首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The lipid core peptide (LCP) system has successfully been used in development of peptide-based vaccines against cancer and infectious diseases (such as group A streptococcal infection). CD8+ T cells are important targets for vaccines, however developing a vaccine that activates long-lasting immunity has proven challenging. The ability of LCP vaccines to activate antigen-specific CD8+ and/or CD4+ T cell responses was tested using compounds that contained two or four copies of OVA257–264 and/or OVA323–339 peptides conjugated to LCP, which are recognised by OTI (CD8+ specific) and OTII (CD4+ specific) T cells, respectively. The LCP–ovalbumin vaccines developed in this study were synthesised in 30% yields and showed no significant haemolytic effect on red blood cells (below 4% haemolysis when tested with compounds at up to 100 μM concentrations). Promising in vivo data in mice suggested that this LCP–ovalbumin vaccine system could act as a novel and potent vehicle for the stimulation of robust antigen-specific CD8+ T cell responses.  相似文献   

2.
Immunodominance hierarchies operating in immune responses to viral antigens limit the diversity of the elicited T cell responses. The Ld/S28–39-restricted CD8 T cell response to the hepatitis B surface antigen (HBsAg or S) prevents copriming of Dd- and Kb-restricted CD8 T cell responses. We exchanged L to V at position S39 of HBsAg to construct mutant SL39V. Comparable levels of wild-type S and mutant SL39V were produced by transiently transfected cells, and mice immunized with the pCI/S and pCI/SL39V DNA vaccines showed comparable serum antibody responses to HBsAg. The pCI/S but not pCI/SL39V DNA vaccination induced Ld/S28–39-specific CD8 T cell responses. However, the pCI/SL39V DNA vaccine efficiently primed CD8 T cell responses to the subdominant Dd- and Kb-restricted epitopes, confirming the immunosuppressive phenotype of the Ld/S28–39-specific CD8 T cell response. A single point mutation within the HBsAg can hence completely silence a ‘dominant’ CD8 T cell response thereby facilitating priming of a multispecific repertoire of suppressed, ‘subdominant’ epitopes. The data have practical implications for understanding HBV-specific CD8 T cell responses and for the design of novel vaccination strategies.  相似文献   

3.

Purpose

We conducted a cancer vaccine clinical trial with MAGE-A4 protein. Safety, clinical response, and antigen-specific immune responses were analyzed and the prognostic factors by vaccination were investigated.

Experimental design

Twenty patients with advanced esophageal, stomach or lung cancer were administered MAGE-A4 vaccine containing 300 μg protein subcutaneously once every 2 weeks in six doses. Primary endpoints of this study were safety and MAGE-A4 immune responses.

Results

The vaccine was well tolerated. Fifteen of 20 patients completed one cycle of vaccination and two patients showed SD. A MAGE-A4-specific humoral immune response was observed in four patients who had high expression of MAGE-A4 and MHC class I on tumor cells. These four patients showed significantly longer overall survival than patients without an antibody response after vaccination (p = 0.009). Patients with tumor cells expressing high MAGE-A4 or MHC class I antigen showed significantly longer overall survival than those with low expression. Induction of CD4 and CD8T cell responses was observed in three and six patients, respectively, and patients with induction of MAGE-A4-specific IFNγ-producing CD8T cells, but not CD4T cells, lived longer than those without induction.

Conclusions

The CHP-MAGE-A4 vaccine was safe. Expression of MAGE-A4 and MHC class I in tumor tissue and the induction of a MAGE-A4-specific immune response after vaccination would be feasible prognostic markers for patients vaccinated with MAGE-A4.  相似文献   

4.
It is commonly believed that delivery of antigen into the class I antigen presentation pathway is a limiting factor in the clinical translation of DNA vaccines. This is of particular concern in the context of cancer vaccine development as many immunodominant peptides derived from self tumor antigens are not processed and presented efficiently. To address this limitation, we have engineered completely assembled peptide/MHC class I complexes whereby all three components (class I heavy chain, β2m, and peptide) are attached by flexible linkers and expressed as a single polypeptide (single chain trimers or SCT). In this study, we tested the efficacy of progressive generations of SCT DNA vaccines engineered to (1) enhance peptide binding, (2) enhance interaction with the CD8 coreceptor, and/or (3) activate CD4+ helper T cells. Disulfide trap SCT (dtSCT) have been engineered to improve peptide binding, with mutations designed to create a disulfide bond between the class I heavy chain and the peptide linker. dtSCT DNA vaccines dramatically enhance the immune response to model low affinity antigens as measured by ELISPOT analysis and tumor challenge. SCT engineered to enhance interaction with the CD8 coreceptor have a higher affinity for the TCR/CD8 complex, and are associated with more robust CD8+ T cell responses following vaccination. Finally, SCT constructs that coexpress a universal helper epitope PADRE, dramatically enhance CD8+ T cell responses. Taken together, our data demonstrate that dtSCT DNA vaccines coexpressing a universal CD4 epitope are highly effective in generating immune responses to poorly processed and presented cancer antigens.  相似文献   

