首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study further evaluated the in vitro activity of anidulafungin (VER002, Versicor Inc.) (LY303366) against 460 clinical yeast isolates. MICs of anidulafungin, fluconazole and itraconazole were determined by following the NCCLS M27-A guidelines. Minimum fungicidal concentrations (MFCs) of anidulafungin were determined for 230 isolates of Candida spp. The activity of anidulafungin in vitro was significantly superior (P < 0.05) to those of itraconazole and fluconazole against Candida albicans, Candida tropicalis, Candida glabrata and Candida krusei, but anidulafungin was less active for Candida famata and Candida parapsilosis. The differences were not significant for the other species evaluated.  相似文献   

2.
OBJECTIVES: The aim of this study was to evaluate species distribution and antifungal susceptibility of Candida blood isolates in Japan. METHODS: In a 1 year surveillance programme, 535 Candida blood isolates were collected. Identification of species was followed by examination with the broth microdilution method, as described in NCCLS M27-A2, of antifungal susceptibility to six agents, including voriconazole and micafungin, with readings after 24 and 48 h of incubation. RESULTS: The overall species distribution was: 41% Candida albicans, 23% Candida parapsilosis, 18% Candida glabrata, 12% Candida tropicalis and 2% Candida krusei. The concentrations of fluconazole necessary to inhibit 90% of the isolates (MIC(90)) at 24/48 h were 0.25/1 mg/L for C. albicans, 0.5/2 mg/L for C. parapsilosis, 4/32 mg/L for C. glabrata and 4/>128 mg/L for C. tropicalis. Percentages of fluconazole resistance were 1.8% for C. albicans, 0.8% for C. parapsilosis, 5.2% for C. glabrata and 3.2% for C. tropicalis, taking the tendency of trailing growth of C. tropicalis into account. MIC(90) of voriconazole was 0.5 mg/L, although 35% of isolates less susceptible (>/=16 mg/L) to fluconazole showed resistance (>/=2 mg/L). Micafungin was very active against all species (MIC(90), 0.03 mg/L) except for C. parapsilosis (MIC(90), 2 mg/L). CONCLUSIONS: These data suggest that, in Japan, the species distribution of Candida bloodstream infections and the fluconazole resistance rate are similar to those reported previously in North America and Europe. Voriconazole and micafungin appear to have strong in vitro activity against Candida blood isolates, although continuing surveillance and further clinical research are needed.  相似文献   

3.
In this report we compare the activity of two new antifungal agents, voriconazole (UK-109,496) and LY303366 with the activities of other antifungals including fluconazole, itraconazole, 5-fluorocytosine (5FC) and amphotericin B against 219 oral Candida spp. isolates from HIV-infected patients. We used the broth microdilution method following the guidelines of the NCCLS. The in-vitro activity of voriconazole (UK-109,496) (MIC(90) 0.12 mg/L) and LY303366 (CMI(90) 0.25 mg/L) against clinical isolates of Candida spp. was excellent and comparable with that of amphotericin B (MIC(90) 0.5 mg/L), and better than those of fluconazole (MIC(90) > or = 64 mg/L), itraconazole (MIC(90) 4 mg/L) and 5FC (MIC(90) 1 mg/L).  相似文献   

4.
The antifungal activity of FK463 against 72 recent clinical isolates of Candida albicans (24), Candida glabrata (17), Candida tropicalis (11), Candida krusei (8) and Candida parapsilosis (12) was compared with those of amphotericin B, fluconazole and itraconazole by means of a broth microdilution method specified by the National Committee for Clinical Laboratory Standards (NCCLS) document M27-A. The lowest drug concentration at which 90% of the population was inhibited (MIC(90)) of FK463 against C. albicans, C. glabrata, C. tropicalis, C. krusei and C. parapsilosis was 0.0156, 0. 0156, 0.0313, 0.125 and 1 mg/L, respectively. FK463 exhibited broad-spectrum activity against clinically important Candida spp. (MIC range < or =0.0039-2 mg/L), and its MICs for such fungi were lower than those of other antifungal agents tested. The minimum fungicidal concentrations for Candida spp. did not differ by more than two-fold from the MICs. Results from pre-clinical evaluations performed to date indicate that FK463 should be a potent parenteral antifungal agent.  相似文献   

