首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Hypertonic saline activation of p38 MAPK primes the PMN respiratory burst   总被引:2,自引:0,他引:2  
Investigation of hypertonic saline (HTS) modulation of neutrophils (PMN) cytotoxic responses has generated seemingly contradictory results. Clinically relevant levels of HTS attenuate receptor-mediated p38 MAPK signaling, whereas higher levels activate p38 MAPK. Concurrently, HTS exerts a dose-dependent attenuation of the PMN respiratory burst, most notably at concentrations where p38 MAPK is activated. We hypothesized that HTS-mediated p38 MAPK activation augments the PMN respiratory burst on return to normotonicity. We found that although clinically relevant levels of HTS (Na+ > or = 200 mM) did not activate p38 MAPK, higher concentrations (Na+ > or = 300 mM) resulted in activation comparable with that after PAF stimulation. Transient stimulation with high levels of HTS primed the PMN respiratory burst in response to fMLP and PMA. This effect was attenuated by pretreatment with SB 203580, a p38 MAPK specific inhibitor. We conclude that severe osmotic shock primes the respiratory burst via p38 MAPK signaling, further supporting the role of this signaling cascade in PMN priming.  相似文献   

2.
Acute hypoxemia in humans enhances the neutrophil inflammatory response   总被引:15,自引:0,他引:15  
The neutrophil (PMN) is regarded as a key component in the hyperinflammatory response known as the systemic inflammatory response syndrome. Acute respiratory distress syndrome (ARDS) and subsequent multiple organ failure (MOF) are related to the severity of this hyperinflammation. ICU patients who are at highest risk of developing MOF may have acute hypoxic events that complicate their hospital course. This study was undertaken to evaluate the effects of acute hypoxia and subsequent hypoxemia on circulating PMNs in human volunteers. Healthy subjects were exposed to a changing O2/N2 mixture until their O2 saturation (SaO2) reached a level of 68% saturation. These subjects were then exposed to room air and then returned to their baseline SaO2. PMNs were isolated from pre- and post-hypoxemic arterial blood samples and were then either stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) or PMA alone, or they were primed with L-alpha-phosphatidylcholine, beta-acetyl-gamma-O-alkyl (PAF) followed by fMLP activation. Reactive oxygen species generation as measured by superoxide anion production was enhanced in primed PMNs after hypoxemia. Protease degranulation as measured by elastase release was enhanced in both quiescent PMNs and primed PMNs after fMLP activation following the hypoxemic event. Adhesion molecule upregulation as measured by CD11b/CD18, however, was not significantly changed after hypoxemia. Apoptosis of quiescent PMNs was delayed after the hypoxemic event. TNFalpha, IL-1, IL-6, and IL-8 cytokine levels were unchanged following hypoxemia. These results indicate that relevant acute hypoxemic events observed in the clinical setting enhance several PMN cytotoxic functions and suggest that a transient hypoxemic insult may promote hyperinflammation.  相似文献   

3.
Hypertonic saline (HTS) resuscitation inhibits acute lung injury in animal models of shock, but some argue this may simply represent more efficient fluid resuscitation. Inflammatory mediators within mesenteric lymph have been identified as a link between splanchnic hypoperfusion and acute respiratory distress syndrome (ARDS). We hypothesize that HTS resuscitation abrogates post-shock lymph-mediated neutrophil (PMN) priming and PMN-mediated human endothelial cell cytotoxicity. Mesenteric lymph was collected from rats (n = 5) before (control), during non-lethal hemorrhagic shock, defined as a mean arterial pressure (MAP) of 40 mmHg for 30 min, and after resuscitation (shed blood + 2 x lactated Ringers (LR) versus 7.5% NaCl, 4 cc/kg, over 5 min). Isolated human PMNs were primed with physiologic concentrations (5% v:v) of lymph either from animals resuscitated with LR or HTS and activated with either PMA or fMLP. In a separate set of experiments, human PMNs were primed with LR lymph after incubation with HTS (180 mM NaCl). The maximal rate of superoxide production was measured by reduction of cytochrome C. In addition, the effect of HTS pretreatment on PMN adherence to human pulmonary microvascular endothelial cells (HMVEC) and PMN-mediated cytotoxicity was determined after lymph-mediated PMN priming. PHSML primed isolated PMNs above buffer controls and pre-shock lymph in a normotonic environment; HTS resuscitation abrogated this effect. HTS preincubation of isolated PMNs inhibited PHSML-induced PMN priming, adherence to HMVECs, and PMN-mediated HMVEC cytotoxicity. Hypertonic resuscitation (HTS) abrogates PHSML pniming of the PMN and PMN-mediated HMVEC cytotoxicity. Furthermore, incubation of PMNs in clinically relevant HTS (180 mM NaCl) prevents PHSML PMN priming and PMN:HMVEC interactions. These studies suggest inhibition of PMN signal transduction is a mechanism whereby HTS resuscitation abrogates acute lung injury.  相似文献   