5.
Therapeutic human papillomavirus (HPV) vaccines targeting E6 and/or E7 antigens represent an opportunity to control HPV-associated lesions. We have previously generated several therapeutic DNA vaccines targeting HPV-16 E7 antigen and generated significant antitumor effects. Since regulatory T cells (Tregs) play an important role in suppressing immune responses against tumors by immunotherapy, such as DNA vaccines, we tested if the therapeutic effects of a DNA vaccine encoding E7 linked to heat shock protein 70 (Hsp70) can be improved by a strategy to deplete Tregs using a anti-CD25 monoclonal antibody (PC61) in vaccinated mice. We found that administration of PC61 prior to vaccination with E7/Hsp70 DNA was capable of generating higher levels of E7-specific CD8+ T cells compared to the control antibody, leading to significantly improved therapeutic and long-term protective antitumor effects against an E7-expressing tumor, TC-1. Thus, a strategy to deplete CD4+CD25+ Tregs in conjunction with therapeutic tumor antigen-specific DNA vaccine may represent a potentially promising approach to control tumor. The clinical implications of our study are discussed.  相似文献   

6.

Background

Despite the availability of Bacille Calmette Guérin (BCG) vaccines, Mycobacterium tuberculosis currently infects billions of people and millions die annually from tuberculosis (TB) disease. New TB vaccines are urgently needed.

Methods

We studied the ability of AERAS-402, a recombinant, replication-deficient adenovirus type 35 expressing the protective M. tuberculosis antigens Ag85A, Ag85B, and TB10.4, to boost BCG immunity in an area of low TB endemicity.

Results

In volunteers primed with BCG 3 or 6 months prior to AERAS-402 boosting, significant CD4+ and CD8+ T cell responses were induced. Ag85-specific responses were more strongly boosted than TB10.4-specific responses. Frequencies of TB-specific CD8+ T cells reached > 50 fold higher than pre-AERAS boosting levels, remarkably higher than reported in any previous human TB vaccine trial. Multiparameter flow cytometric assays demonstrated that AERAS-402-boosted CD4+ and CD8+ T cells were multifunctional, producing multiple cytokines and other immune effector molecules. Furthermore, boosted T cells displayed lymphoproliferative capacity, and tetramer analyses confirmed that antigen-specific CD8+ T cells were induced. BCG and AERAS-402 vaccinations given 3 and 6 months apart appeared equivalent.

Conclusions

Our results indicate that AERAS-402 is a promising TB vaccine candidate that can significantly enhance both CD4+ and CD8+ TB-specific T cell responses after BCG priming.ClinicalTrials.gov Identifier: NCT01378312.  相似文献   

7.
Cytotoxic CD8+ T lymphocytes (CTLs) play an important role in antiviral immunity. Several human HLA-A*0201 restricted CTL epitopes of severe acute respiratory syndrome (SARS) spike (S) protein have been identified in HLA-A*0201 transgenic (Tg) mice, but the mechanisms and properties of immune responses are still not well understood. In this study, HLA-A*0201 Tg mice were primed intramuscularly with SARS S DNA and boosted subcutaneously with HLA-A*0201 restricted peptides. The lymphocytes from draining lymph nodes, spleens and lungs were stimulated with the cognate peptides. Three different methods (ELISA, ELISPOT and FACS) were used to evaluate the immune responses during short and long periods of time after immunization. Results showed that peptide-specific CD8+ T cells secreted IFN-γ, TNF-α and IL-2 and expressed CD107a/b on cell surface. IFN-γ+CD8+ T cells and CD107a/b+CD8+ T cells distributed throughout the lymphoid and non-lymphoid tissues, but the frequency of peptide-specific CD8+ T cells was higher in lungs than in spleens and lymph nodes. The phenotype of the CD8+ T cells was characterized based on the expression of IFN-γ. Most of the HLA-A*0201 restricted peptide-specific CD8+ T cells represented a memory subset with CD45RBhigh and CD62Llow. Taken together, these data demonstrate that immunization with SARS S DNA and HLA-A*0201 restricted peptides can elicit antigen-specific CD8+ T cell immune responses which may have a significant implication in the long-term protection. We provide novel information in cellular immune responses of SARS S antigen-specific CD8+ T cells, which are important in the development of vaccine against SARS-CoV infection.  相似文献   

