首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Supraspinal effects were investigated in interneurones identified as mediating the disynaptic reciprocal Ia inhibition of motoneurones (referred to as “Ia inhibitory interneurones”). It was revealed that volleys in the vestibulospinal tract may evoke mono- and disynaptic EPSPs in interneurones monosynaptically excited from extensor muscles, i.e. extensor coupled Ia inhibitory interneurones. Flexor coupled interneurones instead received disynaptic inhibition. Volleys in the rubrospinal tract evoked a dominating polysynaptic excitation, usually mixed with inhibition, in flexor as well as extensor coupled interneurones. Disynaptic rubrospinal EPSPs and IPSPs were also revealed. The pyramidal tract also gives rise to a dominating polysynaptic excitation, usually mixed with inhibition, in flexor as well as extensor coupled Ia inhibitory interneurones. Rubrospinal and pyramidal volleys were shown to facilitate transmission in various segmental reflex pathways to the Ia inhibitory interneurones. A detailed comparison reveals a striking parallelism of segmental and supraspinal effects on α-motoneurones and Ia inhibitory interneurones connected to the same muscles. This considerably strengthens the hypothesis of an “α–γ-linkage in the reciprocal inhibition”.  相似文献   

2.
Stimulation of the contralateral red nucleus evoked monosynaptic EPSPs in 14 of 82 ventral spinocerebellar tract neurones. In some of these cells the monosynaptic EPSP was followed by a disynaptic IPSP. The remaining cell population received di- or polysynaptic PSPs from the rubrospinal tract, either EPSPs or IPSPs or both. Convergence of the rubrospinal tract onto interneurones of the segmental pathways projecting to VSCT cells was demonstrated. Rubrospinal volleys facilitated disynaptic Ia IPSPs evoked in VSCT neurones from both flexors and extensors, as well as disynaptic Ib IPSPs. Facilitation of the Ia interneurones was disynaptic whereas facilitation of Ib interneurones was monosynaptic. Disynaptic rubrospinal EPSPs and IPSPs were facilitated by volleys in ipsi- as well as in contralateral cutaneous and high threshold muscle afferents. The complex pattern of projections from the rubrospinal tract onto VSCT neurones and the related reflex pathways gives further support to the hypothesis that these tract cells convey information on transmission through interneurones of the spinal segmental mechanisms.  相似文献   

3.
Interneurones identified as mediating the disynaptic reciprocal Ia inhibition of motoneurones (referred to as "Ia inhibitory interneurones") were recorded in the lumbar spinal cord of the cat. Volleys in ipsilateral and contralateral high threshold muscle afferents, cutaneous and high threshold joint afferents evoked a mixture of polysynaptic excitation and inhibition. These effects were ascribed to pathways activated by flexor reflex afferents (FRA) and in addition a specific ipsilateral low threshold cutaneous pathway. Ia inhibitory interneurones excited monosynaptically from flexor nerves received stronger net excitation by volleys in ipsilateral FRA than did extensor coupled interneurones, while the opposite pattern was seen from the contralateral FRA. These patterns are similar to those found in flexor and extensor motoneurones respectivey. The FRA inhibition in Ia inhibitory interneurones was partly mediated by "opposite" Ia inhibitory interneurones, i.e. those which are mediating the Ia inhibition of Ia inhibitory interneurones. The extent to which the FRA inhibition is transmitted by Ia inhibitory interneurones was roughly estimated by its susceptibility to recurrent depression by antidromic ventral root stimulation. The main conclusion is that most segmental pathways seem to evoke their effects in parallel to motoneurones and Ia inhibitory interneurones which are monosynaptically linked to the same muscle. The functional importance of this conclusion is discussed in a following report.  相似文献   