4.
Neutrophils (PMNs) have been implicated in the pathogenesis of multiple organ failure (MOF). The two-insult model of MOF is based on the fundamental concept that two sequential and independent insults that are individually innocuous against the host can cause overwhelming inflammation. The in vitro PMN priming/activation sequence simulates the two-insult model. Our work has demonstrated that transfusion is an early consistent risk factor for post-injury MOF and lysophosphatidylcholines (lyso-PCs) are generated in stored blood components. Additionally, platelet-activating factor (PAF) is a key inflammatory agent produced in severely injured patients. We therefore hypothesize that two events, trauma and transfusion, enhance PMN cytotoxicity irrespective of the sequence. Superoxide (O2-) production was measured by reduction of cytochrome c, adherence to fibrinogen was assessed by the radioactivity of adherent Na2(51)CrO4 (51Cr)-labeled PMNs, and endothelial cell (EC) damage by measuring the radioactivity released from 51Cr-labeled human umbilical vein endothelial cells monolayers. Isolated PMNs were primed with buffer, PAF (2 microM), or lyso-PCs (4.5, 15, and 30 microM) followed by activation with buffer, N-formyl-methionyl-leucyl-phenylalanine (fMLP) (1 microM), PAF (2 microM), or lyso-PCs (4.5, 15, and 30 microM). Neither PAF nor lyso-PCs alone stimulated O2- production. While PAF alone caused PMN adherence, lyso-PCs alone did not allowed PMNs to adhere to fibrinogen. However, both combinations of PAF/lyso-PCs and lyso-PCs/PAF significantly augmented O2- production and PMN adherence. Furthermore, these enhanced PMN cytotoxic responses significantly caused EC damage. These findings suggest that in the scenario of the two-insult model, early or late transfusion administered following trauma can provoke PMN cytotoxicity via priming or activation, thereby increasing the risk of post-injury MOF.  相似文献   

5.
Priming response of neutrophil in clinical-related conditions and its mechanism has not been clarified. This study is to determine if thermal injury-induced priming effect of neutrophil is TNF-alpha and p38 dependent. In Experiment 1, bone marrow neutrophil of wild-type (WT) mice and TNF receptor superfamily, member 1A (Tnfrsf1a-/-) mice were harvested and treated with TNF-alpha, platelet activating factor (PAF) first, then with or without N-formyl-Met-Leu-Phe (fMLP). Reactive oxygen species (ROS) production and p38 phosphorylation were evaluated. In Experiment 2, ROS of neutrophil from WT and Tnfrsf1a-/- mice at 3 or 15 h after thermal injury with or without fMLP treatment were assayed. In Experiment 3, p38 and p44/42 phosphorylation, CXCR2 and macrophage inflammatory protein-2 expression, apoptotic ratio, and activating protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB) activation of neutrophil from WT and Tnfrsf1a-/- mice at 3 h after thermal injury were tested. FMLP treatment after TNF-alpha or PAF incubation of neutrophil increased ROS of PAF-treated but not TNF-alpha-treated neutrophil. PAF treatment increased ROS of neutrophil in WT and Tnfrsf1a-/- mice. FMLP increased ROS of neutrophil of WT mice at 3 h after thermal but not that of Tnfrsf1a-/- mice. TNF-alpha and PAF increased p38 phosphorylation of neutrophil in WT but not that in Tnfrsf1a-/- mice. Thermal injury increased p38 phosphorylation, NF-kappaB activation, and decreased apoptosis of neutrophil at 3 h after thermal injury in WT but not in Tnfrsf1a-/- mice. Thermal injury also induced AP-1 activation and ROS production on neutrophil at 3 and 15 h after thermal injury, respectively, in WT and Tnfrsf1a-/- mice. Collectively, fMLP stimulates ROS of neutrophil through TNF-alpha signaling; PAF stimulates that of neutrophil through both TNF-alpha-dependent and TNF-alpha-independent pathway. Thermal injury induces a TNF-alpha-dependent priming effect and a TNF-alpha-independent activation effect on neutrophil at 3 and 15 h after thermal injury, respectively. NF-kappaB signaling pathway plays an important role in neutrophil activation. Thermal injury also induces TNF-alpha-dependent delay apoptosis and TNF-alpha-independent AP-1 activation of neutrophil at 3 h after thermal injury. Taken together with the TNF-alpha-dependent p38 and NF-kappaB activation in primed neutrophil, we conclude that thermal injury-induced priming effect of polymorphonuclear neutrophil is TNF-alpha and p38 dependent.  相似文献   