5.
Voriconazole, anidulafungin (VER002, LY303366) and caspofungin are promising antifungal agents which provide a good protection against a variety of fungi, including yeasts and filamentous fungi. In this study, we tested the in vitro efficacy of voriconazole, itraconazole, caspofungin, anidulafungin (VER002, LY303366) and amphotericin B, against different species of Aspergillus spp. isolated from clinical specimens, using a microdilution broth method and following the NCCLS guidelines (document M38-P). We also evaluated the effect that time readings have on MIC results. For caspofungin, we determined the minimun effective concentration (MEC), defined like the lowest concentration of caspofungin causing abnormal hyphal growth. Anidulafungin (VER002, LY303366) was the most active antifungal agent tested with MIC(90) of < or =0,03 mg/L. The activity of voriconazole, and itraconazole very similar with MIC(90) of 0,12 mg/L, 0,12 mg/L respectively. For caspofungin the MEC(90) was of 0,25 mg/L. Amphotericin B was the lest active antifungal agent studied with MIC(90) of 1 mg/L. There were no differences between MIC values at 48 and 72 h. These data demonstrate promising activity of voriconazole, anidulafungin (VER002, LY303366) and caspofungin against Apergillus spp.  相似文献   

6.
OBJECTIVES: In cryptococcosis, fluconazole is a standard prophylactic, therapeutic and maintenance option, particularly in the expanding HIV/AIDS group. However, its excessive use may lead to resistance in Cryptococcus neoformans. Variations in clinical response to fluconazole have already been noted elsewhere, and cases of post-therapy relapse are not uncommon. To assess azole antifungal susceptibility profiles of clinical cryptococcal isolates in India, the All India Institute of Medical Sciences (AIIMS) has recently initiated preliminary studies using NCCLS M27-A. MATERIALS AND METHODS: Twenty-eight randomly chosen AIIMS clinical isolates (spanning 1997-2000), 16 isolates from other institutions in North India, and six reference strains of C. neoformans were subjected to susceptibility testing to fluconazole and itraconazole. RESULTS: Among clinical isolates, susceptibilities to fluconazole and itraconazole were 84.1% and 93.2%, respectively. MICs for all clinical isolates were 0.25-32 mg/L for fluconazole and <0.03-0.25 mg/L for itraconazole. MIC50 and MIC90 values for fluconazole were 4 and 16 mg/L, respectively, and those for itraconazole were 0.032 and 0.125 mg/L, respectively. Out of 28 AIIMS clinical isolates, 22 had minimum fungicidal concentrations (MFCs) of fluconazole at 128 mg/L. Moderately high fluconazole MICs (16-32 mg/L) were observed in 16% of clinical isolates--probably the first such report from India. MIC/MFC ratios for fluconazole and itraconazole were 1:32 or more in 16 AIIMS clinical isolates, indicating possible azole tolerance. There was good agreement between MIC values obtained by the micro- and macro-broth dilution techniques of M27-A compared in this study. CONCLUSIONS: The observed MIC data warrant continued surveillance of susceptibility values of clinical cryptococcal isolates in India.  相似文献   