4.
Stimulation of the contralateral red nucleus evoked monosynaptic EPSPs in 14 of 82 ventral spinocerebellar tract neurones. In some of these cells the monosynaptic EPSP was followed by a disynaptic IPSP. The remaining cell population received di- or polysynaptic PSPs from the rubrospinal tract, either EPSPs or IPSPs or both. Convergence of the rubrospinal tract onto interneurones of the segmental pathways projecting to VSCT cells was demonstrated. Rubrospinal volleys facilitated disynaptic Ia IPSPs evoked in VSCT neurones from both flexors and extensors, as well as disynaptic Ib IPSPs. Facilitation of the Ia interneurones was disynaptic whereas facilitation of Ib interneurones was monosynaptic. Disynaptic rubrospinal EPSPs and IPSPs were facilitated by volleys in ipsi- as well as in contralateral cutaneous and high threshold muscle afferents. The complex pattern of projections from the rubrospinal tract onto VSCT neurones and the related reflex pathways gives further support to the hypothesis that these tract cells convey information on transmission through interneurones of the spinal segmental mechanisms.  相似文献   

5.
Interneurones identified as mediating the disynaptic reciprocal Ia inhibition of motoneurones (referred to as “Ia inhibitory interneurones”) were recorded in the lumbar spinal cord of the cat. Volleys in ipsilateral and contralateral high threshold muscle afferents, cutaneous afferents and high threshold joint afferents evoked a mixture of polysynaptic excitation and inhibition. These effects were ascribed to pathways activated by flexor reflex afferents (FRA) and in addition a specific ipsilateral low threshold cutaneous pathway. Ia inhibitory interneurones excited monosynaptically from flexor nerves received stronger net excitation by volleys in ipsilateral FRA than did extensor coupled interneurones, while the opposite pattern was seen from the contralateral FRA. These patterns are similar to those found in flexor and extensor motoneurones respectively. The FRA inhibition in Ia inhibitory interneurones was partly mediated by “opposite” Ia inhibitory interneurones, i.e. those which are mediating the Ia inhibition of la inhibitory interneurones. The extent to which the FRA inhibition is transmitted by Ia inhibitory interneurones was roughly estimated by its susceptibility to recurrent depression by antidromic ventral root stimulation. The main conclusion is that most segmental pathways seem to evoke their effects in parallel to motoneurones and Ia inhibitory interneurones which are monosynaptically linked to the same muscle. The functional importance of this conclusion is discussed in a following report.  相似文献   

6.
Convergence of vestibulospinal and segmental effects onto spinal interneurones which project to the ventral spino-cerebellar tract (VSCT) neurones has been studied by intracellular recording in VSCT cells. The disynaptic Ia IPSPs evoked in a group of VSCT neurones from the quadriceps nerve are monosynaptically facilitated by the vestibulospinal tract while there was no facilitation of Ia IPSP evoked from a flexor nerve. These results support the view that Ia inhibition to VSCT cells and motoneurones is mediated by common interneurones. The disynaptic inhibition evoked in other VSCT cells from the vestibulospinal tract is facilitated by volleys in the contralateral flexor reflex afferents (FRA) or bilaterally from the FRA. It is postulated that these actions are mediated by collaterals of the interneurones responsible for the analogous effects in motoneurones. Findings are reported suggesting that the monosynaptic vestibulospinal EPSP in VSCT cells in most cases is collateral to the excitatory input to the last order interneurones of reflex pathways from the FRA to motoneurones and only exceptionally to the corresponding input to Ia inhibitory interneurones. In many VSCT cells the vestibulospinal tract evoked disynaptic EPSPs which are facilitated from the FRA; the functional significance of this action is uncertain. The results are consistent with the hypothesis that VSCT neurones signal information on interneuronal transmission to motoneurones.  相似文献   

7.
Summary A previously described inhibitory trisynaptic cortico-motoneuronal pathway (Illert et al., 1976a) was analysed in order to identify the two relay stations. Intracellular recording was made from motoneurones to elbow muscles. Corticospinal fibres were stimulated in the contralateral medullary pyramid.Pyramidal IPSPs were abolished by a transection of the Corticospinal tract in C2 but remained after a corresponding lesion in C5.After a C5 lesion pyramidal volleys facilitated transmission in the Ia inhibitory pathway with a time course suggesting disynaptic excitatory action on the Ia inhibitory interneurones.The trisynaptic pyramidal IPSPs were depressed by volleys in the appropriate recurrent motor axon collaterals as would be expected if these IPSPs were mediated by Ia inhibitory interneurones.It is concluded that trisynaptic cortico-motoneuronal inhibition is evoked by consecutive activation of propriospinal neurones in C3-C4 and segmental Ia inhibitory interneurones.Supported by the Deutsche ForschungsgemeinschaftIBRO/UNESCO Fellow  相似文献   

