首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hepatitis B surface antigen (HBsAg) is known to adsorb to aluminum hydroxide adjuvant (AH) by ligand exchange between its accessible phosphate groups and surface hydroxyl groups of the adjuvant. To study the effect of the binding strength, five vaccines were prepared with AH or four samples of AH that were modified by pretreatment with different concentrations of potassium dihydrogen phosphate. The adsorptive coefficients ranged from 3660 to 250 mL/mg based on the Langmuir adsorption isotherm and degrees of elution ranged from 1 to 31% when the vaccines were exposed to interstitial fluid in vitro. When tested in mice the four vaccines containing phosphate-treated AH (PTAH) induced significantly greater antibody responses than the vaccine containing AH, which had the highest adsorptive coefficient and the smallest degree of elution of HBsAg. The results indicated that antibody production is reduced when the antigen is adsorbed too strongly. Thus, the strength of adsorption of the antigen to an aluminum-containing adjuvant can affect the immunogenicity of the vaccine and should be optimized during vaccine formulation.  相似文献   

2.
3.
Subunit vaccines generally require adjuvants to achieve optimal immune responses. Toll-like receptor (TLR) agonists are promising immune potentiators, but rapid diffusion from the injection site reduces their local effective concentration and may cause systemic reactions. In this study, we investigated the potential of aluminum hydroxide adjuvant (AH) to adsorb the TLR3 agonist poly(I:C) and TLR9 agonist CpG and compared the effect of the combination adjuvant on the immune response with either the TLR agonists or AH alone in mice. Poly(I:C) and CpG readily adsorbed onto AH and this combination adjuvant induced a stronger IgG1 and IgG2a immune response with a significant increase of antibody avidity. The combination adjuvant enhanced antigen uptake and activation of dendritic cells in vitro. It induced an inflammatory response at the injection site similar to AH but without eosinophils which are typically observed with AH. A distinctive antigen-containing monocyte/macrophage population with an intermediate level of CD11c expression was identified in the draining lymph nodes after immunization with TLR agonists and the combination adjuvant. Injection of the combination adjuvant did not induce an increase of TNFα and CXCL10 in serum in contrast to the injection of soluble TLR agonists. These results indicate that this combination adjuvant is a promising formulation to solve some of the unmet needs of current vaccines.  相似文献   

4.
《Vaccine》2018,36(38):5738-5746
Determination of protein concentration in vaccines containing aluminum salt adjuvant typically necessitates desorption of the protein prior to analysis. Here we describe a method based on the intrinsic fluorescence of tyrosine and tryptophan that requires no desorption of proteins. Adjuvanted formulations of three model Bordetella pertussis antigens were excited at 280 nm and their emission spectra collected from 290 to 400 nm. Emission spectra of protein antigens in the presence of aluminum salt adjuvants were able to be detected, the effects of adjuvants on the spectra were analyzed, and linear regressions were calculated. The fluorescence method proved to be very sensitive with a limit of quantification between 0.4 and 4.4 µg/mL and limit of linearity between 100 and 200 µg/mL, across the formulations tested. The fluorescence method was found to be influenced by adjuvant presence, type of adjuvant, adjuvant concentration, buffer and pH conditions. The method also demonstrated ability to monitor the percent adsorption of antigens to the adjuvants. Furthermore, intrinsic fluorescence showed good correlation with micro-Kjeldahl elemental assay in quantifying protein concentration. Being a non-invasive, quick and sensitive method, intrinsic fluorescence has the potential to be utilized as a high throughput tool for vaccine development and conceivably implemented in-line, using in-line fluorimeters, to monitor antigen concentration during formulation processing.  相似文献   

