首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Immunization with L1 as pentavalent capsomeres or virus-like particles (VLPs) generates high and long-lived titers of neutralizing antibodies and protection primarily against the human papillomavirus (HPV) type from which the vaccine was derived. Conversely, vaccination with L2 minor capsid protein derived from multiple HPV types induces lower titer, but more broadly neutralizing and protective antibody responses. We combined the advantages of each protective antigen by immunization with titrated doses of multi-type L2 with either L1 capsomeres or VLP. We observed no significant interference between the L1 and L2 antibody response upon co-administration of L1 vaccines with multi-type L2 vaccines.  相似文献   

2.
《Vaccine》2015,33(42):5553-5563
Vaccination with the minor capsid protein L2, notably the 17–36 neutralizing epitope, induces broadly protective antibodies, although the neutralizing titers attained in serum are substantially lower than for the licensed L1 VLP vaccines. Here we examine the impact of other less reactogenic adjuvants upon the induction of durable neutralizing serum antibody responses and protective immunity after vaccination with HPV16 and HPV31 L2 amino acids 17–36 inserted at positions 587 and 453 of VP3, respectively, for surface display on Adeno-Associated Virus 2-like particles [AAVLP (HPV16/31L2)]. Mice were vaccinated three times subcutaneously with AAVLP (HPV16/31L2) at two week intervals at several doses either alone or formulated with alum, alum and MPL, RIBI adjuvant or Cervarix. The use of adjuvant with AAVLP (HPV16/31L2) was necessary in mice for the induction of L2-specific neutralizing antibody and protection against vaginal challenge with HPV16. While use of alum was sufficient to elicit durable protection (>3 months after the final immunization), antibody titers were increased by addition of MPL and RIBI adjuvants. To determine the breadth of immunity, rabbits were immunized three times with AAVLP (HPV16/31L2) either alone, formulated with alum ± MPL, or RIBI adjuvants, and after serum collection, the animals were concurrently challenged with HPV16/31/35/39/45/58/59 quasivirions or cottontail rabbit papillomavirus (CRPV) at 6 or 12 months post-immunization. Strong protection against all HPV types was observed at both 6 and 12 months post-immunization, including robust protection in rabbits receiving the vaccine without adjuvant. In summary, vaccination with AAVLP presenting HPV L2 17–36 epitopes at two sites on their surface induced cross-neutralizing serum antibody, immunity against HPV16 in the genital tract, and long-term protection against skin challenge with the 7 most common oncogenic HPV types when using a clinically relevant adjuvant.  相似文献   

3.
《Vaccine》2015,33(29):3346-3353
An ideal prophylactic human papillomavirus (HPV) vaccine would provide broadly protective and long-lasting immune responses against all high-risk HPV types, would be effective after a single dose, and would be formulated in such a manner to allow for long-term storage without the necessity for refrigeration. We have developed candidate HPV vaccines consisting of bacteriophage virus-like particles (VLPs) that display a broadly neutralizing epitope derived from the HPV16 minor capsid protein, L2. Immunization with 16L2 VLPs elicited high titer and broadly cross-reactive and cross-neutralizing antibodies against diverse HPV types. In this study we introduce two refinements for our candidate vaccines, with an eye towards enhancing efficacy and clinical applicability in the developing world. First, we assessed the role of antigen dose and boosting on immunogenicity. Mice immunized with 16L2-MS2 VLPs at doses ranging from 2 to 25 μg with or without alum were highly immunogenic at all doses; alum appeared to have an adjuvant effect at the lowest dose. Although boosting enhanced antibody titers, even a single immunization could elicit strong and long-lasting antibody responses. We also developed a method to enhance vaccine stability. Using a spray dry apparatus and a combination of sugars & an amino acid as protein stabilizers, we generated dry powder vaccine formulations of our L2 VLPs. Spray drying of our L2 VLPs did not affect the integrity or immunogenicity of VLPs upon reconstitution. Spray dried VLPs were stable at room temperature and at 37 °C for over one month and the VLPs were highly immunogenic. Taken together, these enhancements are designed to facilitate implementation of a next-generation VLP-based HPV vaccine which addresses U.S. and global disparities in vaccine affordability and access in rural/remote populations.  相似文献   

