首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The diuretic drug amiloride and its analogues were found previously to be allosteric modulators of antagonist binding to A(2A) adenosine receptors. In this study, the possibility of the allosteric modulation by amiloride analogues of antagonist binding at A(1) and A(3) receptors, as well as agonist binding at A(1), A(2A), and A(3) receptors, was explored. Amiloride analogues increased the dissociation rates of two antagonist radioligands, [3H]8-cyclopentyl-1,3-dipropylxanthine ([3H]DPCPX) and [3H]8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2,1-i]purin-5-one ([3H]PSB-11), from A(1) and A(3) receptors, respectively. Amiloride and 5-(N,N-dimethyl)amiloride (DMA) were more potent at A(1) receptors than at A(3) receptors, while 5-(N,N-hexamethylene)amiloride (HMA) was more potent at A(3) receptors. Thus, amiloride analogues are allosteric inhibitors of antagonist binding at A(1), A(2A), and A(3) adenosine receptor subtypes. In contrast to their effects on antagonist-occupied receptors, amiloride analogues did not affect the dissociation rates of the A(1) agonist [3H]N(6)-[(R)-phenylisopropyl]adenosine ([3H]R-PIA) from A(1) receptors or the A(2A) agonist [3H]2-[p-(2-carboxyethyl)phenyl-ethylamino]-5'-N-ethylcarboxamidoadenosine ([3H]CGS21680) from A(2A) receptors. The dissociation rate of the A(3) agonist radioligand [125I]N(6)-(4-amino-3-iodobenzyl)adenosine-5'-N-methyluronamide ([125I]I-AB-MECA) from A(3) receptors was decreased significantly by amiloride analogues. The binding modes of amiloride analogues at agonist-occupied and antagonist-occupied receptors differed markedly, which was demonstrated in all three subtypes of adenosine receptors tested in this study. The effects of the amiloride analogues on the action of the A(3) receptor agonist were explored further using a cyclic AMP functional assay in intact CHO cells expressing the human A(3) receptor. Both binding and functional assays support the allosteric interactions of amiloride analogues with A(3) receptors.  相似文献   

2.
The present study was designed to evaluate the binding and functional characterization of A(3) adenosine receptors in human neutrophils exposed to low frequency, low energy, pulsing electromagnetic fields (PEMFs). Great interest has grown concerning the use of PEMF in the clinical practice for therapeutic purposes strictly correlated with inflammatory conditions. Saturation experiments performed using the high affinity and selective A(3) adenosine antagonist 5N-(4-methoxyphenyl-carbamoyl)amino-8-propyl-2-(2-furyl)pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine ([3H]-MRE 3008F20) revealed a single class of binding sites with similar affinity in control and in PEMF treated human neutrophils (K(D)=2.36+/-0.16 and 2.45+/-0.15 nM, respectively). PEMFs treatment revealed that the receptor density was statistically increased (P<0.01) (B(max)=451+/-18 and 736+/-25fmolmg(-1) protein, respectively). Thermodynamic data indicated that [3H]-MRE 3008F20 binding in control and in PEMF-treated human neutrophils was entropy and enthalpy driven. Competition of radioligand binding by the high affinity A(3) receptor agonists, N(6)-(3-iodo-benzyl)-2-chloro-adenosine-5'-N-methyluronamide (Cl-IB-MECA) and N(6)-(3-iodo-benzyl)adenosine-5'-N-methyl-uronamide (IB-MECA), in the absence of PEMFs revealed high and low affinity values similar to those found in the presence of PEMFs. In both experimental conditions, the addition of GTP 100 microM shifted the competition binding curves of the agonists from a biphasic to a monophasic shape. In functional assays Cl-IB-MECA and IB-MECA were able to inhibit cyclic AMP accumulation and their potencies were statistically increased after exposure to PEMFs. These results indicate in human neutrophils treated with PEMFs the presence of significant alterations in the A(3) adenosine receptor density and functionality.  相似文献   