8.
Reflex pathways from group II muscle afferents   总被引:5,自引:0,他引:5  
The convergence of group II muscle afferents on interneurones in reflex pathways has been elucidated by investigating interaction in transmission to motoneurones. Recording was also made from interneurones activated from group II afferents. Maximal group II EPSPs evoked in motoneurones from different muscles (extensors or flexors and extensors) did not summate linearly but with a deficit of 35-40%. The corresponding deficit in summation with Ia EPSPs was 7%. It is suggested that the difference in deficit is caused largely by occlusion due to shared interneuronal discharge zones and that it gives an approximate minimal measure of the convergence of group II afferents from different muscles on the interneurones. Tests with weak group II volleys from different muscles gave no or little evidence for spatial facilitation in the disynaptic excitatory pathway to flexor motoneurones, and there was no or little temporal facilitation of transmission in this pathway. It is suggested that group II excitation of the interneurones in this pathway depends on few afferents giving large unitary EPSPs. Convergence of cutaneous afferents and joint afferents on the interneurones was evidenced by spatial facilitation from these afferents of group II transmission to motoneurones. Convergence on interneurones in the trisynaptic inhibitory pathway from group II afferents to extensor motoneurones was also investigated with the spatial facilitation technique. There was convergence on common interneurones of group II afferents from different muscles (extensors or flexors and extensors) and from cutaneous afferents as well as joint afferents. Trisynaptic group II IPSPs, including those depending on spatial facilitation from different muscles were resistant to recurrent depression from motor axon collaterals and are therefore not mediated by the reciprocal Ia inhibitory pathway. Interneurones with monosynaptic group II EPSPs were recorded from in the dorsal horn and intermediate region. Graded stimulation revealed large unitary EPSPs from few group II afferents. The EPSP evoked by a single group II afferent may produce firing (extracellular recording). Convergence of monosynaptic group II EPSPs from different muscles was rather limited but could be from flexors and extensors. Extensive multisensory convergence onto some of these interneurones was indicated by di- or polysynaptic EPSPs from group II and III muscle afferents, from joint afferents and from cutaneous afferents.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Summary With intracellular recording from forelimb motoneurones the spatial facilitation technique has been used to investigate interaction between descending pathways and forelimb afferents.As previously shown for the hindlimb, pyramidal volleys effectively facilitate interneuronal transmission in reflex pathways from different primary afferents. Evidence is presented suggesting disynaptic excitation from corticospinal fibres of interneurones in the reciprocal Ia inhibitory pathway. Interneurones of other reflex pathways from group I muscle afferents receive monosynaptic pyramidal excitation. During pyramidal facilitation volleys in cutaneous afferents may evoke PSPs in motoneurones after a central delay of 1.3 ms suggesting that the minimal linkage is disynaptic.Information regarding convergence on the neurones intercalated in the disynaptic cortico-motoneuronal pathway was obtained by investigating the effect from primary afferents and from other descending pathways on the disynaptic pyramidal EPSPs. Volleys in cutaneous and group I muscle afferents facilitate transmission in the disynaptic cortico-motoneuronal pathway with a time course showing oligosynaptic (probably monosynaptic) action on the intercalated neurone. Rubrospinal volleys likewise effectively facilitate disynaptic cortico-motoneuronal transmission with a time course showing monosynaptic action on the intercalated neurone. Spatial facilitation experiments involving three tests revealed that those intercalated neurones which receive convergent monosynaptic excitation from corticospinal and rubrospinal fibres are excited also from cutaneous forelimb afferents.Disynaptic cortico-motoneuronal transmission was also monosynaptically facilitated by stimuli in the dorsal mesencephalic tegmentum probably activating tectospinal fibres. Disynaptic, presumed tectospinal EPSPs were facilitated from cutaneous forelimb afferents.The convergence onto the neurones intercalated in the disynaptic excitatory cortico-motoneuronal pathway suggests that these neurones integrate the activity in different descending pathways and primary forelimb afferents.Supported by the Deutsche ForschungsgemeinschaftIBRO/UNESCO Fellow  相似文献   