4.
Vaccines targeting conserved epitopes in the HPV minor capsid protein, L2, can elicit antibodies that can protect against a broad spectrum of HPV types that are associated with cervical cancer and other HPV malignancies. Thus, L2 vaccines have been explored as alternatives to the current HPV vaccines, which are largely type-specific. In this study we assessed the immunogenicity of peptides spanning the N-terminal domain of L2 linked to the surface of a highly immunogenic bacteriophage virus-like particle (VLP) platform. Although all of the HPV16 L2 peptide-displaying VLPs elicited high-titer anti-peptide antibody responses, only a subset of the immunogens elicited antibody responses that were strongly protective from HPV16 pseudovirus (PsV) infection in a mouse genital challenge model. One of these peptides, mapping to HPV16 L2 amino acids 65–85, strongly neutralized HPV16 PsV but showed little ability to cross-neutralize other high-risk HPV types. In an attempt to broaden the protection generated through vaccination with this peptide, we immunized mice with VLPs displaying a peptide that represented a consensus sequence from high-risk and other HPV types. Vaccinated mice produced antibodies with broad, high-titer neutralizing activity against all of the HPV types that we tested. Therefore, immunization with virus-like particles displaying a consensus HPV sequence is an effective method to broaden neutralizing antibody responses against a type-specific epitope.  相似文献   

5.
Adjuvantation of epidermal powder immunization   总被引:4,自引:0,他引:4  
Chen D  Erickson CA  Endres RL  Periwal SB  Chu Q  Shu C  Maa YF  Payne LG 《Vaccine》2001,19(20-22):2908-2917
The skin is an immunologically active site and an attractive vaccination route. All current vaccines, however, are administered either orally, intramuscularly, or subcutaneously. We previously reported that epidermal powder immunization (EPI) with an extremely small dose of powdered influenza vaccine induces protective immunity in mice. In this study, we report that commonly used adjuvants can be used in EPI to further enhance the immune responses to an antigen.The IgG antibody response to diphtheria toxoid (DT) following EPI was augmented by 25- and 250-fold, when 1 microg DT was co-delivered with aluminum phosphate (alum) and a synthetic oligonucleotide containing CpG DNA motifs (CpG DNA), respectively. These antibodies had toxin-neutralization activity and were long lasting. Furthermore, EPI using an adjuvant selectively activated different subsets of T helper cells and gave either a Th1 or a Th2 type of immune response. Similar to needle injection into deeper tissues, EPI with alum adsorbed DT promoted a predominantly IgG1 subclass antibody response and elevated level of IL-4 secreting cells. These are indicative of Th2-type immunity. In contrast, co-delivery of CpG DNA adjuvant via EPI led to Th-1 type of response as characterized by the increased production of IgG2a antibodies and IFN-gamma secreting cells. This study indicated that EPI using appropriate adjuvants can produce an augmented antibody response and desirable cellular immune responses. EPI is a promising immunization method that may be used to administer a broad range of vaccines including vaccines with adjuvants.  相似文献   

6.
Diverse HPV subtypes are responsible for considerable disease burden worldwide, necessitating safe, cheap, and effective vaccines. The HPV minor capsid protein L2 is a promising candidate to create broadly protective HPV vaccines, though it is poorly immunogenic by itself. To create highly immunogenic and safe vaccine candidates targeting L2, we employed a plant-based recombinant protein expression system to produce two different vaccine candidates: L2 displayed on the surface of hepatitis B core (HBc) virus-like particles (VLPs) or L2 genetically fused to an immunoglobulin capable of forming recombinant immune complexes (RIC). Both vaccine candidates were potently immunogenic in mice, but were especially so when delivered together, generating very consistent and high antibody titers directed against HPV L2 (>1,000,000) that correlated with virus neutralization. These data indicate a novel immune response synergy upon co-delivery of VLP and RIC platforms, a strategy that can be adapted generally for many different antigens.  相似文献   