3.
4.
The binding and functional properties of adenosine receptor ligands were compared in Chinese hamster ovary cells transfected with human adenosine A(3) receptors. Inhibition of [(125)I]-aminobenzyl-5'-N-methylcarboamidoadenosine ([(125)I]-AB-MECA) binding by adenosine receptor ligands was examined in membrane preparations. Inhibition of forskolin-induced cAMP accumulation by agonists was measured using a cAMP enzyme immunoassay. The rank order of agonist potency for both assays was N(6)-(3-iodobenzyl)-adenosine-5'-N-methyluronamide (IB-MECA) > 5'-N-ethylcarboxamidoadenosine (NECA) > (-)-N(6)-[(R)-phenylisopropyl] adenosine (R-PIA) > 4-aminobenzyl-5'-N-methylcarboxamidoadenosine (AB-MECA) > N(6)-cyclopentyl adenosine (CPA) > adenosine. The radioligand binding rank order of antagonist potency was N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-benzeneacetamide (MRS1220) > 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) > 8-phenyltheophylline (8-PT) > 8-(p-sulfophenyl)-theophylline (8-SPT). MRS1220 competitively inhibited the effect of IB-MECA on cAMP production, with a K(B) value of 0.35 nm. These data are characteristic of adenosine A(3) receptors. The absence of Mg(2+) and presence of guanosine 5'-(gamma-thio)triphosphate (GTPgammaS) significantly reduced agonist binding inhibition potency, indicating binding to high- and low-affinity states. The IB-MECA, NECA and R-PIA IC(50) values were greater for the cAMP assay than for radioligand binding, suggesting an efficient stimulus-response transduction pathway.  相似文献   

5.
The present study was designed to evaluate the effects of novel and recognised compounds at human recombinant A(2B) adenosine receptors expressed in Chinese hamster ovary (hA(2B)CHO), in human embryonic kidney 293 (hA(2B)HEK-293) and at endogenous A(2B) receptors in human mast cells (HMC-1). Saturation binding experiments performed using the new high affinity A(2B) adenosine radioligand [(3)H]-N-benzo[1,3]dioxol-5-yl-2-[5-(2,6-dioxo-1,3-dipropyl-2,3,6,7-tetra hydro-1H-purin-8-yl)-1-methyl-1H-pyrazol-3-yloxy]-acetamide ([(3)H]-MRE 2029F20) revealed a single class of binding sites in hA(2B)CHO, hA(2B)HEK-293 and HMC-1 cells with K(D) (nM) of 1.65+/-0.18, 2.83+/-0.34, 2.62+/-0.27 and B(max) (fmol/mg protein) of 36+/-4, 475+/-50 and 128+/-15, respectively. The pharmacological profile of new compounds, determined in inhibition binding experiments in hA(2B)HEK-293 cells using [(3)H]-MRE 2029F20, showed a rank order of potency typical of the A(2B) receptors with K(i) values in the range 3.2-28nM. In functional assays, recognised agonists and antagonists were studied by evaluating their capability to modulate the cAMP production in hA(2B)CHO and in HMC-1 cells. Novel compounds were able to decrease NECA-stimulated cAMP production in hA(2B)CHO and in HMC-1 cells showing a high potency. New compounds were also able to inhibit cAMP levels in the absence of NECA and in the presence of forskolin stimulation in hA(2B)CHO and in HMC-1 cells. In HEK-293 cells MRE 2029F20 reduced cAMP basal levels with an IC(50) value of 2.9+/-0.3nM. These results suggest that novel compounds are antagonists with an inverse agonist activity in recombinant and native human A(2B) receptors.  相似文献   

6.
We have characterized desloratadine (5H-benzo[5,6]cyclohepta[1,2-b]pyridine, 8-chloro-6,11-dihydro-11-(4-piperidinylidene), CAS 100643-71-8) as a potent antagonist of the human histamine H(1) receptor. [3H]Desloratadine bound to membranes expressing the recombinant human histamine H(1) receptor in Chinese hamster ovary cells (CHO-H(1)) in a specific and saturable manner with a K(d) of 1.1+/-0.2 nM, a B(max) of 7.9+/-2.0 pmol/mg protein, and an association rate constant of 0.011 nM(-1) x min(-1). The K(d) calculated from the kinetic measurements was 1.5 nM. Dissociation of [3H]desloratadine from the human histamine H(1) receptor was slow, with only 37% of the binding reversed at 6 h in the presence of 5 microM unlabeled desloratadine. Seventeen histamine H(1)-receptor antagonists were evaluated in competition-binding studies. Desloratadine had a K(i) of 0.9+/-0.1 nM in these competition studies. In CHO-H(1) cells, histamine stimulation resulted in a concentration-dependent increase in [Ca(2+)](i) with an EC(50) of 170+/-30 nM. After a 90-min preincubation with desloratadine, the histamine-stimulated increase in [Ca(2+)](i) was shifted to the right, with a depression of the maximal response at higher concentrations of antagonist. The apparent K(b) value was 0.2+/-0.14 nM with a slope of 1.6+/-0.1. The slow dissociation from the receptor and noncompetitive antagonism suggests that desloratadine may be a pseudoirreversible antagonist of the human histamine H(1) receptor. The mechanism of desloratadine antagonism of the human histamine H(1) receptor may help to explain the high potency and 24-h duration of action observed in clinical studies.  相似文献   