7.
Posaconazole is a new investigational triazole with broad-spectrum antifungal activity. The in vitro activities of posaconazole were compared with those of itraconazole and fluconazole against 3,685 isolates of Candida spp. (3,312 isolates) and C. neoformans (373 isolates) obtained from over 70 different medical centers worldwide. The MICs of the antifungal drugs were determined by broth microdilution tests performed according to the National Committee for Clinical Laboratory Standards method using RPMI 1640 as the test medium. Posaconazole was very active against all Candida spp. (MIC at which 90% of the isolates were inhibited [MIC(90)], 0.5 microg/ml; 97% of MICs were < or =1 microg/ml) and C. neoformans (MIC(90), 0.5 microg/ml; 100% of MICs were < or =1 microg/ml). Candida albicans was the most susceptible species of Candida (MIC(90), 0.06 microg/ml), and Candida glabrata was the least susceptible (MIC(90), 4 microg/ml). Posaconazole was more active than itraconazole and fluconazole against all Candida spp. and C. neoformans. These results provide further evidence for the spectrum and potency of posaconazole against a large and geographically diverse collection of clinically important fungal pathogens.  相似文献   

8.
OBJECTIVES: The antifungal drug susceptibilities of 351 isolates of Candida species, obtained through active laboratory-based surveillance in the period January 2002-December 2003, were determined (Candida albicans 51%, Candida parapsilosis 23%, Candida tropicalis 10%, Candida glabrata 9%, Candida krusei 4%). METHODS: The MICs of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and caspofungin were established by means of the broth microdilution reference procedure of the European Committee on Antibiotic Susceptibility Testing. RESULTS AND CONCLUSIONS: Amphotericin B and flucytosine were active in vitro against all strains. A total of 24 isolates (6.8%) showed decreased susceptibility to fluconazole (MIC > or = 16 mg/L) and 43 (12.3%) showed decreased susceptibility to itraconazole (MIC > or = 0.25 mg/L). Voriconazole and caspofungin were active in vitro against the majority of isolates, even those that were resistant to fluconazole.  相似文献   

9.
Sch 56592 is a new triazole agent with potent, broad-spectrum antifungal activity. The in vitro activities of Sch 56592, itraconazole, fluconazole, amphotericin B, and flucytosine (5-FC) against 404 clinical isolates of Candida spp. (382 isolates) and Saccharomyces cerevisiae (22 isolates) were investigated. In vitro susceptibility testing was performed by a broth microdilution method performed according to National Committee for Clinical Laboratory Standards guidelines. Overall, Sch 56592 was very active (MIC at which 90% of isolates are inhibited [MIC90], 0.5 microgram/ml) against these yeast isolates. Sch 56592 was most active against Candida tropicalis, Candida parapsilosis, candida lusitaniae, and Candida stellatoidea (MIC90, < or = 0.12 microgram/ml) and was least active against Candida glabrata (MIC90, 2.0 micrograms/ml). Sch 56592 was 2- to 32-fold more active than amphotericin B and 5-FC against all species except C. glabrata. By comparison with the other triazoles, Sch 56592 was equivalent to itraconazole and greater than or equal to eightfold more active than fluconazole. On the basis of these results, Sch 56592 has promising antifungal activity, and further in vitro and in vivo investigations are warranted.  相似文献   

10.
Isavuconazole is the active component of the new azole antifungal agent BAL8557, which is entering phase III clinical development. This study was conducted to compare the in vitro activities of isavuconazole and five other antifungal agents against 296 Candida isolates that were recovered consecutively from blood cultures between 1995 and 2004 at a tertiary care university hospital. Microdilution testing was done in accordance with CLSI (formerly NCCLS) guideline M27-A2 in RPMI-1640 MOPS (morpholinepropanesulfonic acid) broth. The antifungal agents tested were amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, and isavuconazole. C. albicans was the most common species, representing 57.1% of all isolates. There was no trend found in favor of non-Candida albicans species over time. In terms of MIC(50)s, isavuconazole was more active (0.004 mg/liter) than amphotericin B (0.5 mg/liter), itraconazole (0.008 mg/liter), voriconazole (0.03 mg/liter), flucytosine (0.125 mg/liter), and fluconazole (8 mg/liter). For isavuconazole, MIC(50)s/MIC(90)s ranged from 000.2/0.004 mg/liter for C. albicans to 0.25/0.5 mg/liter for C. glabrata. Two percent of isolates (C. glabrata and C. krusei) were resistant to fluconazole; C. albicans strains resistant to fluconazole were not detected. There were only two isolates with MICs for isavuconazole that were >0.5 mg/liter: both were C. glabrata isolates, and the MICs were 2 and 4 mg/liter, respectively. In conclusion, isavuconazole is highly active against Candida bloodstream isolates, including fluconazole-resistant strains. It was more active than itraconazole and voriconazole against C. albicans and C. glabrata and appears to be a promising agent against systemic Candida infections.  相似文献   