7.
《Vaccine》2019,37(28):3638-3645
Adjuvants are chemical/biological substances that are used in vaccines to increase the immunogenicity of antigens. A few adjuvants have been developed for use in human vaccines because of their limitations including lack of efficacy, unacceptable local or systemic toxicity, the difficulty of manufacturing, poor stability, and high cost. For that reasons, novel adjuvants/adjuvant systems are under search. Astragaloside VII (AST-VII), isolated from Astragalus trojanus, exhibited significant cellular and humoral immune responses. The polysaccharides (APS) obtained from the roots of Astragalus species have been used in traditional Chinese medicine and possess strong immunomodulatory properties. In the present study, the immunomodulatory effects of a newly developed nanocarrier system (APNS: APS containing carrier) and its AST-VII containing formulation (ANS: AST-VII + APNS), on seasonal influenza A (H3N2) vaccine were investigated. Inactivated H3N2 alone or its combinations with test compounds/formulations were intramuscularly injected into Swiss albino mice. Four weeks after immunization, the immune responses were evaluated in terms of antibody and cytokine responses as well as splenocyte proliferation. APNS demonstrated Th2 mediated response by increasing IgG1 antibody titers, whereas ANS showed response towards Th1/Th2 balance and Th17 by producing of IFN-γ, IL-17A and IgG2a. Based on these results, we propose that APNS and ANS are good candidates to be utilized in seasonal influenza A vaccines as adjuvants/carrier systems.  相似文献   

8.
Chen AY  Fry SR  Daggard GE  Mukkur TK 《Vaccine》2008,26(34):4372-4378
Intramuscular immunization of mice with DNA cocktail vaccines, comprising potential protective antigens P36, P46, NrdF, and P97or P97R1 of Mycoplasma hyopneumoniae, induced strong Th1-polarized immune responses against each antigen, with only P46 eliciting a serum IgG response. Subcutaneous immunization with protein cocktail vaccines, surprisingly, induced both Th1-polarized immune response as well as antibody response whereas mice immunized with DNA cocktail vaccines followed by boosting with protein cocktail vaccines generated strong Th1-polarized and humoral immune responses. P97 was not recognized by serum antibodies from commercial bacterin-immunized mice indicating potential lack of expression of this important antigen in inactivated whole-cell vaccines.  相似文献   

9.
Human papillomavirus, particularly type 16 (HPV16) is present in more than 99% of cervical cancers. E7 is the major oncogenic protein produced in cervical cancer-associated HPV16. An efficient vaccine against viral infection requires induction of strong humoral and cellular responses against viral proteins. Heat shock proteins (HSPs) like Gp96 have been described as potent tumor vaccines in animal models and are currently studied in human clinical trials. In this study, we investigated the utility of HPV16 E7 along with Gp96 as an adjuvant in C57BL/6 mice model. We compared the level of humoral and cellular immune responses by E7+Gp96 co-injection as DNA/DNA and prime-boost (DNA/protein) immunization strategies. In prime-boost immunization strategies, we first immunized C57BL/6 mice with the complete open-reading frame of E7 and Gp96 (pcDNA-E7 and pcDNA-Gp96) and then boosted with rE7, rNT-gp96 (N-terminal extension of Gp96) and rCT-gp96 (C-terminal extension of Gp96) mixed with Montanide 720 in different formulations. The humoral immune responses against rE7 and the different truncated forms of rGp96 suggested a mixed Th1/Th2 response with high intensity toward Th2. Assessment of lymphoproliferative and cytokine responses against rE7 and the different fragments of Gp96, showed that DNA vaccination including E7 and Gp96 induced Th1 response. We concluded that co-delivery of naked DNA E7+Gp96 plasmid was immunologically more effective than E7 alone. Our study demonstrated that co-delivery of E7+Gp96 as DNA/DNA and E7+CT-gp96 as DNA/protein could be an effective approach to induce E7-specific immune responses as a potential vaccine candidate for cervical cancer.  相似文献   