7.
The potent adenosine A(1) receptor agonists, N(6)-cyclopentyladenosine (CPA) and 2-chloro-N(6)-cyclopentyladenosine (CCPA), were studied in Chinese hamster ovary (CHO) cells expressing the human adenosine A(3) receptor. CPA, but not CCPA, induced phosphoinositide turnover. CPA inhibited forskolin-stimulated cyclic AMP production (EC(50) value of 242+/-47 nM). CCPA competitively antagonized the effects of agonist Cl-IB-MECA (2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyladenosine) with K(B) value of 5.0 nM. CPA competition curves versus the A(3) antagonist radioligand [3H]PSB-11 (8-ethyl-4-methyl-2-phenyl-(8R)-4,5,7,8-tetrahydro-1H-imidazo[2.1-i]purin-5-one) were right-shifted four-fold by 100 microM GTP, which had no effect on binding of CCPA or the antagonist MRS 1220 (N-[9-chloro-2-(2-furanyl)[1,2,4]triazolo[1,5-c]quinazolin-5-yl]benzene-acetamide). Thus, CCPA is a moderately potent antagonist (K(i)=38 nM) of the human A(3) adenosine receptor.  相似文献   

8.
Human A3 adenosine receptor (A3AR) agonists have been shown to play important roles in several physiological and pathological processes, including growth inhibition of human cancer cells. On this line, we recently found that a novel adenosine analog, 2-chloro-N6-(3-iodobenzyl)-4'-thioadenosine-5'-N-methyluronamide (thio-Cl-IB-MECA) was a potent human A3AR agonist, and is superior to a known agonist Cl-IB-MECA [Jeong LS, Jin DZ, Kim HO, Shin DH, Moon HR, Gunaga P, et al. J Med Chem 2003;46:3775]. Here, we report that a novel A3AR agonist, thio-Cl-IB-MECA inhibited the growth of human promyelocytic leukemia HL-60 cells by arresting cell cycle and induction of apoptosis. Thio-Cl-IB-MECA induced the cell cycle arrest of G0/G1 in the early time and at lower concentration (up to 25 microM). At higher concentration (50 microM), the apoptotic cell deaths were manifested by observation of the increase of sub-G0 phase of cell cycle distribution, DNA fragmentation and poly(ADP-ribose) polymerase (PARP) cleavage. In addition, the down-regulation of checkpoint protein cyclin D1 and c-myc by thio-Cl-IB-MECA was well correlated with the arrest of cell cycle transition of G1 to S phase. Further study revealed that the growth inhibitory activity of thio-Cl-IB-MECA is also related with the modulation of Wnt signaling pathway. The levels of beta-catenin, phosphorylated forms of GSK-beta and Akt were down-regulated by the treatment of thio-Cl-IB-MECA (10 nM) in a time-dependent manner, providing one of plausible mechanistic evidence for the involvement of the Wnt signaling pathway in the HL-60 cell growth inhibitory effects by thio-Cl-IB-MECA. These results suggest that a novel A3AR agonist, thio-Cl-IB-MECA can down-regulate Wnt signaling, inhibit proliferation and induce apoptosis in HL-60 leukemia cells, and thus provide the possibility of this compound in the potential therapeutic value of the treatment of leukemia.  相似文献   