11.
The in vitro activities of ravuconazole and voriconazole were compared with those of amphotericin B, flucytosine (5FC), itraconazole, and fluconazole against 6,970 isolates of Candida spp. obtained from over 200 medical centers worldwide. Both ravuconazole and voriconazole were very active against all Candida spp. (MIC at which 90% of the isolates tested are inhibited [MIC(90)], 0.25 microg/ml; 98% of MICs were < or 1 microg/ml); however, a decrease in the activities of both of these agents was noted among isolates that were susceptible-dose dependent (fluconazole MIC, 16 to 32 microg/ml) and resistant (MIC, > or = 64 microg/ml) to fluconazole. Candida albicans was the most susceptible species (MIC(90) of both ravuconazole and voriconazole, 0.03 microg/ml), and C. glabrata was the least susceptible species (MIC(90), 1 to 2 microg/ml). Ravuconazole and voriconazole were each more active in vitro than amphotericin B, 5FC, itraconazole, and fluconazole against all Candida spp. and were the only agents with good in vitro activity against C. krusei. These results provide further evidence for the spectrum and potency of ravuconazole and voriconazole against a large and geographically diverse collection of Candida spp.  相似文献   

12.
LY303366 is a new semisynthetic echinocandin derivative with potent, broad-spectrum fungicidal activity. We investigated the in vitro activity of LY303366, amphotericin B, flucytosine (5FC), fluconazole, and itraconazole against 435 clinical yeast isolates (413 Candida and 22 Saccharomyces cerevisiae isolates) obtained from over 30 different medical centers. MICs for all five antifungal agents were determined by the National Committee for Clinical Laboratory Standards method with RPMI 1640 test medium. LY303366 was also tested in antibiotic medium 3 as specified by the manufacturer. Overall, LY303366 was quite active against all of the yeast isolates when tested in RPMI 1640 (MIC at which 90% of the isolates are inhibited [MIC90], 1.0 microg/ml) but appeared to be considerably more potent when tested in antibiotic medium 3 (MIC90, 0.03 microg/ml). When tested in antibiotic medium 3, LY303366 was 16- to >2,000-fold more active than itraconazole, fluconazole, amphotericin B, or 5FC against all species except Candida parapsilosis. When tested in RPMI 1640, LY303366 was comparable to amphotericin B and itraconazole and more active than fluconazole and 5FC. All of the isolates for which fluconazole and itraconazole had elevated MICs (> or = 128 and > or = 2.0 microg/ml, respectively) were inhibited by < or = 0.007 microg of LY303366/ml when tested in antibiotic medium 3 and < or = 0.5 microg/ml when tested in RPMI 1640. Based on these studies, LY303366 has promising antifungal activity and warrants further in vitro and in vivo investigation.  相似文献   

13.
The frequency of isolation and antifungal susceptibility patterns to established and two new antifungal agents were determined for 218 Candida spp isolates causing bloodstream infection from 1996 to 2001. Overall, 41.7% of the candidemias were due to C. albicans, followed by C. parapsilosis (22%), C. tropicalis (16.1%), C. glabrata (11.9%), C. krusei (6%) and miscellaneous Candida spp (2.3%). Isolates of C. albicans C. parapsilosis and C. tropicalis (80% of isolates) were highly susceptible to fluconazole (94 to 100% at /= 32 microg/ml).  相似文献   