10.
The ideal adjuvants for hepatitis B vaccines should be capable of eliciting both strong humoral and cellular immune responses, especially Th1 cell and cytotoxic T lymphocyte (CTL) responses. However, Alum used as adjuvants in the hepatitis B vaccines currently commercialized offers limitation in inducing cell-mediated response. Therefore, a less hemolytic saponin platycodin D (PD) from the root of Platycodon grandiflorum has been explored for its potential as an alternative adjuvant. In order to compare the adjuvant activity with Alum, antigen-specific cellular and humoral immune responses were evaluated following immunization with a formulation containing hepatitis B surface antigen (HBsAg) adjuvanted with PD and Alum in mice. The Con A-, LPS-, and HBsAg-induced splenocyte proliferation and the serum HBsAg-specific IgG, IgG1, IgG2a, and IgG2b antibody titers in the HBsAg-immunized mice were significantly enhanced by PD (P < 0.05, P < 0.01 or P < 0.001). PD also significantly promoted the production of Th1 (IL-2 and IFN-γ) and Th2 (IL-10) cytokines and up-regulated the mRNA expression of Th1 cytokines (IL-2 and IFN-γ) in splenocytes from the mice immunized with HBsAg (P < 0.001). Besides, PD remarkably increased the killing activities of natural killer (NK) cells and CTLs from splenocytes in the HBsAg-immunized mice (P < 0.001), which may have important implications for vaccination against hepatitis B virus. The results indicated that PD has strong potential to increase both cellular and humoral immune responses and elicit a balanced Th1/Th2 response against HBsAg, and that PD may be the candidates as adjuvants for use in prophylactic and therapeutic hepatitis B vaccine.  相似文献   

11.
Human papillomavirus (HPV) vaccines based on L1 virus-like particle (VLP) can prevent genital HPV infection and associated lesions after three intramuscular injections. Needle-free administration might facilitate vaccine implementation, especially in developing countries. Here we have investigated rectal and vaginal administration of HPV16 L1 VLPs in mice and their ability to induce anti-VLP and HPV16-neutralizing antibodies in serum and in genital, rectal and oral secretions. Rectal and vaginal immunizations were not effective in the absence of adjuvant. Cholera toxin was able to enhance systemic and mucosal anti-VLPs responses after rectal immunization, but not after vaginal immunization. Rectal immunization with Resiquimod and to a lesser extent Imiquimod, but not monophosphoryl lipid A, induced anti-HPV16 VLP antibodies in serum and secretions. Vaginal immunization was immunogenic only if administered in mice treated with nonoxynol-9, a disrupter of the cervico-vaginal epithelium. Our findings show that rectal and vaginal administration of VLPs can induce significant HPV16-neutralizing antibody levels in secretions, despite the fact that low titers are induced in serum. Imidazoquinolines, largely used to treat genital and anal warts, and nonoxonol-9, used as genital microbicide/spermicide were identified as adjuvants that could be safely used by the rectal or vaginal route, respectively.  相似文献   

12.
Yu S  Tang C  Shi X  Yang P  Xing L  Wang X 《Vaccine》2012,30(36):5425-5436
Oil-in-water emulsions are potent human adjuvants commonly used in effective pandemic influenza vaccines; however, such emulsions that can induce both Th1-biased systemic immune responses and strong mucosal immune responses via an easy method of administration are lacking. To address this need for new adjuvants, we developed a novel oil/water emulsion, SPO1, which allows convenient mucosal immunization via an intranasal spray as well as by parenteral routes. Our report shows that SPO1 was able to boost up immunological resistance by inducing effective mucosal and serum antibodies, and the immune response was polarized to a Th1 pattern, as demonstrated by high IgG2α antibody levels and interferon-gamma production by splenocytes from intranasally (i.n.) immunized mice. Up-regulation of co-stimulatory and antigen-presenting molecules on dendritic cells was also observed in vivo after i.n. immunization, suggesting a possible mechanism for the adjuvant effects of SPO1. Another explanation may simply be a depot of antigen at the immunization site, as evidenced by in vivo imaging of i.n. immunized mice. In conclusion, our results demonstrate that a novel oil/water emulsion, SPO1, is a potent Th1 adjuvant for use in influenza and other vaccines, as it induces strong mucosal and systemic immune responses.  相似文献   