10.
1. Interneurones monosynaptically excited from large muscle spindle (Ia) afferents and inhibited from motor axon collaterals were searched for in the lumbar spinal cord of the cat.2. Monosynaptic Ia excitation was found in sixty-seven of sixty-nine interneurones inhibited by antidromic volleys. These interneurones were excited from Ia afferents from one or a few muscles (mainly close synergists). Volleys in high threshold muscle and skin afferents (FRA) evoked polysynaptic excitation or inhibition. Weak inhibition from Ia afferents (from antagonists to those giving Ia excitation) was seen in a few cells. Monosynaptic excitation was evoked from the ventral quadrant of the spinal cord and polysynaptic excitation from the dorsal quadrant.3. Inhibition from motor axon collaterals was evoked with a latency (1.2-2.0 msec) suggesting a disynaptic linkage and had the same time course as in motoneurones. It prevented synaptic activation of 60% of interneurones and decreased the firing index and delayed generation of spikes in the remaining.4. The interneurones with convergence of monosynaptic Ia excitation and inhibition from motor axon collaterals were found in the ventral horn dorsomedial to motor nuclei. No inhibition by antidromic volleys could be detected in interneurones located in intermediate nucleus and activated monosynaptically from Ia, Ib, group I or cutaneous afferents.5. It was concluded that the ventral Ia interneurones inhibited by volleys in recurrent motor axon collaterals mediate the reciprocal Ia inhibition to motoneurones.  相似文献   

11.
Interneurones identified as mediating the disynaptic reciprocal Ia inhibition of motoneurones (referred to as "Ia inhibitory interneurones") were recorded in the lumbar spinal cord of the cat. It was revealed that the Ia inhibitory interneurones themselves receive disynaptic Ia inhibition. The muscles from which this inhibition is evoked are strictly antagonistic to those supplying their Ia excitation. Similar to the Ia inhibition in motoneurones the Ia inhibition in the Ia inhibitory interneurones is decreased when preceded by an antidromic stimulation of ventral roots. Furthermore, transmission of Ia inhibition to the Ia inhibitory interneurones is facilitated from ipsilateral and contralateral primary afferents as well as several supraspinal pathways analogous to earlier findings for the Ia inhibition of motoneurones. The pattern and control of the Ia inhibition of motoneurones and of Ia inhibitory interneurones display so striking similarities that it is suggested that identical interneurones are responsible. The conclusion thus emerges that "opposite" Ia inhibitory interneurones (i.e. interneurones monosynaptically connected to antagonistic muscles) are mutually inhibiting each other. The functional significance of this organization is discussed.  相似文献   

12.
Interneurones identified as mediating the disynaptic reciprocal Ia inhibition of motoneurones (referred to as “Ia inhibitory interneurones”) were recorded in the lumbar spinal cord of the cat. It was revealed that the Ia inhibitory interneurones themselves receive disynaptic Ia inhibition. The muscles from which this inhibition is evoked are strictly antagonistic to those supplying their Ia excitation. Similar to the Ia inhibition in motoneurones the Ia inhibition in the Ia inhibitory interneurones is decreased when preceded by an antidromic stimulation of ventral roots. Furthermore, transmission of Ia inhibition to the Ia inhibitory interneurones is facilitated from ipsilateral and contralateral primary afferents as well as several supraspinal pathways analogous to earlier findings for the Ia inhibition of motoneurones. The pattern and control of the Ia inhibition of motoneurones and of Ia inhibitory interneurones display so striking similarities that it is suggested that identical interneurones are responsible. The conclusion thus emerges that “opposite” Ia inhibitory interneurones (i.e. interneurones monosynaptically connected to antagonistic muscles) are mutually inhibiting each other. The functional significance of this organization is discussed.  相似文献   

13.
Summary Stimulation of the contralateral pyramid and intracellular recording from forelimb motoneurones was used to investigate corticomotoneuronal pathways in the cat.A train of pyramidal volleys evokes short-latency EPSPs in flexor motoneurones and in many extensor motoneurones. The latency for the on-set after the effective pyramidal volley — usually the third — strongly indicates a disynaptic linkage. These disynaptic EPSPs were common in triceps motoneurones to fast heads but rare in those to slow heads.Pyramidal IPSPs with a slightly longer latency, suggesting a trisynaptic linkage, were found in both flexor and extensor motoneurones. They were common in motoneurones to slow heads of triceps. Disynaptic pyramidal IPSPs were found only occasionally.In addition pyramidal volleys may evoke late large EPSPs and/or IPSPs in any combination with the short-latency PSPs.Supported by the Deutsche ForschungsgemeinschaftIBRO/UNESCO Fellow  相似文献   