8.
Vaccination with viral-based vaccines continues to hold promise for the prevention of malaria. Whilst antigen-specific T cell responses are considered a major aim of such an approach, a role for induced NK cells as anti-malarial effector cells, or in shaping T cell responses, has received less attention. In this study naïve human volunteers were vaccinated in a prime-boost vaccination regimen comprising recombinant viral vectors fowlpox (FP9) and modified vaccinia Ankara (MVA) encoding liver-stage antigens, or a virosome vaccine. Significant T cell responses specific for the vectored vaccine antigens were demonstrated by IFNγ ELISPOT and intracellular cytokine staining (ICS) for IFNγ and IL-2, the ICS being associated with increased time to parasitaemia following subsequent challenge. Numbers of CD56bright lymphocytes increased significantly following vaccination, as did CD3+ CD56+ lymphocytes, whilst CD56dim cells did not. No such increases were seen with the virosome vaccine. There was no significant correlation of these CD56+ populations with the antigen-specific T cell responses nor time to parasitaemia. To investigate pathways of immune activation that could contribute to these lymphocyte responses, viral vectors were shown in vitro to efficiently infect APCs but not lymphocytes, and stimulated inflammatory cytokines such as type I interferons. In conclusion, measuring antigen-specific T cells is more meaningful than NK cells in these vaccination regimens.  相似文献   

9.
The obligately intracellular bacteria Rickettsia infect endothelial cells and cause systemic febrile diseases that are potentially lethal. No vaccines are currently available and current knowledge of the effective immune response is limited. Natural and experimental rickettsial infections provide strong and cross-protective cellular immunity if the infected individual survives the acute infection. Although resistance to rickettsial infections is attributed to the induction of antigen-specific T cells, particularly CD8+ T cells, the identification and validation of correlates of protective cellular immunity against rickettsial infections, an important step toward vaccine validation, remains a gap in this field. Here, we show that after a primary challenge with Rickettsia typhi in the C3H mouse model, the peak of anti-Rickettsia CD8+ T cell-mediated responses occurs 7 days post-infection (dpi), which coincides with the beginning of rickettsial clearance. At this time point, both effector-type and memory-type CD8+ T cells are present, suggesting that 7 dpi is a valid time point for the assessment of CD8+ T cell responses of mice previously immunized with protective antigens. Based on our results, we suggest four correlates of cellular protection for the assessment of protective rickettsial antigens: (1) production of IFN-γ by antigen-experienced CD3+CD8+CD44high cells, (2) production of Granzyme B by CD27lowCD43low antigen-experienced CD8+ T cells, (3) generation of memory-type CD8+ T cells [Memory Precursor Effector Cells (MPECs), as well as CD127highCD43low, and CD27highCD43low CD8+ T cells], and (4) generation of effector-like memory CD8+ T cells (CD27lowCD43low). We propose that these correlates could be useful for the general assessment of the quality of the CD8+ T cell immune response induced by novel antigens with potential use in a vaccine against Rickettsia.  相似文献   

10.
《Vaccine》2016,34(1):110-119
Sub-unit vaccines are primarily designed to include antigens required to elicit protective immune responses and to be safer than whole-inactivated or live-attenuated vaccines. But their purity and inability to self-adjuvant often result in weaker immunogenicity. Emerging evidence suggests that bio-engineered nanoparticles can be used as immunomodulatory adjuvants. Therefore, in this study we explored the potential of novel Merck-proprietary lipid nanoparticle (LNP) formulations to enhance immune responses to sub-unit viral antigens. Immunization of BALB/c and C57BL/6 mice revealed that LNPs alone or in combination with a synthetic TLR9 agonist, immune-modulatory oligonucleotides, IMO-2125 (IMO), significantly enhanced immune responses to hepatitis B virus surface antigen (HBsAg) and ovalbumin (OVA). LNPs enhanced total B-cell responses to both antigens tested, to levels comparable to known vaccine adjuvants including aluminum based adjuvant, IMO alone and a TLR4 agonist, 3-O-deactytaled monophosphoryl lipid A (MPL). Investigation of the quality of B-cell responses demonstrated that the combination of LNP with IMO agonist elicited a stronger Th1-type response (based on the IgG2a:IgG1 ratio) than levels achieved with IMO alone. Furthermore, the LNP adjuvant significantly enhanced antigen specific cell-mediated immune responses. In ELISPOT assays, depletion of specific subsets of T cells revealed that the LNPs elicited potent antigen-specific CD4+ and CD8+T cell responses. Intracellular FACS analyses revealed that LNP and LNP + IMO formulated antigens led to higher frequency of antigen-specific IFNγ+TNFα+IL-2+, multi-functional CD8+T cell responses, than unadjuvanted vaccine or vaccine with IMO only. Overall, our results demonstrate that lipid nanoparticles can serve as future sub-unit vaccine adjuvants to boost both B-cell and T-cell responses in vivo, and that addition of IMO can be used to manipulate the quality of immune responses.  相似文献   