13.
The potential as prophylactic vaccines of L1-based particles from cutaneous genus alpha human papillomavirus (HPV) types has not been assessed so far. However, there is a high medical need for such vaccines since HPV-induced skin warts represent a major burden for children and for immunocompromised adults, such as organ transplant recipients. In this study, we have examined the immunogenicity of capsomeres and virus-like particles (VLPs) from HPV types 2, 27, and 57, the most frequent causative agents of skin warts. Immunization of mice induced immune responses resembling those observed upon vaccination with HPV 16 L1-based antigens. The antibody responses were cross-reactive but type-restricted in their neutralizing capacities. Application of adjuvant led to an enhanced potential to neutralize the respective immunogen type but did not improve cross-neutralization. Vaccination with capsomeres and VLPs from all four analyzed HPV types induced robust IFNγ-associated T-cell activation. Immunization with mixed VLPs from HPV types 2, 27, and 57 triggered an antibody response similar to that after single-type immunization and capable of efficiently neutralizing all three types.  相似文献   

14.
Qiu Q  Wang RY  Jiao X  Jin B  Sugauchi F  Grandinetti T  Alter HJ  Shih JW 《Vaccine》2008,26(43):5527-5534
Recent studies demonstrate that Th1-type immune responses against a broad spectrum of hepatitis C virus (HCV) gene products are crucial to the resolution of acute HCV infection. We investigated new vaccine approaches to augment the strength of HCV-specific Th1-type immune responses. ELISPOT assay revealed that single or multiple protein immunization using both CpG ODN and Montanide ISA 720 as adjuvants induced much stronger IFN-gamma-producing Th1 responses against core, NS3 and NS5b targets than did the formulation without these adjuvants. Protein vaccination using CpG ODN and Montanide ISA 720 as adjuvants also greatly enhanced humoral responses to HCV core, E1/E2 and NS3. When specific IgG isotypes were assayed, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants produced higher titers of IgG2a dominant antibodies than did protein immunization alone, indicating a more Th1-biased pathway. This increase in IgG2a is consistent with the induction of Th1 cells secreting IFN-gamma demonstrated by ELISPOT assay. In conclusion, protein immunization using CpG ODN and Montanide ISA 720 as adjuvants greatly enhanced cellular (Th1 type) as well as humoral immune responses against HCV in Balb/c mice. The use of adjuvants appears critical to the induction of Th1 immune responses during HCV vaccination with recombinant proteins.  相似文献   