6.
7.
Highly purified human thrombin stimulates the adherence of polymorphonuclear leukocytes (PMNs) to vascular endothelial cells (EC). When Indium-labeled PMNs were incubated with primary monolayers of cultured human umbilical vein EC, the basal adherence was 10 +/- 1% of the PMNs at 5 min. Addition of thrombin (2 U/ml) increased the mean adherence to 42 +/- 15%. Enhanced neutrophil adherence in response to thrombin was confirmed by experiments with unlabeled leukocytes, examined by phase contrast and scanning electron microscopy. The action of thrombin was on the EC, since it did not directly stimulate PMN adhesiveness when measured by aggregation or by adherence to nylon fiber columns. Furthermore, enhanced neutrophil adherence occurred when endothelial monolayers were treated with thrombin and washed before adding 111Indium (111In)-labeled PMNs. Thrombin that had been inactivated with antithrombin III and heparin did not enhance neutrophil adherence. Prothrombin, Factor Xa, and fibrinogen were also ineffective. The stimulated adherence of PMNs was maximal 5 min after incubation of the EC with thrombin, and decreased thereafter. The response was dose-dependent, with half-maximal stimulation at 0.2-0.25 U thrombin/ml. The enhanced PMN adherence caused by thrombin may result in part from the production of platelet-activating factor (PAF) by the stimulated EC since thrombin-stimulated EC synthesize PAF with a time course and concentration dependence that are similar to the time and concentration relationships for thrombin-stimulated PMN adherence, PAF itself promoted neutrophil adherence to the EC monolayers, and pretreatment of PMNs with PAF decreased the adherence stimulated by thrombin and PAF, but not adherence stimulated by N-formylmethionyl-leucyl-phenylalanine and C5a fragments, which indicates specific desensitization of PAF-mediated adherence. These studies demonstrate the endothelial cell-dependent stimulation of PMN adherence by thrombin, a novel mechanism of enhanced leukocyte adherence that may be important in interactions between the coagulation and inflammatory systems.  相似文献   

8.
In our recent clinical study of damage control laparotomy, the abdominal compartment syndrome (ACS) emerged as an independent risk factor for postinjury multiple organ failure (MOF). We and others have shown previously that the ACS promotes the systemic production of proinflammatory cytokines. Our study objective was to develop a clinically relevant two-event animal model of postinjury MOF using the ACS as a second insult during systemic neutrophil priming to provoke organ dysfunction. Male adult rats underwent hemorrhagic shock (30 mmHg x 45 min) and were resuscitated with crystalloids and shed blood. The timing of postshock systemic neutrophil (PMN) priming was determined by the surface expression of CD11b via flow cytometry. Finding maximal PMN priming at 8 h, but no priming at 2 h (early) and 18 h (late), the ACS (25 mmHg x 60 min) was introduced at these time points. At 24 h postshock, lung injury was assessed by lung elastase concentration and Evans blue dye extravasation in bronchoalveolar lavage. Liver and renal injuries were determined by serum alanine aminotransferase, serum creatinine, and blood urea nitrogen. The ACS during the time of maximal systemic PMN priming (8 h) provoked lung and liver injury, but did not if introduced at 2 or 18 h postshock when there was no evidence of systemic PMN priming. The 24-h mortality of this two-event model was 33%. These findings corroborate the potential for the ACS to promote multiple organ injury when occurring at the time of systemic PMN priming. This clinically relevant two-event animal model of PMN organ injury may be useful in elucidating therapy strategies to prevent postinjury MOF.  相似文献   