5.
We have characterized protein antigens after quantitative dissociation from aluminum hydroxide adjuvant. Bovine serum albumin (BSA) and a multi-antigen vaccine for Group A Streptococcus (GrAS Vaccine) were formulated on aluminum hydroxide, stored for > or =10 days then eluted with a 48-h treatment at 4 degrees C with 0.85% H(3)PO(4) plus 4M guanidine HCl (GnHCl). BSA is recovered from adjuvant at 92+/-2%. GrAS antigens are equally recovered from GrAS Vaccine (95+/-11% of total protein expected using multiple lots stored for up to 12 months). Recovery after elution is similar when determined by RP-HPLC, SEC-HPLC, UV absorbance, or Bradford methods. Eluted antigens are structurally and functionally intact as judged relative to both treated and untreated antigen controls by SDS-PAGE, RP-HPLC, SEC-HPLC, and after desalting by circular dichroism, bis-ANS binding, and antigenicity determined by ELISA. When formulated and stored for a few weeks, BSA has more dimer (31+/-5%) relative to the elution control (9% dimer) as detected by SEC-HPLC, suggesting that BSA microaggregation is promoted on aluminum. Antigens eluted from very aged GrAS Vaccine (>12 months) show marked changes by RP-HPLC. Structural changes in the antigens under elution conditions were evaluated using bis-ANS, a fluorescent probe of protein structure. Binding of bis-ANS increases fluorescence approximately 100-fold and is significantly diminished with increasing GnHCl concentrations indicating a progressive denaturing of the proteins. At 4M GnHCl (with or without 0.85% H(3)PO(4)) the GrAS antigens are fully denatured and BSA is partially denatured. Interestingly, the addition of 0.85% H(3)PO(4) increases bis-ANS binding on GrAS antigens and reduces the denaturing of GrAS antigens and BSA by chaotropes. Desalting or diluting the eluted antigens results in renaturing of the proteins as judged by bis-ANS fluorescence, circular dichroism and antigenicity testing. The elution method provides a novel approach for high recovery and characterization of GrAS Vaccine antigens and may be applicable to the study of many aluminum hydroxide-bound vaccines.  相似文献   

6.
《Vaccine》2020,38(19):3600-3609
Aluminum based adjuvants are widely used in commercial vaccines, since they are known to be safe and effective with a variety of antigens. The effect of antigen adsorption onto Aluminum Hydroxide is a complex area, since several mechanisms are involved simultaneously, whose impact is both antigen and formulation conditions dependent. Moreover, the mode of action of Aluminum Hydroxide is itself complex, with many mechanisms operating simultaneously. Within the literature there are contrasting theories regarding the effect of adsorption on antigen integrity and stability, with reports of antigen being stabilized by adsorption onto Aluminum Hydroxide, but also with contrary reports of antigen being destabilized. With the aim to understand the impact of adsorption on three recombinant proteins which, following in vivo immunization, are able to induce functional bactericidal antibodies against Neisseria meningitidis type B, we used a range of physico-chemical tools, such as DSC and UPLC, along with in vitro binding of antibodies that recognize structural elements of the proteins, and supported the in vitro data with in vivo evaluation in mice studies. We showed that, following exposure to accelerated degradation conditions involving heat, the recombinant proteins, although robust, were stabilized by adsorption onto Aluminum Hydroxide and retain their structural integrity unlike the not adsorbed proteins. The measure of the Melting Temperature was a useful tool to compare the behavior of proteins adsorbed and not adsorbed on Aluminum Hydroxide and to predict protein stability.  相似文献   

7.
《Vaccine》2014,32(27):3393-3401
Aluminum-adjuvanted vaccines are administered through an intramuscular injection (IM) in the US and EU, however, a subcutaneous injection (SC) has been recommended in Japan because of serious muscle contracture previously reported following multiple IMs of antibiotics. Newly introduced adjuvanted vaccines, such as the human papillomavirus (HPV) vaccines, have been recommended through IM. In the present study, currently available vaccines were evaluated through IM in mice. Aluminum-adjuvanted vaccines induced inflammatory nodules at the injection site, which expanded into the intra-muscular space without any muscle degeneration or necrosis, whereas non-adjuvanted vaccines did not. These nodules consisted of polymorph nuclear neutrophils with some eosinophils within the initial 48 h, then monocytes/macrophages 1 month later. Inflammatory nodules were observed 6 months after IM, had decreased in size, and were absorbed 12 months after IM, which was earlier than that after SC. Cytokine production was examined in the injected muscular tissues and AS04 adjuvanted HPV induced higher IL-1β, IL-6, KC, MIP-1, and G-CSF levels in muscle tissues than any other vaccine, but similar serum cytokine profiles were observed to those induced by the other vaccines. Currently available vaccines did not induce muscular degeneration or fibrotic scar as observed with muscle contracture caused by multiple IMs of antibiotics in the past.  相似文献   