14.
Caspofungin is an echinocandin antifungal agent with broad-spectrum activity against Candida and Aspergillus spp. The in vitro activities of caspofungin against 3,959 isolates of Candida spp. obtained from over 95 different medical centers worldwide were compared with those of fluconazole and itraconazole. The MICs of the antifungal drugs were determined by broth microdilution tests performed according to the NCCLS method using RPMI 1640 as the test medium. Caspofungin was very active against Candida spp. (MIC at which 90% of the isolates were inhibited [MIC(90)], 1 micro g/ml; 96% of MICs were < or =2 micro g/ml). Candida albicans, C. dubliniensis, C. tropicalis, and C. glabrata were the most susceptible species of Candida (MIC(90), 0.25 to 0.5 micro g/ml), and C. guilliermondii was the least susceptible (MIC(90), >8 micro g/ml). Caspofungin was very active against Candida spp., exhibiting high-level resistance to fluconazole and itraconazole (99% of MICs were < or =1 micro g/ml). These results provide further evidence for the spectrum and potency of caspofungin activity against a large and geographically diverse collection of clinically important isolates of Candida spp.  相似文献   

15.
A broth microdilution method performed in accordance with the National Committee for Clinical Laboratory Standards guidelines was used to compare the in vitro activity of the new antifungal triazole SCH 56592 (SCH) to that of fluconazole (FLC), itraconazole (ITC), and ketoconazole (KETO) against 257 clinical yeast isolates. They included 220 isolates belonging to 12 different species of Candida, 15 isolates each of Cryptococcus neoformans and Saccharomyces cerevisiae, and seven isolates of Rhodotorula rubra. The MICs of SCH at which 50% (MIC(50)) and 90% (MIC(90)) of the isolates were inhibited were 0.06 and 2.0 microg/ml, respectively. In general, SCH was considerably more active than FLC (MIC(50) and MIC(90) of 1.0 and 64 microg/ml, respectively) and slightly more active than either ITC (MIC(50) and MIC(90) of 0.25 and 2.0 microg/ml, respectively) and KETO (MIC(50) and MIC(90) of 0.125 and 4.0 microg/ml, respectively). Our in vitro data suggest that SCH has significant potential for clinical development.  相似文献   

16.
The in vitro antifungal susceptibility profile of 589 oral yeast isolates from HIV/AIDS patients and healthy South Africans was determined against amphotericin B, nystatin, 5-fluorocytosine (5-FC), clotrimazole, miconazole, ketoconazole, itraconazole and fluconazole. The broth microdilution method of the National Committee on Clinical Laboratory Standards was used and MIC(50) and MIC(90) determined. A 100% susceptibility to fluconazole was observed among the 466 isolates of Candida albicans. Among C. krusei, the second most common isolate, only 2.6% of isolates were susceptible to fluconazole and itraconazole. Despite the lack of previous exposure to antifungal agents, very little difference was observed in the antifungal profile between the South African isolates and isolates from the United States (U.S.), Canada and South America. South Africa has a particularly high incidence of HIV-infection and oral candidiasis is the most common oral complication in these patients. This study provides important baseline data as the isolates were collected prior to fluconazole being made freely available to HIV/AIDS patients attending government health clinics.  相似文献   

17.
We evaluated the commercially prepared Sensititre YeastOne colorimetric antifungal panel to determine the susceptibility of 170 Candida spp isolates to amphotericin B, fluconazole, itraconazole, and flucytosine. The NCCLS reference microdilution method (M27-A document) was used as reference method. The YeastOne panel was performed according to the manufacturer's instructions. For the colorimetric method, MICs were determined at 24 h of incubation. MICs for the NCCLS reference method were read at 48 h of incubation. The overall agreement within +/-2 dilutions by both methods was calculated against the four antifungal agents. This agreement was 92.9, 68.2, 77.6 and 80% for amphotericin B, fluconazole, itraconazole, and flucytosine, respectively. Thirteen isolates (7.6%) showed very major discrepancies for fluconazole and 12 (7%) for itraconazole. We found that the reading of MIC with the YeastOne panel was somewhat easier than the reading of reference MIC, although the determination of endpoint was sometimes difficult, especially for azoles, because the trailing effect appeared in a high percentage of isolates.  相似文献   

