首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
目的 探讨常规头部CT采用管电流自动调节技术(即TCM螺旋扫描模式)能否降低照射剂量和提高影像质量。方法 50例成人患者,分别接受常规头部CT的TCM螺旋和常规轴扫模式,常规轴扫参数:140 kV,170mA用于颅底部;120 kV,150 mA用于颅脑部,2s/周。TCM螺旋扫描参数:120 kV,280 mA(最大管电流阈值),0.8 s/周。扫描剂量直接取自设备剂量指示值(CTDI和DLP)。影像质量分别由两位专家采用双盲法,对头部CT的颅底、脑灰-白质层面以及全部影像逐层进行CT值、信噪比测量以及综合评估。结果 常规头部CT采用TCM螺旋扫描模式较轴扫模式可使患者有效降低管电流使用量(44±12)mA,扫描时间(4.8±0.8)s,照射剂量(38±0.9)%:[CTDI:(32.10±9.0)mGy、(55.00±7.2)mGy;DLP(442.10±72)mGy·cm、(668.00±26)mGy·cm];经计算人体吸收剂量可降低(1.5±0.4)mSv,并可有效提高影像质量。结论 经两种不同扫描模式所得影像的CT值测量结果及其他影像质量参数的对照,应用TCM螺旋扫描模式的影像质量完全可与轴扫描模式相媲美,同时具有可减少扫描时间和照射剂量的优越性。  相似文献   

2.
As CT scanners are more routinely used as a guidance tool for various types of interventional radiological procedures, concern has grown for high patient and staff doses. CT fluoroscopy provides the physician immediate feedback and can be a valuable tool to dynamically assist various types of percutaneous interventions. However, the fixed position of the scanning plane in combination with high exposure factors may lead to high cumulative patient skin doses that can reach deterministic threshold limits. The staff is also exposed to a considerable amount of scatter radiation while standing next to the patient during the procedures. Although some studies have been published dealing with this subject, data of patient skin doses determined by direct in vivo dosimetry remains scarce. The purpose of this study is to quantify and to evaluate both patient and staff doses by direct thermoluminescent dosimetry during various clinical CT fluoroscopy guided procedures. Patient doses were quantified by determining the entrance skin dose with direct thermoluminescent dosimetry and by estimating the effective dose (E). Staff doses were quantified by determining the entrance skin dose at the level of the eyes, thyroid, and both the hands with direct thermoluminescent dosimetry. For a group of 82 consecutive patients, the following median values were determined (data per procedure): patient E (19.7 mSv), patient entrance skin dose (374 mSv), staff entrance skin dose at eye level (0.21 mSv), thyroid (0.24 mSv), at the left hand (0.18 mSv), and at the right hand (0.76 mSv). The maximum recorded patient entrance skin dose stayed well below the deterministic threshold level of 2 Gy. Poor correlation between both patient/staff doses and integrated procedure mAs emphasizes the need for in vivo measurements. CT fluoroscopy doses are markedly higher than classic CT-scan doses and are comparable to doses from other interventional radiological procedures. They consequently require adequate radiation protection management. An important potential for dose reduction exists by limiting the fluoroscopic screening time and by reducing the tube current (mA) to a level sufficient to provide adequate image quality.  相似文献   

3.
Gafchromic film has been used for measurement of computed tomography (CT) dose distributions within phantoms. The film was calibrated in the beam from a superficial therapy unit and the accuracy confirmed by comparison with measurements with a 20 mm long ionisation chamber. The results have been used to investigate approaches to CT dosimetry. Dose profiles were recorded within standard CT head and body phantoms and scatter tail data fitted to exponential functions and extrapolated to predict dose levels in longer phantoms. The data have been used to simulate both CT dose index (CTDI) measurements with ionisation chambers of differing length and measurements of cumulative doses with a 20 mm chamber for scans of varying length. The results show that the length of a pencil ionisation chamber is the most significant factor affecting measurements of weighted CTDI (CTDI(w)) and a 100 mm chamber would record 50-61% of the dose measured with a 450 mm one. The cumulative dose measured at the centre of a 150 mm long body phantom records over 70% of the equilibrium dose from a helical scan of a longer phantom. For routine CT dosimetry tests, the determination of correction factors could allow measurements with a 100 mm chamber to be used to derive the CTDI that would be recorded with a longer chamber, and cumulative doses measured with a 20 mm chamber in shorter phantoms to be used to calculate equilibrium doses for helical scans.  相似文献   