8.
《Vaccine》2015,33(42):5623-5632
Delivery of antigen through admixture formulation containing poly caprolactone (PCL) and aluminum phosphate was studied as a promising strategy to generate antigen specific immune response. The present study demonstrates the synergistic effect of admixture formulation of PCL with reduced aluminum (PCL-Al 0.2 mg-TT and PCL-PEG-Al 0.2 mg-TT) as a potential adjuvant system using tetanus toxoid (TT) as a model antigen. On evaluation of the magnitude of efficacy for the proposed formulation by ELISA as well as challenge method, persistent and strong antibody response was obtained throughout the 180 day study period on storage at 5 ± 3 °C. In comparison to the aluminum phosphate based conventional tetanus vaccine, higher levels of IFN-γ and IL-4 were obtained with PCL-Al 0.2 mg-TT and PCL-PEG-Al 0.2 mg-TT, indicating the presence of cell mediated as well as humoral immune responses. Histopathology and serum biochemistry profile in mice further indicated the suitability of the proposed formulation. Percent adsorption/encapsulation of the antigen also increased to nearly 95% in the admixture formulation compared to 55% adsorption in the conventional tetanus vaccine. The present study established a useful baseline for designing biocompatible and effective delivery system for toxoid vaccines through judicious use of PCL based biodegradable nanoparticles in combination with aluminum phosphate.  相似文献   

9.
《Vaccine》2016,34(27):3059-3067
Aluminum salts such as aluminum oxyhydroxide and aluminum hydroxyphosphate are commonly used human vaccine adjuvants. In an effort to improve the adjuvant activity of aluminum salts, we previously showed that the adjuvant activity of aluminum oxyhydroxide nanoparticles is significantly more potent than that of aluminum oxyhydroxide microparticles. The present study was designed to (i) understand the mechanism underlying the potent adjuvant activity of aluminum oxyhydroxide nanoparticles, relative to microparticles, and (ii) to test whether aluminum hydroxyphosphate nanoparticles have a more potent adjuvant activity than aluminum hydroxyphosphate microparticles as well. In human THP-1 myeloid cells, wild-type and NLRP3-deficient, both aluminum oxyhydroxide nanoparticles and microparticles stimulate the secretion of proinflammatory cytokine IL-1β by activating NLRP3 inflammasome, although aluminum oxyhydroxide nanoparticles are more potent than microparticles, likely related to the higher uptake of the nanoparticles by the THP-1 cells than the microparticles. Aluminum hydroxyphosphate nanoparticles also have a more potent adjuvant activity than microparticles in helping a model antigen lysozyme to stimulate specific antibody response, again likely related to their stronger ability to activate the NLRP3 inflammasome.  相似文献   

10.
Viral hemorrhagic septicemia (VHS) in olive flounder (Paralichthys olivaceus) remains an unsolved health problem in Korean aquaculture. Vaccination plays a significant role in modern aquaculture, and the duration of protection provided is of vital importance. Here, we have demonstrated the efficacy, duration of protection and safety of an inactivated vaccine emulsified with squalene (5%) and aluminum hydroxide (0.5%). The inactivated VHS vaccine provided a moderate protection of 37% and 47% relative percent survival (RPS) at 4 and 10 weeks post vaccination (wpv). Addition of squalene and aluminum hydroxide into inactivated VHS vaccine clearly enhanced the level of protection showing 58% and 83% RPS at 4 and 10 wpv, respectively, indicating the need for adjuvants to enhance the efficacy. The vaccinated fish showed significant protection at 3, 6, 12, 18, 24, and 40 wpv (except week 57) than non-vaccinated fish to an intraperitoneal challenge of 107.1TCID50/fish at 15 °C, with RPS of 60%, 64%, 71%, 55%, 52% and 50% (45% at 57 week), respectively, covering the duration of natural outbreak. Fish challenged at 18 wpv at 6 °C showed 56% RPS and protection at a low temperature. The antibody titer was high at 3 wpv with an OD of 1.08 ± 0.13, but decreased gradually and was undetectable by 24 wpv. The vaccine formulation was safe without injection site reactions, adhesions, or pigmentation observed at 6, 12, 18, or 24 wpv. Inflammatory reactions were observed in the spleen intestine at 6 and 12 wpv but were similar as control by 24 wpv. These results confirm that this vaccine is efficient and safe for olive flounder and could offer an appropriate strategy to prevent VHS without causing side effects.  相似文献   

