首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Ren J  Yang L  Xu H  Zhang Y  Wan M  Liu G  Zhao L  Wang L  Yu Y 《Vaccine》2011,29(45):7960-7965
Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals. To prevent the spread of FMDV, inactivated virus vaccines are used to immunize animals in developing countries. However, there are safety concerns. In addition, it is difficult to distinguish the vaccinated animals from those naturally infected ones. In our lab, we have developed a recombinant FMDV vaccine named A7. A7 contained multiple B cell and T cell epitopes, which reside in a capsid protein (VP1) of FMDV. To enhance its immunogenicity, A7 was formulated with CpG ODN RW03 in combination with Montanide ISA 206 (ISA), and the resultant vaccine (A7 + ISA + CpG ODN RW03) was used to immunize mice and cattle. It was found that CpG ODN RW03 and ISA combination could facilitate A7 to induce a vigorous and long-lasting specific antibody response in mice and cattle. After FMDV challenge, 80% (4/5) of the calves immunized with A7 + ISA + CpG ODN RW03 were protected, which was superior to those immunized with A7 + ISA (25%, 1/4) or inactivated FMDV vaccine (50%, 2/4). These findings suggest that CpG ODN RW03 could be used with Montanide ISA 206 as a potent adjuvant for recombinant FMDV in cattle.  相似文献   

2.
《Vaccine》2018,36(35):5318-5324
This study aimed to investigate the chemokine CCL20, a macrophage inflammatory protein-3 alpha, for adjuvant potential in inactivated foot-and-mouth disease (FMD) vaccine. Groups of mice were injected intramuscularly with either murine CCL20 DNA or CCL20 protein two days ahead of the immunization with Montanide ISA206 adjuvanted inactivated FMD vaccine and humoral and cellular immune responses were measured in post-vaccinal sera. We demonstrated that the mice immunized with CCL20 plasmid plus FMD vaccine showed earlier and significantly (p < 0.05) higher neutralizing antibody responses compared to the mice vaccinated with CCL20 protein plus FMD vaccine. In fact, CCL20 as a protein did not show any adjuvant effect and the immune responses induced in this group were comparable to that of the mice vaccinated with FMD vaccine alone. All the vaccination groups showed serum IgG1 and IgG2 antibody responses; however, the mice vaccinated with CCL20 plasmid plus FMD vaccine showed significantly (p < 0.05) higher IgG1 and IgG2 responses and the responses remained high at all-time points post vaccination, although not always statistically significant. Upon restimulation of the vaccinated splenocytes with the inactivated FMD viral antigen, significantly (p < 0.05) higher IFN-γ and IL-2 levels in culture supernatants were found in animals vaccinated with the CCL20 plasmid plus FMD vaccine, which is indicative of the TH1 type of cellular immunity. On challenge with the homologous FMD virus on 28th day post immunization, CCL20 plasmid plus FMD vaccine showed complete protection (100%) while animals immunized with CCL20 protein plus FMD vaccine or FMD vaccine alone showed 66% protection. In summary, we show that prior injection of CCL20 plasmid improved protective efficacy of the inactivated FMD vaccine and thus offers a valuable strategy to modulate the efficacy and polarization of specific immunity against inactivated vaccines.  相似文献   

3.
Inactivated whole virus foot-and-mouth disease (FMD) vaccines are used worldwide for protection against FMD, but not all vaccines induce protection against all genetic variants of the same FMD virus serotype. The aim of this study is to investigate whether the “breadth” of the antibody response against different strains of the same FMD virus serotype in cattle could be improved by using a different adjuvant, a mix of antigens and/or different routes of administration. To this end, six groups of five cattle were vaccinated with different FMD virus serotype A strain vaccines formulated with Montanide ISA 206 VG adjuvant. Antibody responses for homologous and heterologous cross-reactivity against a panel of 10 different FMD virus serotype A strains were tested by a liquid-phase blocking ELISA. Results of cattle vaccinated with ISA 206 VG adjuvanted vaccine were compared with results obtained in a previous study using aluminium hydroxide-saponin adjuvant. No significant effect of adjuvant on the breadth of the antibody response was observed, neither for mixing of antigens nor for the route of administration (subcutaneous vs. intradermal). Comparison of antigen payload, however, increased both homologous and heterologous titres; a 10-fold higher antigen dose resulted in approximately four times higher titres against all tested strains. Our study shows that breadth of the antibody response depends mainly on the vaccine strain; we therefore propose that, for vaccine preparation, only FMD virus strains are selected that, among other important characteristics, will induce a wide antibody response to different field strains.  相似文献   