4.
Optically-stimulated luminescent (OSL) nanoDot dosimeters, commercially available from Landauer, Inc. (Glenwood, IL), were assessed for use in computed tomography (CT) for erasure and reusability, linearity and reproducibility of response, and angular and energy response in different scattering conditions. Following overnight exposure to fluorescent room light, the residual signal on the dosimeters was 2%. The response of the dosimeters to identical exposures was consistent, and reported doses were within 4% of each other. The dosimeters responded linearly with dose up to 1 Gy. The dosimeter response to the CT beams decreased with increased tube voltage, showing up to a -16% difference when compared to a 0.6-cm(3) NIST-traceable calibrated ionization chamber for a 135 kVp CT beam. The largest range in percent difference in dosimeter response to scatter at central and peripheral positions inside CTDI phantoms was 14% at 80 kVp CT tube voltage, when compared to the ionization chamber. The dosimeters responded uniformly to x-ray tube angle over the ranges of increments of 0° to 75° and 105° to 180° when exposed in air, and from 0° to 360° when exposed inside a CTDI phantom. While energy and scatter correction factors should be applied to dosimeter readings for the purpose of determining absolute doses, these corrections are straightforward but depend on the accuracy of the ionization chamber used for cross-calibration. The linearity and angular responses, combined with the ability to reuse the dosimeters, make this OSL system an excellent choice for clinical CT dose measurements.  相似文献   

5.
Fetterly KA 《Health physics》2010,99(5):624-630
Minimizing the x-ray radiation dose is an important aspect of patient safety during interventional fluoroscopy procedures. This work investigates the practical aspects of an additional 0.1 mm Cu x-ray beam spectral filter applied to cine acquisition mode imaging on patient dose and image quality. Measurements were acquired using clinical interventional imaging systems. Acquisition images of Solid Water phantoms (15-40 cm) were acquired using x-ray beams with the x-ray tube inherent filtration and using an additional 0.1 mm Cu x-ray beam spectral filter. The skin entrance air kerma (dose) rate was measured and the signal difference to noise ratio (SDNR) of an iodine target embedded into the phantom was calculated to assess image quality. X-ray beam parameters were recorded and analyzed and a primary x-ray beam simulation was performed to assess additional x-ray tube burden attributable to the Cu filter. For all phantom thicknesses, the 0.1 mm Cu filter resulted in a 40% reduction in the entrance air kerma rate to the phantoms and a 9% reduction in the SDNR of the iodine phantom. The expected additional tube load required by the 0.1 mm Cu filter ranged from 11% for a 120 kVp x-ray beam to 43% for a 60 kVp beam. For these clinical systems, use of the 0.1 mm Cu filter resulted in a favorable compromise between reduced skin dose rate and image quality and increased x-ray tube burden.  相似文献   

6.
目的:通过分析介入手术治疗中数字减影血管造影(DSA)参数,探讨减少辐射吸收剂量的途径及防护方法.方法:对随机选取的1200例各类介入手术操作时DSA机器的管电压、管电流和透视时间的资料进行统计分析,研究在介入手术治疗中影响吸收剂量的相关因素.结果:心脏冠状动脉支架术和室上速射频消融术所需透视时间最长,此时的管电流、管电压数值最大,因此应特别注意在行心脏介入手术治疗过程中的吸收剂量,并做好辐射防护.结论:合理应用DSA机器,正确使用缩光器、减少透视时间和每秒脉冲率是减少吸收剂量的有效方法  相似文献   

7.
In order to establish an organ and effective dose database for Iranian children undergoing computed tomography (CT) examinations, in the first step, two Iranian 11-year-old phantoms were constructed from image series obtained from CT and magnetic resonance imaging (MRI). Organ and effective doses for these phantoms were calculated for head, chest, abdomen–pelvis and chest–abdomen–pelvis (CAP) scans at tube voltages of 80, 100 and 120 kVp, and then they were compared with those of the University of Florida (UF) 11-year-old male phantom. Depth distributions of the organs and the mass of the surrounding tissues located in the beam path, which shield the internal organs, were determined for all phantoms. From the results, it was determined that the main organs of the UF phantom receive smaller doses than the two Iranian phantoms, except for the urinary bladder of the Iranian girl phantom. In addition, the relationship between the anatomical differences and the size of the dose delivered was also investigated and the discrepancies between the results were examined and justified.  相似文献   

8.
目前CT已成为疾病诊断的一种重要手段。与常规CT相比,能谱CT最显著的特征就是提供了多种定量分析工具与多参数成像为基础的综合诊断模式,如基物质图像、单能量图像、能谱曲线等。其独特的多参数成像模式给长期习惯于单一诊断模式的影像科医生提出了前所未有的挑战,熟悉其成像原理、影像表现与应用价值是非常必要的。本文首先回顾了能量CT研发的必要性及其实现途径;随后深入剖析了单源瞬时kVp切换能谱成像的物理基础,并介绍了实现该技术所必需的解析技术;接着从基础实验的角度,展现了能谱成像能够在更低剂量条件下保证同常规CT一致的图像质量。  相似文献   