14.
1. The pattern of depression of Ia IPSPs by volleys in recurrent motor axon collaterals was investigated in motoneurones supplying hind-limb muscles in the cat. The test IPSPs were evoked by stimulation of dorsal roots and the conditioning antidromic volleys by stimulation of motor fibres in different peripheral muscle nerves.2. In all motor nuclei investigated the strongest depression of Ia IPSPs is evoked from motor fibres to muscles whose Ia afferents produce the IPSPs. For example, the Ia IPSP from the knee extensor recorded in motoneurones to a knee flexor is most effectively depressed by antidromic stimulation of motor fibres to the knee extensor.3. The origin of recurrent inhibition of alpha-motoneurones and of Ia inhibitory interneurones with the same Ia input display a striking similarity. This suggests that the same population of Renshaw cells mediates effects to motoneurones and to Ia inhibitory interneurones.4. The functional significance of impulses in motor axon collaterals was discussed and it was suggested that they have an important role in the control of the excitatory as well as inhibitory Ia actions to motoneurones. The recurrent inhibition may limit the Ia effects to excitation of homonymous motoneurones, which would provide optimal conditions for control of individual muscles via the gamma-loop.  相似文献   

15.
The action of volleys in contralateral primary afferents on transmission in the Ia inhibitory pathways to motoneurones was investigated with intracellular recording from motoneurones. Ia IPSPs in flexor as well as most extensor motoneurones were regularly facilitated by volleys in contralateral high threshold muscle, cutaneous and joint afferents in spinal cats under chloralose anaesthesia. In decerebrate cats with a low pontine lesion transmission in Ia inhibitory pathways was not facilitated but rather depressed by volleys in these afferents. The recurrent effects from motor axon collaterals were investigated on inhibitory transmission from different contralateral afferents to motoneurones. Previous investigations have shown that the interneurones mediating the reciprocal Ia inhibition receive recurrent inhibition via motor axon collaterals and Renshaw cells. Now a strong positive correlation was revealed between recurrent depression of IPSPs evoked from different contralateral afferents and facilitation of Ia IPSPs by the same afferent volleys. These results suggest that the recurrent depression of IPSPs from different contralateral primary afferents depends on their excitatory convergence onto the Ia inhibitory interneurones, which then partly mediate the IPSP evoked in the motoneurone from these afferents.  相似文献   

16.
Summary The effect of corticospinal volleys evoked by stimulation of the contralateral pyramid was investigated using intracellular recordings from motoneurones to forelimb muscles. Confirming and extending previous observations (Illert et al. 1977, lllert and Wiedemann 1984), short latency EPSPs within a disynaptic range were evoked by a train of pyramidal volleys in all varieties of shoulder, elbow, wrist and digit motoneurones. The amplitude of pyramidal EPSPs was sensitive to the stimulus repetition rate. Maximal amplitudes were observed around 2–4 Hz, while at 10 Hz the early EPSP was markedly reduced and the long latency EPSP abolished. The persistence of disynaptic EPSPs after a corticospinal transection in C5/C6 suggested that, for all types of forelimb motor nuclei, disynaptic EPSPs are relayed by C3–C4 propiospinal neurones (PNs) (c.f. Illert et al. 1977). The transection, however, caused a clear reduction in the EPSP of all motoneurone types. After a ventral lesion of the lateral funicle in C5/C6 interrupting the axons of the C3–C4 PNs, disynaptic (and possibly trisynaptic) EPSPs were evoked by a short train of pyramidal volleys. It is postulated that intercalated neurones in a disynaptic cortico-motoneuronal pathway also exist in the forelimb segments. Disynaptic pyramidal IPSPs were observed in most types of forelimb motor nuclei both before and after a corticospinal transection in C5/C6. At all joints, pyramidal excitation dominated in motoneurones to physiological flexors, while in extensor motoneurones mixed excitation and inhibition or dominant inhibition was common. Comparison of pyramidal effects in slow motoneurones (classified according to the after-hyperpolarization duration) to the long head of the triceps and anconeus revealed dominant excitation in the former and inhibition in the latter. It is suggested that the slow motor units in these muscles differ in their function although both muscles are elbow extensors.This work was supported by the Swedish Medical Research Council (project no. 94 and 6953)  相似文献   