9.
10.
Agonists bind with higher affinity to G protein-coupled heptahelical receptors than to uncoupled receptors. Recombinant A(1) and A(3) adenosine receptors couple well to G(i/o), but recombinant human A(2A) adenosine receptors (hA(2A)AR) couple poorly to G(s) and bind agonists with K(i) values in binding assays that are much higher than ED(50) values for functional responses such as coronary dilation and inhibition of neutrophil oxidative burst. In this study, we produced hA(2A)AR-G protein complexes in membranes derived from Sf9 cells quadruply infected with receptors and heterotrimeric G protein subunits. The composition of G(beta) markedly influences coupling such that A(2A)AR-alpha(s)beta(1)gamma(2) are 8 +/- 2% coupled whereas equivalently expressed A(2A)AR-alpha(s)beta(4)gamma(2) are 40 +/- 2% coupled. Hence, we were able for the first time to accurately measure high-affinity agonist binding to hA(2A)AR. The agonist 2-[2-(4-amino-3-[(125)I]iodophenyl)ethylamino]adenosine binds to coupled and uncoupled hA(2A)AR with K(D) values of 0.46 nM and 26 nM, respectively, a difference in affinity of 57-fold. The addition of GTPgammaS converts all receptors to the low-affinity state. A(2A)AR coupling does not influence binding of antagonists including, (125)I-4-(2-[7-amino-2-[2-furyl][1,2,4]triazolo[2,3-a][1,3,5]triazin-5-yl-amino]ethyl)phenol ((125)I-ZM241385), K(D) = 0.5 nM. Based on a comparison of high-affinity binding sites, N(6)-3-iodo-2-chlorobenzyladenosine-5'-N-methyluronamide is only 8-fold A(3) selective (A(2A Ki, H) = 18.3 +/- 3.2 nM; A(3 Ki, H) = 2.4 +/- 0.3 nM) and 2-chloro-N(6)-cyclopentyladenosine is only 33-fold A(1) selective (A(2A Ki, H) = 11.0 +/- 1.9; A(1 Ki, H) = 0.3 +/- 0.1). We conclude that recombinant hA(2A)AR can form a high-affinity receptor-G protein complex with alpha(s)beta(4)gamma(2) that is useful for determining receptor selectivity.  相似文献   

11.
Adenosine is an endogenous nucleoside that regulates many physiological processes through the activation of its four receptors: A(1), A(2A), A(2B) and A(3). Previous studies have identified the involvement of A(2) receptors in the inhibitory activity of adenosine analogues on tumor necrosis factor-alpha (TNF-alpha) production by lipopolysaccharide (LPS) activated monocytes, but the relative contributions of A(2A) versus A(2B) receptors have not been determined in human primary monocytes. Nor has the role of A(1) and A(3) been clearly identified in the system. The lack of such information impacts on the selection of adenosine receptor agonists for disease intervention. Using LPS-stimulated human primary monocytes, we found that the adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA) or the A(2A) receptor agonist, 4-[2-[[6-amino-9-(N-ethyl-b-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid hydrochloride (CGS21680) produced a concentration-dependent inhibition of TNF-alpha production, with IC(50)s of 58.4nM (32.7-104.5nM, 95% confidence interval) and 49.2nM (22.7-105.9nM, 95% confidence interval), respectively. The selective A(2A) receptor blocker, 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylaminso]ethyl)phenol (ZM241385, 30nM), antagonized the effects of NECA and CGS21680 (pK(B) estimates were 8.7+/-0.1 and 8.9+/-0.1, respectively), while the selective A(2B) antagonist, N-(4-cyano-phenyl)-2-[4-(2,6-dioxo-1,3-dipropyl-2,3,4,5,6,7-hexahydro-1H-purin-8-yl)-phenoxy]-acetamide (MRS1754, 100nM), failed to antagonize the effects of either agonist. Furthermore, neither the A(1) receptor agonist, 2-chloro-N(6)-cyclopentyladenosine (CCPA) nor the A(3) receptor agonist, 1-[2-chloro-6-[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-b-d-ribofuranuronamide (2-Cl-IB-MECA) showed significant inhibitory activity at concentrations that effectively bind to their respective receptors. We conclude that A(2A) receptor activation is predominantly responsible for the inhibitory effects of adenosine receptor agonists on TNF-alpha production from LPS-stimulated monocytes.  相似文献   