4.
《Vaccine》2015,33(25):2909-2916
The genetic diversity of the three Southern African Territories (SAT) types of foot-and-mouth disease virus (FMDV) reflects high antigenic variation, and indications are that vaccines targeting each SAT-specific topotype may be needed. This has serious implications for control of FMD using vaccines as well as the choice of strains to include in regional antigen banks. Here, we investigated an intra-serotype chimeric virus, vSAT2ZIM14-SAT2, which was engineered by replacing the surface-exposed capsid-coding region (1B-1D/2A) of a SAT2 genome-length clone, pSAT2, with that of the field isolate, SAT2/ZIM/14/90. The chimeric FMDV produced by this technique was viable, grew to high titres and stably maintained the 1B-1D/2A sequence upon passage. Chemically inactivated, oil adjuvanted vaccines of both the chimeric and parental immunogens were used to vaccinate cattle. The serological response to vaccination showed the production of strong neutralizing antibody titres that correlated with protection against homologous FMDV challenge. We also predicted a good likelihood that cattle vaccinated with an intra-serotype chimeric vaccine would be protected against challenge with viruses that caused recent outbreaks in southern Africa. These results provide support that chimeric vaccines containing the external capsid of field isolates induce protective immune responses in FMD host species similar to the parental vaccine.  相似文献   

5.
The immunity and protective capability produced by vaccines can vary remarkably according to the kinds of adjuvants being used. In the case of foot-and-mouth disease (FMD) vaccines in pigs, only oil-adjuvant vaccines have been used, and these tend to show lower immunity in pigs than in cattle. New adjuvants for these vaccines are therefore needed. We made different experimental FMD vaccines using new adjuvants (ISA 201, Carbigen, Emulsigen-D) and well-known adjuvants (ISA 206, aluminum hydroxide gel) and then conducted tests to compare the enhancement in pig immunity. More effective immune responses and protection against challenge were observed with the new adjuvants Emulsigen-D and ISA 201 compared to existing adjuvants. In the case of dairy goats, a mixture of Emulsigen-D and aluminum hydroxide gel produced rapid neutralizing antibody responses that were similar to results from tests conducted with pigs.  相似文献   

6.
The Plasmodium falciparum AMA-1(III) and MSP1-19 proteins have been expressed as a chimera (PfCP-2.9), adjuvanted with Montanide ISA720 and developed as a vaccine candidate tested in human. The PfCP-2.9 protein contains 18 cysteine residues that form nine intramolecular disulfide bonds. The protective immune responses induced by the chimeric protein were dependent on its disulfide bond-based conformation. In this study, we developed a sandwich ELISA to assess the nature of the protein in the emulsion over time (6, 12 and 18 months). Our results showed that the OD450 values corresponding to vaccine storages were within the 95% confidence interval, indicating that the conformation of the protein in the emulsion stored for up to 18 months at 4 °C was unchanged. Furthermore, no protein degradation was detected by Coomassie blue, silver staining, and Western blot analysis for samples stored at 4 °C for up to 2 years. Although some protein aggregation was observed in the emulsion preparations, these aggregates were only a small percentage of the total protein in the sample (7.6%). Moreover, the protein multimers maintained their conformational epitope. The potency assay of the formulation showed no significant differences in ED50 values (50% effective dose for achieving seroconversion) between fresh vaccine formulations (ED50 = 0.057 ± 0.024 μg) and formulations stored for up to 6 (ED50 = 0.046 μg) or 12 months (ED50 = 0.040 μg). Importantly, the immune sera of rabbits immunized with formulations stored for 0, 3, 6, 9 and 12 months effectively inhibited parasite growth in vitro at similar levels. These data indicated that the vaccine emulsion was stable over long periods of storage and maintained both its physical and biological properties.  相似文献   