17.
Summary The H-reflex technique was used to collect indirect evidence for changes in excitability of the interneurones mediating reciprocal Ia inhibition between wrist extensors and flexors. Stimulating the radial nerve results in an inhibition of the flexor carpi radialis (FCR) H-reflex and evidence has previously been presented that the early phase of inhibition is mediated by extensor-coupled Ia interneurones (Ext Ia INs), i.e. by inhibitory interneurones fed by muscle spindle Ia afferents from wrist extensors. Variations in the level of this inhibition were used to assess changes in excitability of Ext Ia INs. Stimulation of group I fibres from flexors was shown to depress the reference Ia inhibition, i.e. to inhibit the Ext Ia INs. The central latency of this interneuronal inhibition was compatible with a disynaptic linkage between flexor Ia afferents and Ext Ia INs. Its threshold and time course profile could almost exactly be superimposed on those of reciprocal Ia inhibition from flexors to extensor carpi radialis (ECR) motoneurones (MNs). This suggests that the Ia inhibitions to extensor MNs and extensor Ia INs are collateral effects mediated by the same flexor-coupled Ia interneurones. In two subjects, in whom it was possible to elicit an H-reflex in the ECR, inhibition of flexor-coupled Ia interneurones by activation of extensor Ia interneurones could similarly be demonstrated.  相似文献   

18.
Interneuronal convergence of corticospinal and segmental pathways involved with the generation of extensor activities during locomotion was investigated in decerebrate and partially spinalized cats. L-dihydroxyphenylalanine (L-DOPA) was slowly injected until long-latency, long-lasting discharges could be evoked by the stimulation of contralateral flexor reflex afferents (coFRA) and the group I autogenetic inhibition was reversed to polysynaptic excitation in extensor motoneurons. Under these conditions, we stimulated in alternation the contralateral pyramidal tract (PT), group I afferents from knee and ankle extensor muscles, and both stimuli together. We did the same for the stimulation of PT and of coFRA. Clear polysynaptic EPSPs could be evoked from all three sources in 32 extensor motoneurons. Convergence was inferred from spatial facilitation, which occurred when the amplitude of the EPSPs evoked by the combined stimuli was notably larger than the algebraic sum of the EPSPs evoked by individual stimulation. Spatial facilitation was found between PT and extensor group I inputs in 30/59 tests (51%) in 20 motoneurons and in all cases (6/6) between PT and coFRA in six motoneurons. When fictive locomotion was induced with further injection of L-DOPA, PT descending volleys from the same stimulating site could reset the stepping rhythm by initiating bursts of activity in all extensors. These results indicate that at least some of the corticospinal fibers project onto interneurons shared by the coFRA and the polysynaptic excitatory group I pathways to extensors. The implications of such convergence patterns on the organization of the extensor "half-center" for locomotion are discussed.  相似文献   