9.
OBJECTIVE: Endothelial cell injury by polymorphonuclear neutrophil (neutrophil [PMN]) respiratory burst after trauma and hemorrhagic shock (T/HS) predisposes subjects to acute respiratory distress syndrome and multiple organ failure. T/HS mesenteric lymph injures endothelial cell and lymph duct ligation (LDL) before T/HS prevents pulmonary injury. We investigated the role of mesenteric lymph in PMN priming by T/HS. DESIGN: Prospective experiment in rats. SETTING: University hospital laboratory. SUBJECTS: Adult male rats. INTERVENTIONS: Mesenteric lymph was obtained from rats undergoing T/HS (30 mm Hg, 90 mins) or sham shock (T/SS). Plasma was harvested from uninstrumented control (UC), T/HS, T/SS, and T/HS+LDL rats. PMNs were isolated from UC, T/HS, and T/HS+LDL rats. MEASUREMENTS AND MAIN RESULTS: PMNs from UC rats were incubated in buffer, 1% T/HS lymph, and 1% T/SS lymph. PMNs from UC rats were incubated in UC, T/HS, T/SS, and T/HS+LDL plasma. PMN respiratory burst was initiated by using macrophage inflammatory protein (MIP)-2/platelet-aggregating factor (PAF) or phorbol myristate acetate. Cytosolic calcium ([Ca2+]i) responses to MIP-2/PAF were assayed in PMN from UC, T/HS, and T/HS+LDL rats. PMN preincubated in T/HS lymph showed significant elevations in MIP/PAF-elicited respiratory burst compared with T/HS lymph or buffer only (p <.05; analysis of variance/Tukey's test). T/HS lymph incubation also increased (p <.05) phorbol myristate acetate elicited respiratory burst compared with buffer or T/SS. Preincubation in T/HS plasma increased MIP-2/PAF-elicited respiratory burst (p <.05) compared with UC or T/SS plasma. LDL blocked T/HS priming of respiratory burst. Control PMN [Ca2+]i responses to MIP-2 and PAF were low. T/SS PMN were significantly more responsive, but the T/HS PMN showed still higher responses (p <.01). LDL reversed the priming of [Ca2+]i responses by T/HS (p <.01). CONCLUSIONS: PMNs are primed by T/HS lymph but not T/SS lymph and by T/HS plasma but not T/SS plasma. LDL before shock prevents T/HS plasma from priming PMN. The magnitude of respiratory burst found here paralleled the [Ca2+]i responses seen to receptor dependent initiating agonists. Mesenteric lymph is both necessary and sufficient to prime PMN after T/HS in the rat, and it primes PMN in part by enhancing [Ca2+]i responses to G-protein coupled chemoattractants. Mesenteric lymph mediates postshock PMN dysfunction.  相似文献   

10.
Bacterial LPS is a pluripotent agonist for PMNs. Although it does not activate the NADPH-dependent oxidase directly, LPS renders PMNs more responsive to other stimuli, a phenomenon known as "priming." Since the mechanism of LPS-dependent priming is incompletely understood, we investigated its effects on assembly and activation of the NADPH oxidase. LPS pretreatment increased superoxide (O2-) generation nearly 10-fold in response to N-formyl methionyl leucyl phenylalanine (fMLP). In a broken-cell O2--generating system, activity was increased in plasma membrane-rich fractions and concomitantly decreased in specific granule-rich fractions from LPS-treated cells. Oxidation-reduction spectroscopy and flow cytometry indicated LPS increased plasma membrane association of flavocytochrome b558. Immunoblots of plasma membrane vesicles from LPS-treated PMNs demonstrated translocation of p47-phox but not of p67-phox or Rac2. However, PMNs treated sequentially with LPS and fMLP showed a three- to sixfold increase (compared with either agent alone) in plasma membrane-associated p47-phox, p67-phox, and Rac2, and translocation paralleled augmented O2- generation by intact PMNs. LPS treatment caused limited phosphorylation of p47-phox, and plasma membrane-enriched fractions from LPS- and/or fMLP-treated cells contained fewer acidic species of p47-phox than did those from cells treated with PMA. Taken together, these studies suggest that redistribution of NADPH oxidase components may underlie LPS priming of the respiratory burst.  相似文献   