9.
目的:探讨正弦图确定迭代重建(SAFIRE)技术在降低胸部扫描剂量中的应用价值。方法选取2013年11月于我院作胸部CT检查的80例患者,将患者随机分成两组(对照组和低剂量组),每组各40人。对照组采用管电压130 kV和滤波反投影(FBP)重建技术,低剂量组采用管电压80 kV和SAFIRE(Strength 3级)技术。分别测量两组气管分杈层面降主动脉和同层背部肌肉的CT值及其标准差(SD)、信噪比(SNR)、对比噪声比(CNR);记录两组患者的CT剂量指数(CTDI)、剂量长度乘积(DLP),并估算有效剂量(ED)。由两名医师对图像质量采用5分制进行评估,并用Kappa检验评价医师评分结果的一致性。结果对照组的CTDI为(6.71±1.06)mGy,DLP为(237.75±45.76) mGy·cm,ED为(3.33±0.64) mSv;低剂量组的CTDI为(2.08±0.28) mGy, DLP为(78.53±11.35) mGy·cm,ED为(1.10±0.16) mSv;两组差异均有统计学意义(P<0.05)。对照组的SNR为(6.84±1.83),CNR为(2.25±1.05);低剂量组的SNR为(6.43±1.32),CNR为(1.99±1.41),两组差异均无统计学意义(P>0.05)且图像质量均能满足临床诊断要求,医师间的评估结果具有较好的一致性(Kappa=0.764)。结论胸部低剂量CT结合SAFIRE技术,可在不影响诊断效果的情况下,显著降低辐射剂量。  相似文献   

10.
目的 全省CT机辐射剂量水平与低对比度分辨力之间的关系。方法 根据卫生部规定的统一方法[1] 。结果  177台CT机 ,头部中心平均CTDI2 7.8mGy ,体部中心平均CTDI9.2mGy ;177台CT机中 2 1台低对比度检测不合格和合格时头部中心平均CTDI分别为 :2 3.9mGy、39.7mGy。 5 6台一手机中有 3台低对比度分辨力首次检测不合格。结论 低对比度分辨力在头部中心剂量 30mGy~ 5 0mGy为最佳 ,同时必须加强对CT机检测 ,才能保证其应用质量  相似文献   

11.
目的:研究双源CT设备在自动管电流调节下扫描对图像质量的影响,分析辐射剂量与图像质量之间的关系。方法:在双源CT对胸部、腹部扫描时进行剂量测量,探讨辐射剂量与图像质量的协调关系,在二者之间找到了最佳的平衡点。结果:双源CT设备在自动管电流调节下扫描,可平均降低15%的辐射剂量。结论:在保证图像质量的前提下.双源CT设备既能为临床提供准确的影像诊断信息,又能最大程度地降低辐射剂量。  相似文献   

12.
Without the knowledge of reference dose levels (RDLs) from computed tomography (CT) examinations, the optimal dose to patients undergoing CT examinations cannot be realised. The aim of this study was therefore to assess the radiation dose levels from CT examinations according to reference dose quantities proposed by the European Commission (EC) guidelines. The dosimetric quantities proposed in the EC for CT are weighted CT dose index (CTDI(w)) for a single slice and dose-length product (DLP) for a complete examination. The RDLs from five common CT examinations were obtained from eight hospitals. The RDLs in terms of CTDI(w) and DLP were estimated from measurements of CTDI in standard phantoms using typical exposure parameters. Mean values of CTDI(w) for head and lumbar spine had a range of 25-77 and 18-47 mGy, respectively, while those for chest, abdomen and pelvis had a range of about 11-25 mGy, respectively. Mean values of DLP for head, chest and abdomen had a range of 610-1684, 496-992 and 717-1428 mGy cm, respectively, while those for lumbar spine and pelvis had a range of 200-382 and 526-1302 mGy cm, respectively. Wide variations of mean CTDI(w) and DLP values among hospitals observed for similar CT examinations were mainly attributed to the variations of CT scanning protocols and scanner types. The mean CTDI(w) values per examination for almost all hospitals were below proposed RDLs, while the mean DLP values per examination were almost all above the proposed RDLs for all except one hospital. These were mainly influenced by the large scan length used in Tanzanian hospitals. In order to achieve the required level of dose for establishment of the national RDLs, it was concluded that further investigation of optimization of scanning protocols is needed.  相似文献   