11.
Efficacy of vaccination in cancer patients on immunotherapeutic protocols can be difficult to evaluate. The aim of this study was therefore to identify a single natural or modified epitope in prostate-specific antigen (PSA) with the ability to generate high levels of PSA-specific T cells to facilitate monitoring in patients after vaccination against prostate cancer. To the best of our knowledge, this study describes for the first time the peptide specificity of T cells stimulated by endogenously processed PSA antigen. The peptide specificity of HLA-A*0201-restricted CD8+ T cells against human and rhesus PSA was investigated both in vivo after DNA vaccination in HLA-A*0201-transgenic mice and in vitro after repetitive stimulation of human T cells with DNA-transfected human dendritic cells (DCs). One of seven native PSA peptides, psa53–61, was able to activate high levels of PSA-specific CD8+ T cells in HLA-A*0201-transgenic mice after PSA DNA vaccination. Psa53–61 was also the only peptide that induced human T cells to produce IFNγ after stimulation with PSA transfected DCs, however not in all donors. Therefore, plasmids encoding modified epitopes in predicted HLA-A*0201 sequences were constructed. One of these modified PSA plasmids consistently induced IFNγ producing CD8+ T cells to the corresponding modified peptide as well as to the corresponding native peptide, in all murine and human T cell cultures. This study demonstrates a novel concept of introducing a modified epitope within a self-tumor antigen, with the purpose of eliciting a reliable T cell response from the non-tolerized immune repertoire, to facilitate monitoring of vaccine efficacy in cancer patients on immunotherapeutic protocols. The purpose of such a modified epitope is thus not to induce therapeutically relevant T cells but rather to, in case of weak or divergent T cell responses to self antigens/peptides, help answer questions about efficacy of vaccine delivery and about the possibility to induce immune responses in the selected and often immunosuppressed cancer patients.  相似文献   

12.
Plasmid DNA serves as a simple and easily modifiable form of antigen delivery for vaccines. The USDA approval of DNA vaccines for several non-human diseases underscores the potential of this type of antigen delivery method as a cost-effective approach for the treatment or prevention of human diseases, including cancer. However, while DNA vaccines have demonstrated safety and immunological effect in early phase clinical trials, they have not consistently elicited robust anti-tumor responses. Hence many recent efforts have sought to increase the immunological efficacy of DNA vaccines, and we have specifically evaluated several target antigens encoded by DNA vaccine as treatments for human prostate cancer. In particular, we have focused on SSX2 as one potential target antigen, given its frequent expression in metastatic prostate cancer. We have previously identified two peptides, p41-49 and p103-111, as HLA-A2-restricted SSX2-specific epitopes. In the present study we sought to determine whether the efficacy of a DNA vaccine could be enhanced by an altered peptide ligand (APL) strategy wherein modifications were made to anchor residues of these epitopes to enhance or ablate their binding to HLA-A2. A DNA vaccine encoding APL modified to increase epitope binding elicited robust peptide-specific CD8+ T cells producing Th1 cytokines specific for each epitope. Ablation of one epitope in a DNA vaccine did not enhance immune responses to the other epitope. These results demonstrate that APL encoded by a DNA vaccine can be used to elicit increased numbers of antigen-specific T cells specific for multiple epitopes simultaneously, and suggest this could be a general approach to improve the immunogenicity of DNA vaccines encoding tumor antigens.  相似文献   