11.
Hemorrhagic shock induced mesenteric hypoperfusion has long been implicated as a key event in the pathogenesis of the adult respiratory distress syndrome (ARDS) and multiple organ failure (MOF). Previous work links post-hemorrhagic shock mesenteric lymph (PHSML) lipids and neutrophil (PMN) priming in the pathogenesis of ARDS. We hypothesize that gut phospholipase A2 (PLA2) liberates proinflammatory lipids following hemorrhagic shock, which are responsible for enhanced PMN cytotoxicity. Mesenteric lymph was collected from rats (n > or = 5) before hemorrhagic shock, during hemorrhagic shock (MAP 40 mm Hg x 30 min), and after resuscitation (shed blood + 2x lactated Ringers). PMNs were incubated with physiologic concentrations (1-5%, v:v) of (a) buffer control, (b) sham (c) pre-shock lymph, (c) PHSML, (d) PHSML lipid extracts, (e) heat-denatured PSHML, and (f) PHSML harvested after i.v. pretreatment with a known PLA2 inhibitor (quinacrine, 10 mg/kg). PMNs were activated with fMLP (1 micromol), and the maximal rate of superoxide production measured by reduction of cytochrome c. Gut morphology was assessed histologically using hematoxalin and eosin (HE) staining. PHSML and PHSML lipid extracts (5%, v:v) primed for enhanced superoxide production compared to buffer controls (2.5-fold and 3.6-fold), sham (2.5-fold) and pre-shock lymph (2.0-fold). Lymph collected after systemic PLA2 inhibition, in contrast, abrogated the PMN priming response. Gut mucosal morphology, at end-resuscitation, was intact on HE staining both with and without PLA2 inhibition. Heat denaturing the PHSML (eliminating cytokines and complement), on the other hand, did not reduce PMN priming. Physiologic concentrations of PHSML lipids prime the PMN respiratory burst. Lymph priming is diminished with systemic PLA2 inhibition, implicating gut PLA2 as a source of proinflammatory lipids that may be central in the pathogenesis of hemorrhagic shock induced ARDS/MOF.  相似文献   

12.
Amphotericin B (AmB) has toxic effects and alters neutrophil (polymorphonuclear leukocyte [PMN]) function. A lipid-complexed formulation of AmB (AmB-LC) has been reported (A. S. Janoff, L. T. Boni, M. C. Popescu, S. R. Minchey, P. R. Cullis, T. D. Madden, T. Taraschi, S. M. Gruner, E. Shyamsunder, M. W. Tate, R. Mendelsohn, and D. Bonner, Proc. Natl. Acad. Sci. USA 85:6122-6126, 1988) to be less toxic than a desoxycholate-suspended preparation of AmB (AmB-des; Fungizone). In this study we compared the effects of AmB-des and AmB-LC on in vitro PMN function. Neither form of AmB stimulated PMN chemiluminescence, but AmB-des (2 micrograms/ml) nearly tripled PMN chemiluminescence in response to f-Met-Leu-Phe (fMLP), a phenomenon known as priming. Because AmB stimulates monocytes to release cytokines which can affect PMN function, we studied the effects of AmB on PMNs in mixed leukocyte cultures. AmB-des (1 to 2 micrograms/ml) increased the chemiluminescence of PMNs plus mixed mononuclear leukocytes (MNLs) to fMLP. The activity was about three times that of PMNs plus MNLs and seven times the activity of PMNs stimulated with fMLP in the absence of MNLs. Cell-free AmB-des (2 micrograms/ml)-stimulated, MNL-conditioned medium primed pure PMNs to a level equal to that of whole MNLs treated with AmB-des. AmB-LC was much less potent. AmB-LC (20 micrograms/ml) increased fMLP-stimulated chemiluminescence to two times that of PMNs plus MNLs without AmB-LC. AmB-des (2 micrograms/ml) (but not AmB-LC [2 micrograms/ml]) increased nitroblue tetrazolium reduction by PMNs in whole blood from 31 to 52% of positive cells. Neither form of AmB increased Mac-1 (the CD11b/CD18 integrin) expression of pure PMNs. AmB-des (0.5 to 2 micrograms/ml) (but not AmB-LC [< or = 40 micrograms/ml]) nearly doubled PMN Mac-1 expression in the presence of MNLs, and cell-free AmB-des (2 micrograms/ml)-stimulated, MNL-conditioned medium stimulated PMN Mac-1 to 125% of the control level. AmB-des (0.2 to 2 micrograms/ml) (but not AmB-LC [< or = 40 micrograms/ml]) decreased chemotaxis of pure PMNs to fMLP by as much as 35% and that of PMNs in the presence of MNLs by as much as 50%. Desoxycholate by itself had no effect on PMN function. These differences in activity between AmB-des and AmB-LC may explain the lessened toxicity observed with AmB-LC.  相似文献   