7.
《Vaccine》2022,40(1):133-140
BackgroundPvs48/45 is a Plasmodium vivax gametocyte surface protein involved in the parasite fertilization process. Previous studies showed that Pvs48/45 proteins expressed in Escherichia coli (E. coli) and Chinese hamster ovary (CHO) cells were highly immunoreactive with sera from malaria-endemic areas and highly immunogenic in animal models. Here the immunogenicity in mice of three different vaccine formulations was compared.MethodsRecombinant (r) Pvs48/45 proteins were expressed in E. coli and CHO, purified, formulated in Alhydrogel, GLA-SE and Montanide ISA-51 adjuvants and used to immunize BALB/c mice. Animals were immunized on days 0, 20 and 40, and serum samples were collected for serological analyses of specific antibody responses using ELISA and immunofluorescence (IFAT). Additionally, ex-vivo transmission-reducing activity (TRA) of sera on P. vivax gametocyte-infected human blood fed to Anopheles albimanus in direct membrane feeding assays (DMFA) was evaluated.ResultsMost immunized animals seroconverted after the first immunization, and some developed antibody peaks of 106 with all adjuvants. However, the three adjuvant formulations induced different antibody responses and TRA efficacy. While GLA-SE formulations of both proteins induced similar antibody profiles, Montanide ISA-51 formulations resulted in higher and longer-lasting antibody titers with CHO-rPvs48/45 than with the E. coli formulation. Although the CHO protein formulated in Alhydrogel generated a high initial antibody peak, antibody responses to both proteins rapidly waned. Likewise, anti-Pvs48/45 antibodies displayed differential recognition of the parasite proteins in IFAT and ex vivo blockade of parasite transmission to mosquitoes. The CHO-rPvs48/45 formulated in Montanide ISA-51 induced the most effective ex vivo parasite blockage.ConclusionsThree out of six vaccine formulations elicited antibodies with ex vivo TRA. The CHO-rPvs48/45 Montanide ISA-51 formulation induced the most stable antibody response, recognizing the native protein and the most robust ex vivo TRA. These results encourage further testing of the vaccine potential of this protein.  相似文献   

8.
Foot-and-mouth disease (FMD) control in Brazil includes a strict mandatory vaccination program with vaccines produced in certified laboratories subject to inspection by the Brazilian Ministry of Agriculture, Livestock, and Food Supply (MAPA). The FMD vaccine's potency is tested through antibodies titration against structural viral proteins in sera from cattle that have not had any exposure to food-and-mouth disease virus (FMDV), at 28 days post-vaccination. Biological product testing using large animals is expensive and unwieldy. Thus, alternative testing procedures using laboratory animals have been proposed for quality control of these products. Such biological methods for vaccine evaluation using animals from vivarium facilities can have a significant impact through reduced costs, easier handling, and shorter testing times. The present study was designed to access Balb/C mice's humoral immune responses to a FMDV experimental vaccine, the composition of which contains three virus serotypes of FMDV (O1 Campos, A24 Cruzeiro, and C3 Indaial). Balb/C mice were immunized at doses that were 5% and 10% of the vaccine volume administered in cattle. Immunized mice had their antibody titers probed at 14, 21, and 28 DPV (days post vaccination). The results obtained were compared to those previously known from cattle's immune responses to the FMDV vaccine. An adequate immune response to the vaccine was seen with 10% formulation at 21 DPV. The study results are encouraging and indicate that the mouse model can be used for quality control in experimental vaccine testing.  相似文献   

9.
《Vaccine》2018,36(16):2193-2198
Vaccination is a key element in the control of foot-and-mouth disease (FMD). The majority of the antigenic sites that induce protective immune responses are localized on the FMD virus (FMDV) capsid that is formed by four virus-encoded structural proteins, VP1 to VP4. In the present study, recombinant canine adenovirus type 2 (CAV2)-based FMD vaccines, Cav-P1/3C R° and Cav-VP1 R°, respectively expressing the structural P1 precursor protein along with the non-structural 3C protein or expressing the structural VP1 protein of the FMDV strain O/FRA/1/2001, were evaluated as novel vaccines against FMD. A strong humoral immune response was elicited in guinea pigs (GP) following immunization with Cav-P1/3C R°, while administration of Cav-VP1 R° did not induce a satisfying antibody response in GP or mice. GP were then used as an experimental model for the determination of the protection afforded by the Cav-P1/3C R° vaccine against challenge with the FMDV strain O1 Manisa/Turkey/1969. The Cav-P1/3C R° vaccine protected GP from generalized FMD to a similar extent as a high potency double-oil emulsion O1 Manisa vaccine. The results of the present study show that CAV2-based vector vaccines can express immunogenic FMDV antigens and offer protection against generalized FMD in GP. This suggest that Cav-P1/3C R° FMDV vaccine may protect natural host species from FMD. In combination with an appropriate diagnostic test, the Cav-P1/3C R° FMDV vaccine may also serve as a marker vaccine to differentiate vaccinated from infected animals.  相似文献   