12.
Until recently, the characterization of adenosine A(2B) receptors has been hampered by the lack of high affinity radioligands. This study describes the synthesis and in vitro characterization of the radiolabeled derivative of OSIP339391, a novel, potent, and selective pyrrolopyrimidine A(2B) antagonist. OSIP339391 had a selectivity of greater than 70-fold for A(2B) receptors over other human adenosine receptor subtypes. The radiolabel was introduced by hydrogenation of the acetylenic precursor with tritium gas resulting in the incorporation (on average) of three tritium atoms in the molecule, yielding a ligand with specific activity of 87Ci/mmol (3.2TBq/mmol). Using membranes from HEK-293 cells expressing the human recombinant A(2B) receptor, [3H]OSIP339391 was characterized in kinetic, saturation, and competition binding experiments. From the association and dissociation rate studies, the affinity was 0.41nM and in close agreement with that found in saturation binding experiments (0.17nM). In competition, binding studies using 0.5nM [3H]OSIP339391, the affinity of a range of agonists and antagonists was consistent with previously reported data. Thus, [3H]OSIP339391 is a novel, selective, and high affinity radioligand that can be a useful tool in the further exploration and characterization of recombinant and endogenous adenosine A(2B) receptors.  相似文献   

13.
4'-Thio analogues 3-5 of Cl-IB-MECA (2) (K(i) = 1.0 +/- 0.2 nM at the human A(3) adenosine receptor) were synthesized from d-gulono-gamma-lactone via 4-thioribosyl acetate 14 as the key intermediate. All synthesized 4'-thionucleosides exhibited higher binding affinity to the human A(3) adenosine receptor than Cl-IB-MECA, among which 4 showed the most potent binding affinity (K(i) = 0.28 +/- 0.09 nM). 4 was also selective for A(3) vs human A(1) and human A(2A) receptors by 4800- and 36000-fold, respectively.  相似文献   

14.
Tritiation of the dopamine D(4) receptor selective agonist A-369508 ([2-[4-(2-cyanophenyl)-1-piperazinyl]-N-(3-methylphenyl) acetamide) has provided a radioligand for the characterization of dopamine D(4) receptors. [(3)H] A-369508 binds with high affinity to the major human dopamine D(4) receptor variants D(4.2), D(4.4) and D(4.7) (K(d)=1.7, 4, and 1.2 nM, respectively). It also binds to the rat dopamine D(4) receptor, (K(d)=4.4 nM), implying similar binding affinity across human and rat receptors. A-369508 shows >400-fold selectivity over D(2L), >350-fold selectivity over 5-HT(1A) and >700-1,000-fold selectivity over all other receptors tested. Agonist activity determined by inhibition of forskolin-induced cAMP in Chinese hamster ovary cells transfected with the human dopamine D(4.4) receptor (EC(50)=7.5 nM, intrinsic activity=0.71) indicates that A-369508 is a potent agonist at the human dopamine D(4) receptor. Similar data was observed in other functional assays. [(3)H] A-369508 binds to a single, high affinity site on membranes containing the human dopamine D(4.4) receptor. When compared to the D(2)-like antagonist [(3)H] spiperone, competition binding for agonists like dopamine and apomorphine were 2-10-fold more potent with [(3)H] A-369508, while the antagonists clozapine, haloperidol and L-745870 bind with similar affinity to both ligands. Binding to rat brain regions demonstrated that the most abundant area was cerebral cortex (51.2 fmol/mg protein) followed by hypothalamus, hippocampus, striatum and cerebellum. [(3)H] A-369508 is a useful tool to define the localization and physiological role of dopamine D(4) receptors in central nervous system and can facilitate measuring accurate affinities (K(i)) for structure/activity relationship studies designed to identify dopamine D(4) receptor selective agonists.  相似文献   

15.
1. The present work was devoted to the study of A3 adenosine receptors in Jurkat cells, a human leukemia line. 2. The A3 subtype was found by means of RT-PCR experiments and characterized by using the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with K(D) of 1.9+/-0.2 nM and B(max) of 1.3+/-0.1 pmol mg(-1) of protein. 3. The pharmacological profile of [3H]-MRE 3008F20 binding on Jurkat cells was established using typical adenosine ligands which displayed a rank order of potency typical of the A3 subtype. 4. Thermodynamic data indicated that [3H]-MRE 3008F20 binding to A3 subtype in Jurkat cells was entropy- and enthalpy-driven, according with that found in cells expressing the recombinant human A3 subtype. 5. In functional assays the high affinity A3 agonists Cl-IB-MECA and IB-MECA were able to inhibit cyclic AMP accumulation and stimulate Ca(2+) release from intracellular Ca(2+) pools followed by Ca(2+) influx. 6. The presence of the other adenosine subtypes was investigated in Jurkat cells. A1 receptors were characterized using [3H]-DPCPX binding with a K(D) of 0.9+/-0.1 nM and B(max) of 42+/-3 fmol mg(-1) of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a K(D) of 2.5+/-0.3 nM and a B(max) of 1.4+/-0.2 pmol mg(-1) of protein. 7. In conclusion, by means of the first antagonist radioligand [3H]-MRE 3008F20 we could demonstrate the existence of functional A3 receptors on Jurkat cells.  相似文献   