13.
Three novel NY-ESO-1 CD4 T cell epitopes were identified using PBMC obtained from patients who were vaccinated with a complex of cholesterol-bearing hydrophobized pullulan (CHP) and NY-ESO-1 protein (CHP-NY-ESO-1). The restriction molecules were determined by antibody blocking and using various EBV-B cells with different HLA alleles as APC to present peptides to CD4 T cells. The minimal epitope peptides were determined using various N- and C-termini truncated peptides deduced from 18-mer overlapping peptides originally identified for recognition. Those epitopes were DRB1*0901-restricted NY-ESO-1 87–100, DQB1*0401-restricted NY-ESO-1 95–107 and DRB1*0803-restricted NY-ESO-1 124–134. CD4 T cells used to determine those epitope peptides recognized EBV-B cells or DC that were treated with recombinant NY-ESO-1 protein or NY-ESO-1-expressing tumor cell lysate, suggesting that the epitope peptides are naturally processed. These CD4 T cells showed a cytokine profile with Th1 characteristics. Furthermore, NY-ESO-1 87-100 peptide/HLA-DRB1*0901 tetramer staining was observed. Multiple Th1-type CD4 T cell responses are beneficial for inducing effective anti-tumor responses after NY-ESO-1 protein vaccination.  相似文献   

14.
The inability of human immunodeficiency virus (HIV)-specific CD8+ T cells to durably control HIV replication due to HIV escape mutations and CD8+ T cell dysfunction is a key factor in disease progression. A few HIV-infected individuals termed elite controllers (EC) maintain polyfunctional HIV-specific CD8+ T cells, minimal HIV replication and normal CD4+ T lymphocyte numbers. Thus, therapeutic intervention to sustain or restore CD8+ T cell responses similar to those persisting in EC could relieve terminal dependence on antiretrovirals. Vaccination with HIV peptides is one approach to achieve this and our objective in this study was to determine whether certain HIV peptide variants display antigenic superiority over the reference peptides normally included in vaccines. Eight peptide sets were generated, each with a reference peptide and six variants harboring conservative or semi-conservative amino acid substitutions at positions predicted to affect T cell receptor interactions without affecting human class I histocompatibililty-linked antigen (HLA) binding. Recognition across peptide sets was tested with >80 HIV-infected individuals bearing the appropriate HLA alleles. While reference peptides were often the most antigenic, cross-reactivity with variants was common and in many cases, peptide variants were superior at stimulating interferon-γ production or selectively enhanced interleukin-2 production. Although such heteroclitic activity was not generalized for all individuals bearing the HLA class I allele involved, these data suggest that heteroclitic peptide variants could improve the efficacy of therapeutic peptide vaccines in HIV infection.  相似文献   

15.
16.
《Vaccine》2018,36(29):4198-4206
There is a diverse array of influenza viruses which circulate between different species, reassort and drift over time. Current seasonal influenza vaccines are ineffective in controlling these viruses. We have developed a novel universal vaccine which elicits robust T cell responses and protection against diverse influenza viruses in mouse and human models. Vaccine mediated protection was dependent on influenza-specific CD4+ T cells, whereby depletion of CD4+ T cells at either vaccination or challenge time points significantly reduced survival in mice. Vaccine memory CD4+ T cells were needed for early antibody production and CD8+ T cell recall responses. Furthermore, influenza-specific CD4+ T cells from vaccination manifested primarily Tfh and Th1 profiles with anti-viral cytokine production. The vaccine boosted H5-specific T cells from human PBMCs, specifically CD4+ and CD8+ T effector memory type, ensuring the vaccine was truly universal for its future application. These findings have implications for the development and optimization of T cell activating vaccines for universal immunity against influenza.  相似文献   

17.
The goals of a T cell-based vaccine for HIV are to reduce viral peak and setpoint and prevent transmission. While it has been relatively straightforward to induce CD8+ T cell responses against immunodominant T cell epitopes, it has been more difficult to broaden the vaccine-induced CD8+ T cell response against subdominant T cell epitopes. Additionally, vaccine regimens to induce CD4+ T cell responses have been studied only in limited settings. In this study, we sought to elicit CD8+ T cells against subdominant epitopes and CD4+ T cells using various novel and well-established vaccine strategies. We vaccinated three Mamu-A*01+ animals with five Mamu-A*01-restricted subdominant SIV-specific CD8+ T cell epitopes. All three vaccinated animals made high frequency responses against the Mamu-A*01-restricted Env TL9 epitope with one animal making a low frequency CD8+ T cell response against the Pol LV10 epitope. We also induced SIV-specific CD4+ T cells against several MHC class II DRBw*606-restricted epitopes. Electroporated DNA with pIL-12 followed by a rAd5 boost was the most immunogenic vaccine strategy. We induced responses against all three Mamu-DRB*w606-restricted CD4 epitopes in the vaccine after the DNA prime. Ad5 vaccination further boosted these responses. Although we successfully elicited several robust epitope-specific CD4+ T cell responses, vaccination with subdominant MHC class I epitopes elicited few detectable CD8+ T cell responses. Broadening the CD8+ T cell response against subdominant MHC class I epitopes was, therefore, more difficult than we initially anticipated.  相似文献   