13.
Leukotrienes are proinflammatory lipid mediators, derived from arachidonic acid via 5-lipoxygenase (5-LO). Leukotriene B4 (LTB4) is an effective polymorphonuclear neutrophil (PMN) chemoattractant, as well as being a major product of PMN priming. Leukotriene B4 is rapidly metabolized into products that are thought to be inactive, and little is known about the effects of LTB4 on the pulmonary endothelium. We hypothesize that LTB4 and its metabolites are effective PMN priming agents and cause proinflammatory activation of pulmonary endothelial cells. Isolated PMNs were primed (5 min, 37°C) with serial concentrations 10 to 10 M of LTB4 and its metabolites: 6-trans-LTB4, 20-OH-LTB4, and 20-COOH-LTB4, and then activated with fMLP. Primary human pulmonary microvascular endothelial cells (HMVECs) were incubated with these lipids (6 h, 37°C, 5% CO2), and intercellular adhesion molecule 1 was measured by flow cytometry. Polymorphonuclear neutrophil adhesion was measured by myeloperoxidase assays, and to ensure that these reactions were specific to the LTB4 receptors, BLT1 and BLT2 were antagonized with CP105,696 (BLT1) or silenced with siRNA (BLT1 and BLT2). Leukotriene B4 and its metabolites primed PMNs over a wide range of concentrations, depending on the specific metabolite. In addition, at high concentrations these lipids also caused increases in the surface expression of intercellular adhesion molecule 1 on HMVECs and induced HMVEC-mediated adhesion of PMNs. Silencing of BLT2 abrogated HMVEC activation, and blockade of BLT1 inhibited the observed PMN priming activity. We conclude that LTB4 and its ω-oxidation and nonenzymatic metabolites prime PMNs over a range of concentrations and activate HMVECs. These data have expanded the repertoire of causative agents in acute lung injury and postinjury multiple organ failure.  相似文献   

14.
Background Previously performed in vitro studies suggested that gravitational stress may alter functions of immune cells. This study investigated the in vivo effects of parabolic flight manoeuvres as a short‐term model of micro‐ and hypergravity on the cytotoxic and microbicidal polymorphonuclear leucocyte (PMN) functions as the key element of innate immunity. Material and methods Twenty‐one healthy male volunteers underwent 30 subsequent parabolic flight manoeuvres. Each manoeuvre produced 22‐s periods of nearly weightlessness close to «0g», with each parabola starting with a pull‐up and ending with a pull‐out (hypergravity) at 1·8 g for about 20 s each. Blood samples were drawn 24 h prior to take off (T0), after 25–30 parabolas (T1), and 24 h (T2) and 48 h (T3) after flight for determination of (i) leucocyte number and subpopulations, (ii) PMNs’ capabilities to produce hydrogen peroxide (H2O2) and to adhere and phagocytose particles and (iii) plasma cytokines known to prime PMN functions [interleukin‐8 (IL‐8), tumour necrosis factor‐α (TNF‐α), granulocyte‐colony stimulating factor (G‐CSF) and granulocyte‐macrophage colony stimulating factor (GM‐CSF)]. Results Parabolic flight induced an increase in leucocyte number with a significant elevation of the PMN fraction. The spontaneous H2O2 production by PMNs did not change; however, the capability of PMNs to produce H2O2 in response to soluble stimuli [N‐formyl‐methionyl‐leucyl‐phenylalanine (fMLP), fMLP and TNF‐α, calcium ionophore (A23187), phorbol myristate acetate (PMA)] was increased. Adhesive and phagocytic properties of PMNs were not altered. Regarding priming cytokines, IL‐8 and G‐CSF were significantly elevated. Conclusions Our data indicate that parabolic flight induces priming of the cytotoxic capabilities of PMNs without affecting microbicidal functions.  相似文献   