10.
Xiao C  Rajput ZI  Hu S 《Vaccine》2007,25(25):4795-4800
In model animal experiment A, ICR mice were immunized with ovalbumin (OVA) adjuvanted with Quil A or mineral oil or their combination (Quil A+oil). In model animal experiment B, ICR mice were immunized with foot-and-mouth disease virus (FMDV) antigens or with a commercially available oil adjuvanted foot-and-mouth disease (FMD) vaccine (type O) alone or mixed with Quil A. After that, serum samples were collected to analyze specific IgG and IgG subclasses IgG1, IgG2a, IgG2b, and IgG3. In experiment C, pigs were immunized with FMD (type O) vaccine alone or together with Quil A. Serum samples were collected before and 4 weeks after immunization to analyze indirect haemagglutination (IHA) titers. Results from experiment A indicated a synergistic effect of Quil A and oil on IgG and the subclass responses. Experiment B revealed that supplement of Quil A in FMD vaccine significantly increased IgG and the subclass responses in mice. Experiment C demonstrated that supplement of Quil A in the FMD vaccine significantly enhanced humeral immune responses (as determined by IHA test) in pigs. It is concluded that supplement of Quil A in FMD vaccine can significantly enhanced immune responses and could be an alternative way to improve FMD vaccination in pigs.  相似文献   

11.
Previous work in cattle and pigs demonstrated that protection against foot-and-mouth disease (FMD) could be achieved following vaccination with chimeric foot-and-mouth disease virus (FMDV) vaccines, in which the VP1 G-H loop had been substituted with that from another serotype. This indicated that the VP1 G-H loop may not be essential for the protection of natural hosts against FMDV. If this could be substantiated there would be potential to develop FMD marker vaccines, characterised by the absence of this region. Here, we investigate the serological responses to vaccination with a virus with a partial VP1 G-H loop deletion in order to determine the likelihood of achieving protection and the potential of this virus as a marker vaccine. Inactivated, oil adjuvanted, vaccines, consisting of chemically inactivated virus with or without a partially deleted VP1 G-H loop, were used to immunise cattle. Serum was collected on days 0, 7, 14 and 21 and antibody titres calculated using the virus neutralisation test (VNT) to estimate the likelihood of protection.  相似文献   

12.
The 19kDa carboxyl-terminal fragment of Plasmodium yoelii merozoite surface protein-1 (MSP1(19)), an analog of the leading falciparum malaria vaccine candidate, induces protective immunity to challenge infection when formulated with complete/incomplete Freund's adjuvant (CFA/IFA), an adjuvant unsuitable for use in humans. In this study, we investigate Montanide ISA51 and Montanide ISA720 as well as CpG oligodeoxynucleotide (ODN) as adjuvants for induction of immunity to MSP1(19). Mice immunized with MSP1(19) adjuvanted with Montanide ISA51 were protected even though some mice experienced low-grade parasitemia before resolving the infection. Mice immunized with MSP1(19) adjuvanted with Montanide ISA720 showed delayed patent parasitemia with all mice ultimately succumbing to infection. Interestingly, when the synthetic CpG ODN 1826 was included in either Montanide formulation, mice were completely protected with no parasites detected in the blood. MSP1(19)-specific antibodies in MSP1(19)-immunized mice adjuvanted with Montanide ISA51 or Montanide ISA720 showed predominantly IgG1 antibody and low levels of IgG2a. CpG ODN 1826 significantly enhanced both IgG1 and IgG2a antibody responses in Montanide ISA51-adjuvanted mice but significantly enhanced only the IgG2a antibody response in Montanide ISA720-adjuvanted mice. To investigate the relative roles of antibody and CD4(+) T cells in protection, MSP1(19)-immunized mice adjuvanted with Montanide ISA720 and CpG ODN 1826 were depleted of CD4(+) T cells just prior to challenge. Results showed that three of nine immunized/T cell depleted mice died following infection. These results suggest that antibody and CD4(+) T cells are critical for protection following immunization with MSP1(19) adjuvanted with Montanide and CpG ODN and that the formulation of a human malaria vaccine candidate in Montanide ISA720 or ISA51 together with human compatible CpG ODN would be useful for improving efficacy.  相似文献   