18.
《Vaccine》2020,38(49):7697-7701
Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, has been spreading throughout the world. To date, there are still no approved human vaccines for this disease. To develop an effective vaccine, the establishment of animal models for evaluating post-vaccination immune responses is necessary. In this study, we have identified a CTL epitope in the SARS-CoV-2 spike (S) protein that could be used to measure the cellular immune response against this protein. Potential predicted CTL epitopes of the SARS-CoV-2 S protein were investigated by immunizing BALB/c mice with a recombinant of the receptor-binding domain (RBD) of the S protein. Then, CD8+ T cells specific for S-RBD were detected by stimulating with potential epitope peptides and then measuring the interferon-gamma production. Truncation of this peptide revealed that S-RBD-specific CD8+ T cells recognized a H2-Dd-restricted S526–533 peptide. In conclusion, this animal model is suitable for evaluating the immunogenicity of SARS-CoV-2 vaccines.  相似文献   

19.
Nanjundappa RH  Wang R  Xie Y  Umeshappa CS  Chibbar R  Wei Y  Liu Q  Xiang J 《Vaccine》2011,29(19):3538-3547
The limitations of highly active anti-retroviral therapy (HAART) have necessitated the development of alternative therapeutics. In this study, we generated ovalbumin (OVA)-pulsed and pcDNAgp120-transfected dendritic cell (DC)-released exosomes (EXOova and EXOgp120) and ConA-stimulated C57BL/6 CD8+ T cells. OVA- and Gp120-Texo vaccines were generated from CD8+ T cells with uptake of EXOova and EXOgp120, respectively. We demonstrate that OVA-Texo stimulates in vitro and in vivo OVA-specific CD4+ and CD8+ cytotoxic T lymphocyte (CTL) responses leading to long-term immunity against OVA-expressing BL6-10OVA melanoma. Interestingly, CD8+ T cell responses are DC and CD4+ T cell independent. Importantly, Gp120-Texo also stimulates Gp120-specific CTL responses and long-term immunity against Gp120-expressing B16 melanoma. Therefore, this novel HIV-1-specific EXO-targeted Gp120-Texo vaccine may be useful in induction of efficient CTL responses in AIDS patients with DC dysfunction and CD4+ T cell deficiency.  相似文献   

20.
Global burden of latent TB infection comprises one-third of the world population. Identifying potential Mycobacterium tuberculosis (Mtb) latency associated antigens that can generate protective immunity against the pathogen is crucial for designing an effective TB vaccine. Usually the immune system responds to a small number of amino acids as MHC Class I or Class II peptides. The precision to trigger epitope specific protective T-cell immune response could therefore be achieved with synthetic peptide-based subunit vaccine.In the present study we have considered an immunoinformatic approach using available softwares (ProPred, IEDB, NETMHC, BIMAS, Vaxijen2.0) and docking and visualizing softwares (CABSDOCK, HEX, Pymol, Discovery Studio) to select 10 peptides as latency antigens from 4 proteins (Rv2626, Rv2627, Rv2628, and Rv2032) of DosR regulon of Mtb. As Intracellular IFN-γ secreted by T cells is the most essential cytokine in Th1 mediated protective immunity, these peptides were verified as potential immunogenic epitopes in Peripheral Blood Mononuclear Cells (PBMCs) of 10 healthy contacts of TB patients (HTB) and 10 Category I Pulmonary TB patients (PTB).The antigen-specific CD4 and CD8 T cells expressing intracellular IFN-γ were analyzed using monoclonal antibodies in all subjects by multi-parameter flow cytometry.Both, PTB and HTB individuals responded to DosR peptides by showing increased frequency of IFN-γ+CD4 and IFN-γ+CD8 T cells. The T-cell responses were significantly higher in PTB patients in comparision to the HTB individuals. Additionally, our synthetic peptides and pools showed higher frequencies of IFN-γ+CD4 and IFN-γ+CD8 T cells than the peptides of Ag85B.This pilot study can be taken up further in larger sample size which may support the untapped opportunity of designing Mtb DosR inclusive peptide based post-exposure subunit vaccine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号