11.
目的 探讨氢氧化铝与黄连碱复合佐剂对甲肝疫苗诱导小鼠体液免疫的影响。方法 选取6~8周龄雌性ICR小鼠49只,随机分为空白组、单纯抗原组、单纯黄连碱佐剂组、铝佐剂组及复合佐剂低、中、高剂量组,每组7只;在免疫后第4、8、12、16周,采用间接酶联免疫吸附测定法(ELISA)检测小鼠分离血清中的抗HAV IgG抗体水平。结果 在免疫后第4、8、12、16周,除空白组外,各组小鼠均能检测到抗HAV IgG抗体,且抗体水平随免疫后时间的延长均先升高而后降低;在免疫后第12周,各组小鼠血清中抗HAV IgG抗体水平达到峰值,单纯抗原组、单纯黄连碱佐剂组、铝佐剂组及复合佐剂低、中、高剂量组小鼠分别为log10(2.908±0.413)、log10(2.960±0.315)、log10(3.460±0.295)、log10(3.460±0.351)、log10(3.470±0.251)、log10(3.470±0.251);在免疫后第4周,复合佐剂低剂量组小鼠抗HAV IgG抗体水平均高于单纯抗原组和单纯黄连碱佐剂组(均P<0.05);在免疫后第8、12、16周,复合佐剂低、中、高剂量组小鼠抗HAV IgG抗体水平均高于单纯抗原组和单纯黄连碱佐剂组(均P<0.05);在免疫后第12周,铝佐剂组小鼠抗HAV IgG抗体水平均高于单纯抗原组和单纯黄连碱佐剂组(均P<0.05);在免疫后第16周,铝佐剂组小鼠抗HAV IgG抗体水平高于单纯抗原组(P<0.05)。结论 适当配比的黄连碱和氢氧化铝复合佐剂可快速、显著提高甲肝疫苗诱导小鼠的体液免疫应答,有望成为一种新的人用疫苗佐剂。  相似文献   

12.
13.
Ovalbumin (OVA) was labeled with a near infra-red dye (*OVA) and formulated with the host defense peptide indolicidin (Indol), CpG oligodeoxynucleotide (ODN) 1826 (CpG) and/or poly(p-dicarboxylatophenoxy)-phosphazene (PP4). The immunogenicity of these *OVA formulations was evaluated in mice. All double and triple adjuvant combinations elicited strong antibody responses. *OVA formulated with CpG ODN in combination with indolicidin, PP4 or both induced only IFN-γ, while formulations with indolicidin and/or PP4 promoted predominantly IL-5 production. Overall, both IgG and IFN-γ production was superior when *OVA was combined with CpG/Indol/PP4. Furthermore, mice injected with *OVA formulated with CpG/Indol/PP4 contained detectable *OVA in the injection site two months post immunization. These results indicate that the CpG/Indol/PP4 combination promotes prolonged antigen retention and strong, antigen-specific Th1-biased immune responses.  相似文献   

14.
Dosage-sparing strategies, adjuvants and alternative substrates for vaccine production are being explored for influenza vaccine development. We assessed the safety and immunogenicity of a Vero cell culture-grown inactivated whole virus influenza A/H5N1 vaccine with or without aluminum hydroxide adjuvant [Al(OH)3] in healthy young adults. Vaccines were well tolerated, but injection site discomfort was more frequent in groups receiving Al(OH)3. Dose-related increases in serum antibody levels were observed. Neutralizing antibody titers varied significantly when tested by two different laboratories.  相似文献   

15.

Background

In the female genital tract, vaginal colposcopy, endometrial mucosal integrity and inflammatory mediators are potential in vivo biomarkers of microbicide and contraceptive safety.