19.
A further analysis has been made of inhibitory pathways to motoneurones via C3-C4 propriospinal neurones (PNs). Intracellular recording was made from triceps brachi motoneurones and effects from higher centres and forelimb afferents on corticospinal IPSPs were investigated after transection of the corticospinal tract at the C5/C6 border. The shortest latencies of the IPSPs evoked by stimulation of the pyramid were as brief as those of the pyramidal EPSPs (Illert et al. 1977). It is postulated that the minimal linkage of the pyramidal IPSPs is disynaptic via inhibitory C3-C4 PNs projecting directly to motoneurones. It was confirmed that pyramidal IPSPs usually are depressed by volleys in forelimb motor axon collaterals (Illert and Tanaka 1978). A quantitative comparison was made of the recurrent depression of pyramidal IPSPs and of IPSPs caused by activation of the Ia inhibitory interneurones. The result support the hypothesis of two parallel inhibitory cortico-motoneuronal pathways via C3-C4 PNs, one disynaptic via the inhibitory PNs and the other trisynaptic via excitatory PNs and Ia inhibitory interneurones. Pyramidal volleys also evoked late IPSPs which in some cases were not depressed from forelimb motor axon collaterals. It is postulated that the late IPSPs are partly due to activation of inhibitory C3-C4 PNs. Disynaptic pyramidal IPSPs were effectively facilitated by volleys in rubro-, tecto- and reticulospinal fibres - but not from vestibulospinal fibres - showing a convergence from the former descending tracts on common inhibitory C3-C4 PNs. Projection from forelimb afferents and corticospinal fibres on common inhibitory C3-C4 PNs was revealed by strong facilitation of disynaptic pyramidal IPSPs from cutaneous forelimb afferents. No corresponding effect was evoked from C2 neck afferents. Stimulation in the lateral reticular nucleus (LRN) evoked monosynaptic IPSPs in some motoneurones. The results of threshold mapping in and around the LRN suggest that the IPSPs are caused by antidromic stimulation of ascending collaterals of inhibitory neurones also projecting to motoneurones, possibly the inhibitory C3-C4 PNs.  相似文献   

20.
Summary Intracellular recording was made in the C3-C4 segments from cell bodies of a previously described system of propriospinal neurones (PNs), which receive convergent monosynaptic excitation from different higher motor centres and mediate disynaptic excitation and inhibition from them to forelimb motoneurones. Inhibitory effects in these PNs have now been investigated with electrical stimulation of higher motor centres and forelimb nerves. Short-latency IPSPs were evoked by volleys in the cortico-, rubro- and tectospinal tracts and from the reticular formation. Latency measurements showed that those IPSPs which required temporal summation were disynaptically mediated. After transection of the corticospinal tract in C2, only small and infrequent disynaptic IPSPs were evoked from the pyramid. It is postulated that disynaptic pyramidal IPSPs only to a small extent are evoked by monosynaptic excitation of reticulospinal inhibitory neurones known to project directly to the PNs, and that they are mainly mediated by inhibitory interneurones in the C3-C4 segments. Tests with spatial facilitation revealed monosynaptic excitatory convergence from tecto-, rubro- and probably also from reticulospinal fibres on inhibitory interneurones monosynaptically excited from corticospinal fibres (interneuronal system I). Disynaptic IPSPs were also evoked in the great majority of the PNs by volleys in forelimb muscle and skin nerves. A short train of volleys was usually required to evoke these IPSPs from group I muscle afferents. In the case of cutaneous nerves and mixed nerves single volleys were often effective, and the lack of temporal facilitation of IPSPs produced by a train of volleys showed strong linkage from these nerves. The results obtained after transection of the dorsal column at different levels show that the relay is almost entirely rostral to the forelimb segments. Test with spatial facilitation revealed that interneurones monosynaptically activated from forelimb afferents receive convergent excitation from corticospinal but not or only weakly so from tecto- or rubrospinal fibres. There was also convergence from group I muscle afferents and low threshold cutaneous afferents on common interneurones. It is postulated that the disynaptic IPSPs from forelimb afferents are mediated by inhibitory interneurones (interneuronal system II) other than those receiving convergent descending excitation. Volleys in corticospinal fibres, in addition to the disynaptic IPSPs, evoke late IPSPs in the PNs. Similar late IPSPs were evoked from the ipsilateral forelimb by stimulation of the FRA. Monosynaptic IPSPs were evoked in the majority of the PNs on weak stimulation of the lateral reticular nucleus (LRN) and from regions dorsal to it. Results from threshold mapping suggest that these IPSPs are due to antidromic stimulation of ascending inhibitory neurones which also project to the C3-C4 PNs, and that the ascending collaterals terminate in the LRN or/and the base of the cuneate nuclei. Activity in the ascending collaterals may give higher centres information regarding inhibitory control of the PNs. It is postulated that interneuronal system I subserves descending feed-forward inhibition and interneuronal system II feed-back inhibition from the forelimb of transmission through the C3-C4 PNs to motoneurones.This work was supported by the Swedish Medical Research Council (project no. 94)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号