13.
Patil PK  Bayry J  Ramakrishna C  Hugar B  Misra LD  Natarajan C 《Vaccine》2002,20(21-22):2781-2789
The epidemiological role of small ruminants in foot-and-mouth disease (FMD) outbreaks has been generally neglected. Although, the disease in these species is sub-clinical in nature, their role as virus carriers represents a reservoir for further infection and spread of disease. Data on the usefulness of polyvalent FMD vaccine (FMDV) in goats is scant. Thus, the present study was undertaken to evaluate the benefits of a highly potent polyvalent FMDV in goats. In the present investigations, FMDV quadrivalent double oil emulsion (Montanide ISA 206) vaccines were tested in goats at reduced doses of 2 ml per animal (antigen payload 3.5 microg per serotype per dose). The oil adjuvant elicited superior immune response at any given period than aluminium hydroxide gel (AGS) vaccine and the rapidity of development of response was quicker. The duration of immunity also appeared to be maintained for long period. The differences in immune response between two adjuvant groups were statistically significant (P<0.05). The differences were apparent even in kinetics of immune response. Unlike cattle, goats were found to be late responders for oil-adjuvanted vaccine. Our results indicate possible universal usage of double oil emulsion vaccines for disease control programs irrespective of species of animals.  相似文献   

14.
The lead candidate plague subunit vaccine is the recombinant fusion protein rF1-V adjuvanted with alum. While alum generates Th2 regulated robust humoral responses, immune protection against Yersinia pestis has been shown to also involve Th1 driven cellular responses. Therefore, the rF1-V-based subunit vaccine may benefit from an adjuvant system that generates a mixed Th1 and humoral immune response. We herein assessed the efficacy of a novel SA-4-1BBL costimulatory molecule as a Th1 adjuvant to improve cellular responses generated by the rF1-V vaccine. SA-4-1BBL as a single adjuvant had better efficacy than alum in generating CD4+ and CD8+ T cells producing TNFα and IFNγ, signature cytokines for Th1 responses. The combination of SA-4-1BBL with alum further increased this Th1 response as compared with the individual adjuvants. Analysis of the humoral response revealed that SA-4-1BBL as a single adjuvant did not generate a significant Ab response against rF1-V, and SA-4-1BBL in combination with alum did not improve Ab titers. However, the combined adjuvants significantly increased the ratio of Th1 regulated IgG2c in C57BL/6 mice to the Th2 regulated IgG1. Finally, a single vaccination with rF1-V adjuvanted with SA-4-1BBL + alum had better protective efficacy than vaccines containing individual adjuvants. Taken together, these results demonstrate that SA-4-1BBL improves the protective efficacy of the alum adjuvanted lead rF1-V subunit vaccine by generating a more balanced Th1 cellular and humoral immune response. As such, this adjuvant platform may prove efficacious not only for the rF1-V vaccine but also against other infections that require both cellular and humoral immune responses for protection.  相似文献   

15.
《Vaccine》2018,36(30):4477-4484
The Gram-negative pathogen toxigenic P. multocida causes progressive atrophic rhinitis (PAR) in swine throughout the world. Although some vaccines are being developed against PAR, their efficacy has not been evaluated using carbopol. In our study, a mixture of killed B. bronchiseptica and P. multocida bacteria, combined with recombinant proteins containing the C- and N-termini of PMT, was emulsified using two different adjuvants (ISA-15A and carbopol 971). The efficacy of these two vaccines was evaluated in a mouse model. Balb/C mice were immunized twice at a 14-day interval. Two weeks after the secondary immunization, blood samples were collected and the mice were challenged with toxigenic P. multocida. Thirty-five days later, the mice were euthanized, blood and tissue samples were collected. Compared with mice inoculated with vaccine emulsified with ISA-15A, higher titers of SN (1:64) and significantly increased levels of TNF-α, IL-6 and IL-17A were observed in mice inoculated with vaccine emulsified with the carbopol 971P. Especially, mice immunized with vaccine emulsified with the carbopol 971P had no detectable pathological changes in snouts or organs after challenge. The results demonstrated that carbopol adjuvanted vaccine provides good protection against PAR and P. multocida infection which can induce robust humoral and cell-mediated responses. We conclude that the carbopol adjuvanted vaccine is a good candidate for PAR prevention.  相似文献   