16.
2-[4-(3,4-Dimethylphenlyl)piperazin-1-ylmethyl]-1H benzoimidazole (A-381393) was identified as a potent dopamine D4 receptor antagonist with excellent receptor selectivity. [3H]-spiperone competition binding assays showed that A-381393 potently bound to membrane from cells expressing recombinant human dopamine D4.4 receptor (Ki=1.5 nM), which was 20-fold higher than that of clozapine (Ki=30.4 nM). A-381393 exhibited highly selective binding for the dopamine D4.4 receptor (>2700-fold) when compared to D1, D2, D3 and D5 dopamine receptors. Furthermore, in comparison to clozapine and L-745870, A-381393 exhibits better receptor selectivity, showing no affinity up to 10 microM for a panel of more than 70 receptors and channels, with the exception of moderate affinity for 5-HT2A (Ki=370 nM). A-381393 potently inhibited the functional activity of agonist-induced GTP-gamma-S binding assay and 1 microM dopamine induced-Ca2+ flux in human dopamine D4.4 receptor expressing cells, but not in human dopamine D2L or D3 receptor cells. In contrast to L-745870, A-381393 did not exhibit any significant intrinsic activity in a D4.4 receptor. In vivo, A-381393 has good brain penetration after subcutaneous administration. A-381393 inhibited penile erection induced by the selective D4 agonist PD168077 in conscious rats. Thus, A-381393 is a novel selective D4 antagonist that will enhance the ability to study dopamine D4 receptors both in vitro and in vivo.  相似文献   

17.
There is increasing evidence to suggest that adenosine receptors can modulate the function of cells involved in the immune system. For example, human dendritic cells derived from blood monocytes have recently been described to express functional adenosine A1, A2A and A3 receptors. Therefore, in the present study, we have investigated whether the recently established murine dendritic cell line XS-106 expresses functional adenosine receptors. The selective adenosine A3 receptor agonist 1-[2-chloro-6[[(3-iodophenyl)methyl]amino]-9H-purin-9-yl]-1-deoxy-N-methyl-beta-D-ribofuranuronamide (2-Cl-IB-MECA) inhibited forskolin-mediated [3H]cyclic AMP accumulation and stimulated concentration-dependent increases in p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. The selective adenosine A2A receptor agonist 4-[2-[[-6-amino-9-(N-ethyl-beta-D-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzene-propanoic acid (CGS 21680) stimulated a robust increase in [3H]cyclic AMP accumulation and p42/p44 MAPK phosphorylation. In contrast, the selective adenosine A1 receptor agonist CPA (N6-cyclopentyladenosine) did not inhibit forskolin-mediated [3H]cyclic AMP accumulation or stimulate increases in p42/p44 MAPK phosphorylation. These observations suggest that XS-106 cells express functional adenosine A2A and A3 receptors. The non-selective adenosine receptor agonist 5'-N-ethylcarboxamidoadenosine (NECA) inhibited lipopolysaccharide-induced tumour necrosis factor-alpha (TNF-alpha) release from XS-106 cells in a concentration-dependent fashion. Furthermore, treatment with Cl-IB-MECA (1 microM) or CGS 21680 (1 microM) alone produced a partial inhibition of lipopolysaccharide-induced TNF-alpha release (when compared to NECA), whereas a combination of both agonists resulted in the inhibition of TNF-alpha release comparable to that observed with NECA alone. Treatment of cells with the adenosine A2A receptor selective antagonists 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5ylamino]ethyl)phenol (ZM 241385; 100 nM) and 5-amino-2-(2-furyl)-7-phenylethyl-pyrazolo[4,3-e]-1,2,4-triazolo[1,5c]pyrimidine (SCH 58261; 100 nM) and the adenosine A3 receptor selective antagonist N-[9-chloro-2-(2-furanyl)[1,2,4]-triazolo[1,5-c]quinazolin-5-benzeneacetamide (MRS 1220; 100 nM) partially blocked the inhibitory effects of NECA on lipopolysaccharide-induced TNF-alpha release. Combined addition of MRS 1220 and SCH 58261 completely blocked the inhibitory effects of NECA on lipopolysaccharide-induced TNF-alpha release. In conclusion, we have shown that the mouse dendritic cell line XS-106 expresses functional adenosine A2A and A3 receptors, which are capable of modulating TNF-alpha release.  相似文献   