Study Design

A randomized, blinded crossover trial of 18 subjects comparing effects of nonoxynol-9 vaginal gel (Gynol II; putative inflammatory gel), hydroxyethyl cellulose gel (HEC; putative inert gel) and no gel exposure on endometrial and vaginal epithelial integrity and endometrial and vaginal inflammatory markers [interleukin (IL) 1β, IL-6, IL-8, MCP-1, MIP-1α, MIP-1β, RANTES, tumor necrosis factor α, IL-1RA, IL-10, SLPI).

Results

Gynol II was associated with more vaginal lesions. No endometrial disruptions were observed across conditions. In the vagina, RANTES (p=.055) and IL-6 (p=.04) were higher after HEC exposure than at baseline. In the endometrium, IL-1β (p=.003) and IL-8 (p=.025) were lower after Gynol II cycles than after no gel.

Conclusions

Gynol II and HEC may modulate inflammatory markers in the vagina and endometrium. How these changes relate to infection susceptibility warrants further study.  相似文献   

16.
A total of 600 healthy adults ≥65 years were randomized to receive 2 vaccinations 1 month apart of a subvirion avian influenza A/H5N1 vaccine containing 3.75, 7.5, 15, or 45 μg of hemagglutinin (HA) with or without aluminum hydroxide (AlOH). All formulations were safe. Groups given the vaccine with AlOH had more injection site discomfort. Dose-related increases in antibody responses were noted after the second vaccination. Antibody responses to the vaccine were not enhanced by AlOH at any HA dose level. A microneutralization titer ≥40 was observed in 36% and 40% of subjects who received 45 μg of HA with or without AlOH, respectively.  相似文献   

17.
Poly[di(sodiumcarboxylatoethylphenoxy)phosphazene] (PCEP) has shown great potential as a vaccine adjuvant, but the mechanisms that mediate its adjuvant activity have not been investigated. Previously, we had reported the potential of PCEP to induce cytokines and chemokines at the site of injection. Hence, we hypothesized that PCEP creates strong immuno-competent environment leading to recruitment of immune cells at the injection site. Intramuscular injection of mice with PCEP induced significant recruitment of neutrophils, macrophages, monocytes, dendritic cells (DCs), and lymphocytes at the site of injection as well as in the draining lymph nodes. Flow cytometric analysis showed that the majority of the recruited immune cells took up and/or were associated with PCEP at the injection site, with lymphocytes taking up PCEP in lesser quantity. Further, confocal analysis revealed intracytoplasmic lysosomal localization of PCEP in recruited immune cells. These observations suggest that recruitment of distinct immune cells to the site of injection site may be an important mechanism by which PCEP potentiates immune responses to antigens.  相似文献   

18.
目的 初步评价Al(OH)3对重组HPV16的L2E6E7融合蛋白(简称HPV16L2E6E7)的免疫佐剂作用.方法 将108只雌性C57BL/6小鼠随机分成Al(OH)3组(85.7 μg/只,肌肉注射)、HPV16L2E6E7组(120.0μg/只,肌肉注射)、A1 (OH)3+HPV16L2E6E7组[每只 Al(OH)3 85.7μg+HPV16L2E6E7120.0μg,肌肉注射],每组36只,免疫程序为0、3、7d.ELISPOT法检测IFN-γ,间接ELISA法检测IgG抗体水平.另将40只皮下接种TC-1肿瘤细胞(1×104/只)的雌性C57BL/6小鼠随机分为PBS组(100.0 μL)、Al (OH)3组(85.7μg/只,肌肉注射)、HPV16L2E6E7组(120.0μg,/只,肌肉注射)、Al(OH)3+ HPV16L2E6E7组[每只Al(OH)385.7μg+HPV16L2E6E7 120.0μg,肌肉注射],每组10只.免疫程序为0、3、7d.观察肿瘤形成时间、体积变化及成瘤率,观察期为53 d.结果 免疫后第10、14、21、28、35和42d,HPV16L2E6E7组与Al(OH)3+HPV16L2E6E7组IgG抗体滴度都高于Al(OH)3对照组,差异具有统计学意义(P均<0.01),免疫后21、28、35、42 d Al(OH)3+ HPV16L2E6E7组特异性IgG抗体显著高于HPV16L2E6E7组(P均<0.01);免疫后14、21、28d Al(OH)3+ HPV16L2E6E7组E7特异性IFN-γ水平显著高于HPV16L2E6E7组(P均<0.01);小鼠抑瘤实验中,HPV16L2E6E7组抑瘤率为60%,Al(OH)3+ HPV16L2E6E7抑瘤率为40%,两组无明显差异(P>0.05),但与对照组比较都有显著性差异(P< 0.01,P<0.05).结论 初步评价Al(OH)3能与HPV16L2E6E7较好吸附,可诱导C57BL/6雌性小鼠产生更强的特异性体液和细胞免疫应答,具有免疫增强作用.  相似文献   