15.
Inasmuch as polymorphonuclear leukocytes (PMNs) play a major role in antibacterial defense but can also cause substantial tissue injury, drugs are needed which are able to attenuate tissue-toxic PMN reactions without inhibiting bactericidal mechanisms. Adenosine as a retaliatory metabolite is produced in response to metabolically unfavorable conditions like inflammation. However, it is not known whether adenosine can selectively downregulate adverse PMN reactions in sepsis. In this prospective clinical study, we characterized the effects of adenosine ex vivo on PMN functions in patients with septic shock ([SS] n = 33) and healthy volunteers ([HV] n = 33). The PMNs were primed by tumor necrosis factor-alpha (TNF-alpha) and subsequently stimulated with N-formyl methionyl-leucyl-phenylalanine (fMLP) to test for the formation of hydrogen peroxide (H2O2) in response to soluble inflammatory stimuli. The PMNs were also challenged by opsonized zymosan particles to assess adhesion, phagocytosis, and the associated H2O2 production.As compared with HV, PMNs from SS patients showed strongly enhanced tissue-toxic H2O2 production elicited by TNF-alpha/fMLP. Increasing concentrations of adenosine dose-dependently reduced this tissue-toxic H2O2 production in both groups with a half-maximal inhibitory concentration of 25 nmol/L and 114 nmol/L in HV and SS patients, respectively. This 4.6-fold decrease in the adenosine-mediated inhibition of PMNs from patients with septic shock was compensated by a 3-fold increase in the plasma concentrations of the nucleoside (HV, 42.5 +/- 2.9 nmol/L vs. SS, 125.6 +/- 18.2 nmol/L; mean +/- SEM). When the effects of adenosine were tested at a very high A2A receptor saturating concentration of 10 mol/L, neither adhesion, phagocytosis, nor the associated H2O2 production induced by opsonized zymosan was affected in both groups. These results were confirmed by the highly selective A2A agonist, CGS21680.Thus, adenosine or A2A agonists may be useful to selectively inhibit the potentially tissue-toxic H2O2 production elicited by soluble inflammatory mediators in patients with septic shock.  相似文献   

16.
Excessive neutrophil activation causes posttraumatic complications, which may be reduced with hypertonic saline (HS) resuscitation. We tested if this is because of modulated neutrophil function by HS. Clinically relevant hypertonicity (10-25 mM) suppressed degranulation and superoxide formation in response to fMLP and blocked the activation of the mitogen activated protein kinases (MAPK) ERK1/2 and p38, but did not affect Ca2+ mobilization. HS did not suppress oxidative burst in response to phorbol myristate acetate (PMA). This indicates that HS suppresses neutrophil function by intercepting signal pathways upstream of or apart from PKC. HS activated p38 by itself and enhanced degranulation in response to PKC activation. This enhancement was reduced by inhibition of p38 with SB203580, suggesting that p38 up-regulation participates in HS-induced enhancements of degranulation. HS had similar effects on the degranulation of cells that were previously stimulated with fMLP, but had no effect on its own, suggesting that HS enhancement of degranulation requires another signal. We conclude that depending on other stimuli, HS can suppress neutrophil activation by intercepting multiple receptor signals or augment degranulation by enhancing p38 signaling. In patients HS resuscitation may reduce posttraumatic complications by preventing neutrophil activation via chemotactic factors released during reperfusion.  相似文献   

17.
Inflammatory roles of P-selectin.   总被引:26,自引:13,他引:26       下载免费PDF全文
Polymorphonuclear leukocytes (PMNs) bind rapidly and reversibly to endothelial cells induced to express P-selectin, a glycoprotein that mediates adhesive intercellular interactions. In addition, PMNs adherent to endothelium expressing P-selectin demonstrate an intracellular Ca2+ transient, functionally up-regulate beta-2-integrins (CD11/CD18 glycoproteins), become polarized in shape, and are primed for enhanced degranulation when subsequently stimulated with chemotactic factors. However, P-selectin induces none of these responses directly when used alone, when incorporated into model membranes, or when expressed by transfected cells. The absence of direct activation of the PMNs is not due to competing antiinflammatory effects of P-selectin; instead, purified P-selectin and P-selectin in membranes support agonist-stimulated PMN responses. Furthermore, tethering of PMNs to endothelial surfaces by P-selectin is required for priming to occur efficiently, as shown by experiments with blocking monoclonal antibodies. The priming event is directly mediated by the signaling molecule, platelet-activating factor (PAF), and is inhibited by blocking the PAF receptor on PMNs. Thus, P-selectin and PAF are components of an adhesion and activation cascade, but have distinct roles: P-selectin tethers and captures the PMN, whereas PAF mediates juxtacrine activation. In vivo, selectins may facilitate interaction of target cells with membrane-bound molecules that send intercellular signals, in addition to mediating rolling of leukocytes and other adhesive functions.  相似文献   

