供科学依据。  相似文献   

20.
Human movement contributes to the probability that pathogens will be introduced to new geographic locations. Here we investigate the impact of human movement on the spatial spread of Chikungunya virus (CHIKV) in Southern Thailand during a recent re-emergence. We hypothesised that human movement, population density, the presence of habitat conducive to vectors, rainfall and temperature affect the transmission of CHIKV and the spatiotemporal pattern of cases seen during the emergence. We fit metapopulation transmission models to CHIKV incidence data. The dates at which incidence in each of 151 districts in Southern Thailand exceeded specified thresholds were the target of model fits. We confronted multiple alternative models to determine which factors were most influential in the spatial spread. We considered multiple measures of spatial distance between districts and adjacency networks and also looked for evidence of long-distance translocation (LDT) events. The best fit model included driving-distance between districts, human movement, rubber plantation area and three LDT events. This work has important implications for predicting the spatial spread and targeting resources for control in future CHIKV emergences. Our modelling framework could also be adapted to other disease systems where population mobility may drive the spatial advance of outbreaks.Key words: Chikungunya virus, gravity model, human movement, spatial spread, Thailand  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号