19.
《Vaccine》2017,35(12):1622-1629
Vaccines often contain adjuvants to strengthen the response to the vaccine antigen. However, their modes of action at the site of injection (SOI) are poorly understood. Therefore, we assessed the local effects of adjuvant on the innate immune system in mice. We investigated the safe, widely used adjuvants MF59 and aluminum hydroxide (alum), as well as trehalose-6,6′-dibehenate (TDB), Complete Freund’s Adjuvant (CFA) and the Toll-Like-Receptor-ligands lipopolysaccharide (LPS) and Pam3CysSerLys4 (Pam3CSK4). We assessed muscle immune cell infiltration after adjuvant injection and observed 16 h post immunization (hpi) an increased influx with CFA, MF59 and TDB, but not with alum, LPS or Pam3CSK4. An elevated influx with the latter three became visible only 72 hpi. Contribution of granulocytes, macrophages and dendritic cells to the influx differed per adjuvant and in time. Adjuvants generally induced a local pro-inflammatory micro-milieu that was transient except for CFA and TDB. The gene expression of CXCL-1, CCL-2 and CCL-5, involved in recruitment of immune cells, varied per adjuvant and corresponded grossly with the observed influx of granulocytes and monocytes/macrophages. Muscles injected with CFA or MF59 (when co-injected with peptide) resulted in APC ex vivo capable to induce proliferation of peptide-specific T-cells. By adding in vitro an excess of peptide to the APC/T cell co-cultures, we observed an adjuvant-enhanced co-stimulation or antigen presentation by APC after CFA- but not MF59-injection. After TDB-injection this effect was observed only at 72 hpi, but not 24 hpi. Thus the cellular influx profile and the local cytokine and chemokine micro-milieu in the muscle were strongly influenced by the type of adjuvant. Additionally, the capacity of muscle APC to load and present antigen was affected by the adjuvant. These findings may assist the development of novel adjuvanted vaccines in a more rational manner.  相似文献   

20.
The stockpiling of live vaccinia virus vaccines has enhanced biopreparedness against the intentional or accidental release of smallpox. Ongoing research on future generation smallpox vaccines is providing key insights into protective immune responses as well as important information about subunit-vaccine design strategies. For protein-based recombinant subunit vaccines, the formulation and stability of candidate antigens with different adjuvants are important factors to consider for vaccine design. In this work, a non-tagged secreted L1-protein, a target antigen on mature virus, was expressed using recombinant baculovirus technology and purified. To identify optimal formulation conditions for L1, a series of biophysical studies was performed over a range of pH and temperature conditions. The overall physical stability profile was summarized in an empirical phase diagram. Another critical question to address for development of an adjuvanted vaccine was if immunogenicity and protection could be affected by the interactions and binding of L1 to aluminum salts (Alhydrogel) with and without a second adjuvant, CpG. We thus designed a series of vaccine formulations with different binding interactions between the L1 and the two adjuvants, and then performed a series of vaccination-challenge experiments in mice including measurement of antibody responses and post-challenge weight loss and survival. We found that better humoral responses and protection were conferred with vaccine formulations when the L1-protein was adsorbed to Alhydrogel. These data demonstrate that designing vaccine formulation conditions to maximize antigen–adjuvant interactions is a key factor in smallpox subunit-vaccine immunogenicity and protection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号