16.
《Vaccine》2020,38(18):3464-3473
Leptospirosis is a global zoonosis causing significant economic losses for cattle production. Current cattle vaccines against leptospirosis need improvement to provide efficacy against multiple serovars, reduce shedding in urine, and to induce earlier and more robust immune responses. In this study, Leptospira borgpetersenii serovar Hardjo strain 203 antigen was combined with novel adjuvants (a biodegradable polyanhydride compressed rod implant (VPEAR), poly(diaminosulfide) microparticles, a water-oil-water emulsion adjuvant, and aluminum hydroxide) to develop novel vaccines. Cattle were immunized twice, at a 4 week interval, with inoculums containing adjuvants alone or leptospira antigens and immune responses were compared to responses of cattle receiving a commercial monovalent leptospirosis vaccine (Spirovac). All animals were inoculated with a single dose of Spirovac at 20 weeks to assess antigen recall responses. Serum antibody responses were increased (P > 0.05) at 8 and 20 weeks after vaccination in cattle receiving inoculums containing leptospira antigens combined with water-oil-emulsion, poly(diaminosulfide) microparticles (PNSN-MP), or aluminum hydroxide and in cattle vaccinated with Spirovac. Humoral responses were predominantly IgG1 isotypes. Antigen-specific proliferative responses were detected after initial vaccination in cattle vaccinated with Spirovac, PNSN-MP and water-oil-water treatments. Most proliferative responses occurring within CD4+ and gamma delta T cell populations expressing CD45RO and CD25 markers, a response consistent with an effector memory phenotype. Antigen-specific immune responses were not detected in cattle vaccinated with VPEAR after initial inoculation, but were detected in the antigen recall responses. PBMCs from cattle vaccinated with Spirovac, oil-water-oil, or PNSN-MP treatments had increased (P < 0.05) IL-17A release after in vitro stimulation with leptospirosis antigens, whereas all groups produced IFN-γ and IL-17A after in vitro stimulation during the antigen recall response. Our data demonstrates that combining leptospirosis antigens with these adjuvants enhances immunogenicity in cattle.Interpretative Summary: Vaccination of livestock is a key mechanism for minimizing transmission of leptospirosis, a zoonotic disease. Leptospirosis vaccines for cattle need to be improved to provide greater levels of protection from kidney colonization, better immune responses, and protection against multiple serovars. This could be accomplished using new vaccine adjuvants. In this study, several novel adjuvants were evaluated for their ability to induce effective immune responses in cattle to leptospira antigens as compared to currently available vaccines. Data suggested that vaccines containing biodegradable polymer microparticles and oil-emulsion adjuvants induced similar or greater immune responses as compared to a commercial vaccine. Our data suggest these new vaccine formulations warrant further investigation as new vaccine formulations for cattle and other livestock.  相似文献   

17.
Iyer AV  Ghosh S  Singh SN  Deshmukh RA 《Vaccine》2000,19(9-10):1097-1105
Foot-and-mouth disease virus (FMDV) type OR(2)/75, grown on BHK 21 clone 13 cell monolayers, was inactivated with formalin. The virus was clarified and was either concentrated with 8% polyethylene glycol 6000 (PEG) or used in its untreated form for the preparation of oil adjuvant vaccines. The oil adjuvants used in this study were Montanide ISA 206 (which renders a water-in-oil-in-water (w/o/w) type of emulsion), Montanide ISA 57 and Montanide ISA 50V (both of which render water-in-oil (w/o) type of emulsions). The vaccines were tested on guinea pigs and calves. The results indicated that vaccines emulsified using Montanide ISA 57 elicited the best protective immune response in the animals, followed by those emulsified with Montanide ISA 50V and Montanide ISA 206. It was also found that vaccines formulated with virus concentrated using 8% polyethylene glycol (PEG) were more immunogenic than the vaccines formulated with the untreated harvest virus.  相似文献   