13.
Small animal CT imaging and dosimetry usually rely on X-ray radiation produced by X-ray tubes. These X-rays typically cover a large energy range. In this study, we compared poly-energetic X-ray spectra against estimated equivalent (effective) mono-energetic beams with the same number of simulated photons for small animal CT imaging and dosimetry applications. Two poly-energetic X-ray spectra were generated from a tungsten anode at 50 and 120 kVp. The corresponding effective mono-energetic beams were established as 36 keV for the 50 kVp spectrum and 49.5 keV for the 120 kVp spectrum. To assess imaging applications, we investigated the spatial resolution by a tungsten wire, and the contrast-to-noise ratio in a reference phantom and in a realistic mouse phantom. For dosimetry investigation, we calculated the absorbed dose in a segmented digital mouse atlas in the skin, fat, heart and bone tissues. Differences of 2.1 and 2.6% in spatial resolution were respectively obtained between the 50 and 120 kVp poly-energetic spectra and their respective 36 and 49.5 keV mono-energetic beams. The differences in contrast-to-noise ratio between the poly-energetic 50 kVp spectrum and its corresponding mono-energetic 36 keV beam for air, fat, brain and bone were respectively ?2.9, ?0.2, 11.2 and ?4.8%, and similarly between the 120 kVp and its effective energy 49.5 keV: ?11.3, ?20.2, ?4.2 and ?13.5%. Concerning the absorbed dose, for the lower X-ray beam energies, 50 kVp against 36 keV, the poly-energetic radiation doses were higher than the mono-energetic doses. Instead, for the higher X-ray beam energies, 120 kVp and 49.5 keV, the absorbed dose to the bones and lungs were higher for the mono-energetic 49.5 keV. The intensity and energy of the X-ray beam spectrum have an impact on both imaging and dosimetry in small animal studies. Simulations with mono-energetic beams should take into account these differences in order to study biological effects or to be compared to experimental data.  相似文献   

14.
目的 了解儿童CT检查有效剂量水平,为儿童CT扫描辐射危险评价提供依据。方法 通过测量CT剂量指数,计算得到剂量长度乘积(DLP),利用DLP与有效剂量E之间的相关性、线性关系及儿童相对于成人的归一化系数,估算儿童CT检查不同扫描部位的有效剂量。结果 儿童CT扫描有效剂量已达到年自然本底辐射水平。结论 对于儿童辐射危险度的评价,有效剂量存在一定的局限性。  相似文献   

15.
The fundamental radiation dose parameter in computed tomography (CT) is the CT dose index (CTDI), which is an integral under the radiation dose profile of a single axial scan normalized to the nominal x-ray beam width. It estimates the average dose from a multiple-scan examination and is a directly measurable and standardized quantity. From this information, the dose length product (DLP) is calculated, which estimates the total dose delivered over a specific scan length. Finally, effective dose can be estimated and used to reflect the risk of a non-uniform exposure in terms of a whole-body exposure. To manage dose from CT while maintaining diagnostic image quality, scanner manufacturers have implemented tube current modulation, which may occur angularly around the patient, along the long axis of the patient, or both. Dose reductions of 20 to 50% have been reported using tube current modulation schemes. In the past two decades, the capabilities of CT imaging have expanded tremendously, including narrower image widths, improved temporal and spatial resolution, shorter scan times, and cardiac imaging techniques. Yet, the dose per typical exam (e.g., routine abdominal CT) has decreased by a factor of two or more over the same time period. Therefore, patients should be reassured that the benefits of medically-justified and appropriately-performed CT examinations are associated with radiation doses that continue to decrease as technology continues to evolve.  相似文献   

16.
Radiographic imaging systems can produce records of exposure and dose parameters for each patient. A variety of file formats are in use including plain text, bit map images showing pictures of written text and radiation dose structured reports as text or extended markup language files. Whilst some of this information is available with image data on the hospital picture archive and communication system, access is restricted to individual patient records, thereby making it difficult to locate multiple records for the same scan protocol. This study considers the exposure records and dose reports from four modalities. Exposure records for mammography and general radiography are utilized for repeat analysis. Dose reports for fluoroscopy and computed tomography (CT) are utilized to study the distribution of patient doses for each protocol. Results for dosimetric quantities measured by General Radiography, Fluoroscopy and CT equipment are summarised and presented in the Appendix. Projection imaging uses the dose (in air) area product and derived quantities including the dose to the reference point as a measure of the air kerma reaching the skin, ignoring movement of the beam for fluoroscopy. CT uses the dose indices CTDIvol and dose length product as a measure of the dose per axial slice, and to the scanned volume. Suitable conversion factors are identified and used to estimate the effective dose to an average size patient (for CT and fluoroscopy) and the entrance skin dose for fluoroscopy.  相似文献   