18.
1. The present work characterizes, from a pharmacological and biochemical point of view, adenosine receptors in the human malignant melanoma A375 cell line. 2. Adenosine receptors were detected by RT - PCR experiments. A1 receptors were characterized using [3H]-DPCPX binding with a KD of 1.9+/-0.2 nM and Bmax of 23+/-7 fmol x mg(-1) of protein. A2A receptors were studied with [3H]-SCH 58261 binding and revealed a KD of 5.1+/-0.2 nM and a Bmax of 220+/-7 fmol x mg(-1) of protein. A3 receptors were studied with the new A3 adenosine receptor antagonist [3H]-MRE 3008F20, the only A3 selective radioligand currently available. Saturation experiments revealed a single high affinity binding site with KD of 3.3+/-0.7 nM and Bmax of 291+/-50 fmol x mg(-1) of protein. 3. The pharmacological profile of radioligand binding on A375 cells was established using typical adenosine ligands which displayed a rank order of potency typical of the different adenosine receptor subtype. 4. Thermodynamic data indicated that radioligand binding to adenosine receptor subtypes in A375 cells was entropy- and enthalpy-driven. 5. In functional assays the high affinity A2A agonists HE-NECA, CGS 21680 and A2A - A2B agonist NECA were able to increase cyclic AMP accumulation in A375 cells whereas A3 agonists Cl-IB-MECA, IB-MECA and NECA were able to stimulate Ca2+ mobilization. In conclusion, all these data indicate, for the first time, that adenosine receptors with a pharmacological and biochemical profile typical of the A1, A2A, A2B and A3 receptor subtype are present on A375 melanoma cell line.  相似文献   

19.
New N,5'-di- and N,2,5'-trisubstituted adenosine derivatives were synthesized in good overall yields. Appropriate 5-O-alkyl-substituted ribose moieties were coupled to 6-chloropurine or 2,6-dichloropurine via Vorbrüggen's glycosylation method. Subsequent amination and deprotection of the intermediates yielded compounds 18-35. Binding affinities were determined for rat adenosine A1 and A2A receptors and the human A3 receptor. The ability of compounds 18-35 to inhibit forskolin-induced (10 microM) cyclic AMP (cAMP) production and their ability to stimulate guanosine 5'-O-(3-[35S]thio)triphosphate ([35S]GTPgammaS) binding, via either the adenosine A1 receptor or the adenosine A3 receptor, were assessed. N-Cyclopentyl-substituted adenosine derivatives displayed affinities in the low nanomolar range for the adenosine A1 receptor, whereas N-(3-iodobenzyl)-substituted derivatives had high affinity for the adenosine A3 receptor. Compound 22 had the highest affinity for the adenosine A1 receptor (K(i) value of 16 nM), and compounds 20 and 26 had the highest affinities for the adenosine A3 receptor (K(i) values of 4 and 3 nM, respectively). A chlorine substituent at the 2-position either did not affect or slightly increased the adenosine A1 receptor affinity, whereas the A3 receptor affinity was affected differently, depending on the N-substituent. Furthermore, the introduction of chlorine slightly increased the A3/A1 selectivity ratio. At the 5'-position, an O-methyl substituent induced the highest adenosine A1 receptor affinity, whereas an O-ethyl substituent did so for the A3 receptor. All compounds showed partial agonistic effects in both the cAMP and [35S]GTPgammaS assays, although more marked in the latter assay. In general, the 2-chloro derivatives seemed to have lower intrinsic activities compared to the 2-H-substituted compounds on both the adenosine A1 and the adenosine A3 receptors. The compounds with an N-(3-iodobenzyl) substituent displayed the lowest intrinsic activities. Finally, all compounds also showed partially antagonistic behavior in the [35S]GTPgammaS assay.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号