18.
Henderson A  Propst K  Kedl R  Dow S 《Vaccine》2011,29(32):5304-5312
Development of effective new mucosal vaccine adjuvants has become a priority with the increase in emerging viral and bacterial pathogens. We previously reported that cationic liposomes complexed with non-coding plasmid DNA (CLDC) were effective parenteral vaccine adjuvants. However, little is known regarding the ability of liposome-nucleic acid complexes to function as mucosal vaccine adjuvants, or the nature of the mucosal immune responses elicited by mucosal liposome-nucleic acid adjuvants. To address these questions, antibody and T cell responses were assessed in mice following intranasal immunization with CLDC-adjuvanted vaccines. The effects of CLDC adjuvant on antigen uptake, trafficking, and cytokine responses in the airways and draining lymph nodes were also assessed. We found that mucosal immunization with CLDC-adjuvanted vaccines effectively generated potent mucosal IgA antibody responses, as well as systemic IgG responses. Notably, mucosal immunization with CLDC adjuvant was very effective in generating strong and sustained antigen-specific CD8+ T cell responses in the airways of mice. Mucosal administration of CLDC vaccines also induced efficient uptake of antigen by DCs within the mediastinal lymph nodes. Finally, a killed bacterial vaccine adjuvanted with CLDC induced significant protection from lethal pulmonary challenge with Burkholderia pseudomallei. These findings suggest that liposome-nucleic acid adjuvants represent a promising new class of mucosal adjuvants for non-replicating vaccines, with notable efficiency at eliciting both humoral and cellular immune responses following intranasal administration.  相似文献   

19.
《Vaccine》2020,38(11):2478-2486
In this work, we explored the potential of cationic solid lipid nanoparticles (cSLN) as efficient adjuvants for inactivated foot and mouth disease virus (iFMDV) vaccine. The cSLN were prepared by O/W emulsion method with Compritol 888 ATO as lipid matrix, and were modified by cationic lipid Didodecyldimethylammonium bromide (DDAB). The content of cationic lipid was optimized to produce cSLN with appropriate particle size, surface morphology, zeta potential, and polydispersity. Loading iFMDV onto cSLN by electrostatic attraction did not destruct iFMDV particle structure as measured by high performance size exclusion chromatography (HPSEC). Differential scanning fluorimetry (DSF) showed the transition temperature, Tm, related to iFMDV dissociation increased for 1.2 °C after loading on cSLN, indicating an enhanced stability of this unstable antigen. The cSLN loaded iFMDV enhanced in vitro antigen uptake and activation of bone-marrow-derived dendritic cells (BMDCs) with augmented expression of CD86, CD40, and MHC I. In animal trials, BALB/c mice were immunized with free iFMDV, antigen adjuvanted with the cSLN, and antigen adjuvanted with Montanide ISA 206 emulsion. Specific antibody titers showed cSLN could stimulate similar FMDV-specific IgG and IgG subclasses antibody level compared with the widely used ISA 206. In addition, cSLN significantly enhanced memory immune response including effector-memory T cells and central-memory T cells compared to free iFMDV antigen and antigen adjuvanted with ISA 206. Taken together the enhanced humoral and T cell immune responses and the antigen structure friendly properties, cSLN can be a potential adjuvant for iFMDV vaccines.  相似文献   

20.
《Vaccine》2019,37(46):6922-6930
AimDesign and immunogenicity assessment of the combined vaccine candidate against zoonotic hepatitis E virus (HEV) and foot-and-mouth disease virus (FMDV).MethodsUsing the molecular cloning technology, we produced and purified 9 HEV ORF2-truncated proteins (HEV genotype 4). Then, we compared their thermal stability, antigenicity, and immunogenicity to select the best HEV immunogen. Next, we used the adjuvant Montanide ISA-206 to prepare different formulations of HEV vaccine alone, FMDV vaccine alone and HEV-FMDV combined vaccine. The formulations were injected into mice and the induced humoral immune responses were monitored up 12 weeks post-immunization.ResultsThe HEV p222 protein could self-assemble into VLPs (∼34 nm) and showed higher stability and better antigenicity/immunogenicity than the other HEV antigens, thus it was selected as the best HEV immunogen. Mice immunization with the FMDV vaccine alone induced high FMDV-specific antibody titers in a dose-dependent manner; the HEV p222 protein also induced high levels of anti-HEV antibodies but in a dose-independent manner. The HEV-FMDV combination induced anti-FMDV antibody titers 7–16-fold higher than the titers induced by the FMDV vaccine alone, and HEV-specific antibody titers 2.4-fold higher than those induced by the HEV p222 antigen alone.ConclusionHerein, we proposed a new approach for the control of zoonotic HEV infection through its control in its main host (pig). We also designed the first HEV-FMDV combined vaccine and the preliminary analyses revealed a synergistic effect on the immunogenicity of both HEV and FMDV antigens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号