15.
The Japanese herbal medicines, Juzen-taiho-to (JTT) and Hochu-ekki-to (HET), have been shown to enhance humoral immune responses to vaccine antigen when used as adjuvants for prophylactic vaccines. However, their adjuvant effect on mucosal cellular immune responses remains unstudied. The precursor lesion of cervical cancer, high-grade CIN that expresses HPV E7 oncoprotein ubiquitously is a target for HPV therapeutic vaccines that elicit mucosal E7-specific type 1 T cell responses. We have demonstrated that oral immunization with recombinant Lactobacillus casei expressing HPV16 E7 (LacE7) is more effective in eliciting mucosal E7-specific IFNγ-producing cells than subcutaneous or intramuscular antigen delivery. Here we report the synergistic effect of an oral Lactobacillus-based vaccine and Japanese herbal medicines on mucosal immune responses. Oral immunization of mice with LacE7 plus either a Japanese herbal medicine (JTT or HET) or a mucosal adjuvant, heated-labile enterotoxin T subunit (LTB), promotes systemic E7-specific type 1 T cell responses but not mucosal responses. Administration of LacE7 plus either Japanese herbal medicine and LTB enhanced mucosal E7-specific type 1 T cell response to levels approximately 3-fold higher than those after administration of LacE7 alone. Furthermore, secretion of IFNγ and IL-2 into the intestinal lumen was observed after oral administration of LacE7 and was enhanced considerably by the addition of Japanese herbal medicines and LTB. Our data indicated that Japanese herbal medicines, in synergy with Lactobacillus and LTB, enhance the mucosal type 1 immune responses to orally immunized antigen. Japanese herbal medicines may be excellent adjuvants for oral Lactobacillus-based vaccines and oral immunization of LacE7, HET and LTB may have the potential to elicit extremely high E7-specific mucosal cytotoxic immune response to HPV-associated neoplastic lesions.  相似文献   

16.
Hunter Z  Tumban E  Dziduszko A  Chackerian B 《Vaccine》2011,29(28):4584-4592
The induction of mucosal immune responses in the genital tract may be important for increasing the effectiveness of vaccines for sexually transmitted infections (STIs). In this study, we asked whether direct immunization of the mouse genital tract with a non-replicating virus-like particle (VLP)-based vaccine could induce local mucosal as well as systemic antibody responses. Using VLPs derived from two bacteriophages, Qβ and PP7, and from a mammalian virus that normally infects the genital tract, human papillomavirus (HPV), we show that intravaginal aerosol administration of VLPs can induce high titer IgG and IgA antibodies in the female genital tract as well as IgG in the sera. Using a mouse model for HPV infection, we show that intravaginal immunization with either HPV type 16 VLPs or with PP7 bacteriophage VLPs displaying a peptide derived from the HPV minor capsid protein L2 could protect mice from genital infection with an HPV16 pseudovirus. These results provide a general method for inducing genital mucosal and systemic antibody responses using VLP-based immunogens.  相似文献   

17.
Henderson A  Propst K  Kedl R  Dow S 《Vaccine》2011,29(32):5304-5312
Development of effective new mucosal vaccine adjuvants has become a priority with the increase in emerging viral and bacterial pathogens. We previously reported that cationic liposomes complexed with non-coding plasmid DNA (CLDC) were effective parenteral vaccine adjuvants. However, little is known regarding the ability of liposome-nucleic acid complexes to function as mucosal vaccine adjuvants, or the nature of the mucosal immune responses elicited by mucosal liposome-nucleic acid adjuvants. To address these questions, antibody and T cell responses were assessed in mice following intranasal immunization with CLDC-adjuvanted vaccines. The effects of CLDC adjuvant on antigen uptake, trafficking, and cytokine responses in the airways and draining lymph nodes were also assessed. We found that mucosal immunization with CLDC-adjuvanted vaccines effectively generated potent mucosal IgA antibody responses, as well as systemic IgG responses. Notably, mucosal immunization with CLDC adjuvant was very effective in generating strong and sustained antigen-specific CD8+ T cell responses in the airways of mice. Mucosal administration of CLDC vaccines also induced efficient uptake of antigen by DCs within the mediastinal lymph nodes. Finally, a killed bacterial vaccine adjuvanted with CLDC induced significant protection from lethal pulmonary challenge with Burkholderia pseudomallei. These findings suggest that liposome-nucleic acid adjuvants represent a promising new class of mucosal adjuvants for non-replicating vaccines, with notable efficiency at eliciting both humoral and cellular immune responses following intranasal administration.  相似文献   