18.
Bacterial lipoprotein (BLP) is the most abundant protein in gram-negative bacterial cell walls, heavily outweighing lipopolysaccharide (LPS). Herein we present findings demonstrating the potent in vitro effects of BLP on neutrophil (PMN) activation status, function, and capacity to transmigrate an endothelial monolayer. PMNs are the principal effectors of the initial host response to injury or infection and constitute a significant threat to invading bacterial pathogens. The systemic inflammatory response syndrome (SIRS) is characterised by significant host tissue injury mediated, in part, by uncontrolled regulation of PMN cytotoxic activity. We found that BLP-activated human PMN as evidenced by increased CD11b/CD18 (Mac-1) expression. Up-regulation of PMN Mac-1 in response to BLP occurred independently of membrane-bound CD14 (mCD14). A similar up-regulation of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells was observed whilst E-Selectin expression was unaffected. PMN transmigration across a human umbilical vein endothelial cell (HUVEC) monolayer was markedly increased after treating either PMN's or HUVEC independently with BLP. This increased transmigration did not occur as a result of any direct effect of BLP on HUVEC monolayer permeability, assessed objectively using the passage of FITC-labeled Dextran-70. BLP primed PMN for enhanced respiratory burst and superoxide anion production in response to PMA, but did not influence phagocytosis of opsonized Escherichia coli. BLP far exceeds LPS as a gram-negative bacterial wall component, these findings therefore implicate BLP as an additional putative mediator of SIRS arising from gram-negative infection.  相似文献   

19.
Primed neutrophils may contribute to endothelial and end-organ damage after burn injury because of increased endothelial adherence and enhanced toxic oxygen metabolite generation in response to a "second insult" such as bacterial sepsis. The purposes of this study were to determine: (1) whether serum from patients with thermal injury causes priming of the neutrophil NADPH:O2 oxidoreductase, (2) whether time after burn (early vs late) influences neutrophil priming, and (3) whether priming could be attenuated by a specific platelet-activating factor antagonist, WEB2170. Normal human neutrophils were incubated with 10% sera that was obtained from healthy adult controls (normal human sera) and with 10% sera from patients with greater than 30% total body surface area burns, which was collected early (early postburn sera) (i.e., between 12 and 48 hours after burn) or late (late postburn sera) (5 to 15 days, after burn). Priming of the neutrophil oxidase was tested for by measurement of the generation of superoxide anion after a stimulus of 10(-6) mol/L formyl-methionine-leucine-phenylalanine (fMLP). In separate experiments, neutrophils were pretreated with WEB2170 before serum incubation and fMLP stimulation to block any priming that may be mediated by platelet-activating factor. All sera caused an increased rate of superoxide anion production in response to fMLP and thus "primed" the neutrophil NADPH:O2 oxidoreductase. Greater priming occurred after incubation with late postburn sera than with other sera. WEB2170 completely inhibited priming by normal human sera and early postburn sera and partially inhibited priming by late postburn sera.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Calcium (Ca2+) influx into human polymorphonuclear cells (PMNs) in response to N-formyl-Met-Leu-Phe (fMLP) and platelet-activating factor (PAF) stimulation was studied. Whole blood was taken by venous puncture from healthy human volunteers. PMNs were isolated, diluted, and incubated with 2 microM fura-2 AM. The cytosolic free calcium concentration, [Ca2+]i, in human neutrophils was determined by microfluorometry. We found that the net area under the fMLP- or PAF-induced [Ca2+]i rise curve in Ca2+-free medium decreased to 75% or 30% of the area under the curve in Ca2+ medium. Treatment of PMNs with phorbol myristate acetate (PMA), a protein kinase C activator, completely abolished the intracellular Ca2+ level stimulated by PAF, but not the intracellular Ca2+ level stimulated by fMLP. Treatment of PMNs with PAF did not abolish the intracellular Ca2+ level elevation stimulated by fMLP. In addition, treatment of PMNs with fMLP did not abolish intracellular Ca2+ level elevation stimulated by PAF. Loperamide, a positive modulator for store-operated calcium (SOC) channels, elicited an increase in intracellular calcium after the activation of SOC channels stimulated by fMLP or PAF. After the addition of guanosine 3',5'-cyclic monophosphate, N2,2'-O-Dibutyryl-, sodium salt (db-cGMP), the initial increase of PAF- or fMLP-induced PMNs intracellular Ca2+ fluorescences was well preserved, but the slope and the peak height of fluorescence curves declined compared with the curves without db-cGMP. In conclusion, we found that PAF and fMLP regulate the Ca2+ influx of PMNs in different ways. Most of the PAF-induced [Ca2+]i rise resulted from Ca2+ influx, and most of the fMLP-induced [Ca2+]i elevation resulted from intracellular stores release. The initial mobilization of intracellular Ca2+ stores in PAF-stimulated signals is mediated by protein kinase C (PKC) phosphorylation, but not in fMLP-stimulated route. SOC channels are present and important in the fMLP- or PAF-induced PMNs Ca2+ influx. There was no apparent cross-regulation between PAF- and fMLP-stimulated intracellular Ca2+ influx.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号