18.
The in vitro activity of amphotericin B, 5-fluorocytosine, ketoconazole, fluconazole and itraconazole was tested against 245 yeast strains isolated from clinical specimens (68 Candida albicans, 74 Candida tropicalis, 43 Candida krusei, 28 Candida glabrata, 19 Candida parapsilosis, 8 Candida lusitaniae and 5 Candida guilliermondii). An agar dilution method was employed to carry out testing. Minimal inhibitory concentrations to restrain 90% of isolate growth (MIC90) ranged from 0.12 to 2 mg/l for amphotericin B and for 5-fluorocytosine, from 0.03 to 8 mg/l for ketoconazole, from 0.05 to 50 mg/l for itraconazole and from 0.1 to > 100 mg/l for fluconazole. Among the azole derivatives, the most active was ketoconazole, followed by itraconazole. Only 1 strain of C. albicans was resistant to amphotericin B (MIC > 4 mg/l). Both C. tropicalis and C. krusei responded poorly to fluconazole and the former to itraconazole as well. The species most susceptible to the antifungal agents tested was C. glabrata and the most resistant were C. tropicalis and C. krusei.  相似文献   

19.
OBJECTIVES: The in vitro antifungal activity of posaconazole was compared with that of fluconazole and amphotericin B. Materials and methods: A microdilution method (M27-A2) was used with 331 clinical yeast isolates. RESULTS: The geometric mean MICs of posaconazole, fluconazole and amphotericin B were 0.16, 0.91 and 0.15 mg/L, respectively. Posaconazole was markedly more active than fluconazole and was active against 9/11 fluconazole-resistant Candida albicans, and five Candida glabrata had an MIC of posaconazole of 16 mg/L. CONCLUSIONS: These data indicate that posaconazole is a potentially effective antifungal agent for the treatment of mycoses caused by yeasts.  相似文献   

20.
OBJECTIVES: To analyse the in vitro antifungal susceptibility of 261 non-albicans Candida bloodstream strains isolated during the European Confederation of Medical Mycology survey of candidaemia performed in Lombardia, Italy (September 1997-December 1999). METHODS: In vitro susceptibility to flucytosine, fluconazole, itraconazole, posaconazole and voriconazole was determined using the broth microdilution method described in the NCCLS M27-A guidelines. Etest strips were used to assess susceptibility to amphotericin B. In vitro findings were correlated with the patient's underlying condition and previous antifungal treatment. RESULTS: MICs (mg/L) at which 90% of the strains were inhibited were, respectively, 2 for flucytosine, 8 for fluconazole, 0.5 for itraconazole, 0.25 for voriconazole and 0.25 for posaconazole. Amphotericin B MIC endpoints were <0.50 mg/L in all the isolates tested. Flucytosine resistance was detected in 19 isolates (7%), mainly among Candida tropicalis strains (30%). Innate or secondary fluconazole resistance was detected in 13 strains (5%). Among the 13 patients with fluconazole-resistant Candida bloodstream infection, three were HIV positive, including one treated with fluconazole for oral candidosis; the four who were HIV negative had received the azole during the 2 weeks preceding the candidaemia. Cross-resistance among fluconazole and other azoles was a rare event. CONCLUSIONS: Resistance is still uncommon in non-albicans Candida species recovered from blood cultures. However, in fungaemias caused by C. tropicalis, Candida glabrata and Candida krusei, there is a high prevalence of resistance to fluconazole and flucytosine. Fluconazole resistance should be suspected in patients treated previously with azoles, mainly those with advanced HIV infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号