18.
Chackerian B  Rangel M  Hunter Z  Peabody DS 《Vaccine》2006,24(37-39):6321-6331
A vaccine targeting the amyloid-beta (Abeta) peptide is a promising potential immunotherapy for Alzheimer's disease patients. However, experience from a recent clinical trial of a candidate Abeta vaccine has suggested that it is important to develop techniques to induce high titer antibodies against Abeta associated with vaccine efficacy while reducing the T cell responses against Abeta that were potentially responsible for serious side effects. We have previously demonstrated that immunization with self- and foreign antigens arrayed in a repetitive fashion on the surface of virus-like particles (VLPs) induces high titer antibody responses at low doses and in the absence of potentially inflammatory adjuvants. In this study, we examined the antibody and T cell responses upon immunization with human papillomavirus VLP- and Qbeta bacteriophage-based Abeta vaccines. Immunization with Abeta conjugated to VLPs or Qbeta elicited anti-Abeta antibody responses at low doses and without the use of adjuvants. The flexibility of these virus-based display systems allowed us to link and induce antibodies against short Abeta-derived peptides from the amino- and carboxyl-termini of the peptide. Immunization of mice with Abeta peptide in combination with Freund's adjuvant elicited predominantly IgG2c antibodies and strong T cell proliferative responses against Abeta. In contrast, VLP-conjugated Abeta peptides elicited more balanced isotype responses, dominated by IgG1. Both VLP and Qbeta-based Abeta vaccines induced weak or negligible T cell responses against Abeta. T cell responses were largely directed against linked viral epitopes. Taken together, virus-based vaccines that allow the presentation of Abeta in a repetitive dense array are new and potentially more effective vaccine candidates for Alzheimer's disease.  相似文献   

19.
We evaluated antibody, cytokine (IFN-gamma, IL-5, TNF-alpha), and cytotoxic T lymphocyte (CTL) responses in chimpanzees immunized with monovalent or quadrivalent (HPV-6, -11, -16, -18) L1 virus-like particle (VLP) vaccines administered i.m. on aluminum hydroxyphosphate (alum) at weeks 0, 8 and 24. Maximum serum antibody titers to type-specific, neutralizing, conformational epitopes on HPV-11 or -16 L1 VLPs were detected by radioimmunoassay (RIA) four weeks after the second and third immunizations. HPV-11 and -16 neutralizing antibodies were also detected at similar time points with an Human papillomaviruses (HPV) neutralization assay using pseudovirions. Depending on the VLP type used for immunization, HPV type-specific cytokine responses were most frequently seen four weeks after the second or third immunizations and between weeks 44-52. Transient HPV-16 L1-specific CTL activity was observed only between weeks 16-24 in 3 of 22 (13.6%) chimpanzees immunized with HPV-16 L1 VLPs. These findings provide evidence that immunization with multivalent L1 VLPs on alum can evoke both neutralizing antibodies and Th1 and Th2 cytokine responses to several HPV types; however, induction of CTLs is infrequent.  相似文献   

20.
Kim D  Gambhira R  Karanam B  Monie A  Hung CF  Roden R  Wu TC 《Vaccine》2008,26(3):351-360
Cervical cancer is one of the most common cancers in women worldwide. Persistent infection with human papillomavirus (HPV) is considered to be the etiological factor for cervical cancer. Therefore, an effective vaccine against HPV infections may lead to the control of cervical cancer. An ideal HPV vaccine should aim to generate both humoral immune response to prevent new infections as well as cell-mediated immunity to eliminate established infection or HPV-related disease. In the current study, we have generated a potential preventive and therapeutic HPV DNA vaccine using human calreticulin (CRT) linked to HPV16 early proteins, E6 and E7 and the late protein L2 (hCRTE6E7L2). We found that vaccination with hCRTE6E7L2 DNA vaccine induced a potent E6/E7-specific CD8+ T cell immune response, resulting in a significant therapeutic effect against E6/E7 expressing tumor cells. In addition, vaccination with hCRTE6E7L2 DNA generated significant L2-specific neutralizing antibody responses, protecting against pseudovirion infection. Thus, the hCRTE6E7L2 DNA vaccines are capable of generating potent preventive and therapeutic effects in vaccinated mice. Our data has significant clinical implications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号