17.
Spectral computed tomography (CT) is an up and coming imaging modality which shows great promise in revealing unique diagnostic information. Because this imaging modality is based on X-ray CT, it is of utmost importance to study the radiation dose aspects of its use. This study reports on the implementation and evaluation of a Monte Carlo simulation tool using TOPAS for estimating dose in a pre-clinical spectral CT scanner known as the MARS scanner. Simulated estimates were compared with measurements from an ionization chamber. For a typical MARS scan, TOPAS estimated for a 30 mm diameter cylindrical phantom a CT dose index (CTDI) of 29.7 mGy; CTDI was measured by ion chamber to within 3% of TOPAS estimates. Although further development is required, our investigation of TOPAS for estimating MARS scan dosimetry has shown its potential for further study of spectral scanning protocols and dose to scanned objects.  相似文献   

18.
The levels of scattered radiation doses imparted to the eyes, thyroid and gonads of pediatric patients treated with orthovoltage radiation (300 kVp, 2.0 mmCu HVL) and with a 4-MV linear accelerator, were determined by making thermoluminescent dosimeter (TLD) measurements in three paraffin phantoms of different sizes. These phantoms were made from molds of mannequins used for store display, of approximate heights 30", 40" and 50", representing children of ages 1-2, 4-5 and 8-10 yr, respectively. The sites chosen for irradiation were (1) the whole brain, (2) the chest, (3) the kidney bed, (4) the whole abdomen and (5) the spinal column. These sites are normally treated in such pediatric malignancies as medulloblastoma, neuroblastoma and Wilms' tumor. Some of the doses measured are less than 10 rad for an entire treatment regimen, and would therefore be categorized as low-level doses. Where radiation was the only mode of treatment for long-term survivors of such malignancies, especially those treated 20-30 yr ago with orthovoltage radiation, useful data may be extracted for contributing to our knowledge about the long-term effects of low levels of radiation.  相似文献   

19.
目的探讨低剂量CT影像引导下肺部肿瘤微创治疗的可行性。方法采用随机对照试验设计,将符合纳入标准的160例肺部肿瘤的患者随机分配到对照组与试验组,分别使用不同辐射剂量的CT影像引导下微创治疗肺部肿瘤;记录不同剂量CT引导下肿瘤影像学特性、肿块大小、微创治疗肺部肿瘤的术中并发症(出血、气胸)影像学表现、CT剂量加权指数(CTDIvol)、扫描层数、剂量长度乘积Dose-Length Product(DLP)以及近期疗效等参数进行定量测量与差异性评价。结果表明试验组在降低毫安值,减少辐射剂量的同时,会产生一定噪声与伪影使到图像质量下降;但是两组CT影像引导下微创治疗肺部肿瘤过程的图像质量评价差异无统计学意义,显示试验组能达到对照组临床CT影像引导下肺部肿瘤微创治疗的要求。在扫描管电流剂量降低至15mA引导扫描时候,CT剂量加权指数(CTDIvol)从常规的17.95 mGy降低至2.26 mGy,降低幅度达87.41%。对照组CT下引导肺部肿瘤扫描的剂量长度乘积(DLP)远远大于试验组,试验组DLP值仅为对照组的35%。结论低剂量CT影像引导下肺部肿瘤微创治疗的方法,大大减低了患者辐射剂量,并可确保微创手术顺利实施的整个过程,本研究最低选用管电流15 mA CT引导技术值得同行借鉴与推广。  相似文献   

20.
The implementation of ALARP for hospital workers is considered in relation to extremity doses. Criteria are proposed which could provide guidance in determining strategies for both implementing radiation protection measures and dose monitoring for the extremities. Two groups of hospital workers have been studied, namely interventional radiologists/cardiologists, and radionuclide staff preparing and administering radiopharmaceuticals. The radiology procedures can give high doses to both the hands and legs. Those to the legs can be reduced by the use of lead rubber shields. Study of the distribution of dose across radiologists' hands has identified the ring position on the little finger as the appropriate position for dose monitoring. The variations in dose across the hands of radionuclide workers are greater, with the tip likely to receive the highest dose. The protection strategy will need to be determined for each department, because of the wide range in techniques used in handling radiopharmaceuticals. It is hoped that the criteria could aid balanced decision-making about the appropriate protection strategy and ensure that protection measures are in place where they are required, but avoid their introduction where they are unnecessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号