首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
RATIONALE: The ascending 5-hydroxytryptaminergic (5-HTergic) pathways are believed to be involved in "impulse control". Rats whose 5-HTergic pathways have been destroyed are more liable than intact rats to select a smaller, immediate reinforcer rather than a larger, delayed reinforcer (impulsive choice), and recent evidence indicates that this effect of central 5-HT depletion reflects a change in the rate of time discounting (i.e. a change in the rate at which reinforcers become devalued as a function of delay). Delay of reinforcement and uncertainty of reinforcer delivery are believed to have equivalent effects on choice behaviour. However, it is not known whether central 5-HT depletion affects choice between probabilistic reinforcers. OBJECTIVE: We examined the effects of central 5-HT depletion on choice behaviour in two experiments: In experiment 1, rats chose between a smaller immediate reinforcer and a larger delayed reinforcer; in experiment 2, rats chose between a smaller certain reinforcer and a larger probabilistic reinforcer. METHODS: Rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei or sham lesions. They were trained to press two levers for food-pellet reinforcers in discrete-trials schedules. In free-choice trials, selection of lever A resulted in immediate delivery of one food pellet; selection of lever B resulted in delivery of 2 pellets, either following a delay (dB) (experiment 1) or with a probability (pB) less than 1 (experiment 2). RESULTS: In experiment 1, both groups showed declining choice of lever B (%B) as a function of dB. The lesioned group showed shorter indifference delays (D50: the value of dB corresponding to %B=50) than the sham-lesioned group. In experiment 2, both groups showed declining choice of lever B as a function of the odds against delivery of the two-pellet reinforcer, thetaB (thetaB=[1/pB]-1). There was no difference between the "indifference odds" (theta50: the value of thetaB corresponding to %B=50) between the two groups. In both experiments, the levels of 5-HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not altered. CONCLUSIONS: These results provide additional evidence that central 5-HTergic mechanisms are involved in time discounting, but provide no evidence for a similar role of 5-HT in rats' sensitivity to probabilistic reinforcement.  相似文献   

2.
Abstract Rationale. Lesions of the orbital prefrontal cortex (OPFC) can cause pathologically impulsive behaviour in humans. Inter-temporal choice behaviour (choice between reinforcers differing in size and delay) has been proposed as a model of "impulsive choice" in animals. Objective. A quantitative method was used to analyse inter-temporal choice in rats with lesions of the OPFC and sham-lesioned control rats. Methods. Under halothane anaesthesia, rats received injections of the excitotoxin quinolinate into the OPFC (0.1 M, 0.5 μl; two injections in each hemisphere), or sham lesions (injections of the vehicle). They were trained to press two levers (A and B) for sucrose reinforcement (0.6 M) in discrete-trials schedules. In free-choice trials, a press on A resulted in delivery of 50 μl of the sucrose solution after a delay d A ; a press on B resulted in delivery of 100 μl of the same solution after a delay d B . d B was increased progressively across successive blocks of six trials in each session, while d A was manipulated systematically across phases of the experiment. The indifference delay, d B(50) (value of d B corresponding to 50% choice of B) was estimated for each rat in each phase. Linear functions of d B(50) versus d A were derived, and the parameters of the function compared between the groups. The locations of the lesions were verified histologically at the end of the experiment. Results. In both groups, d B(50) increased linearly with d A (r 2>0.98 in each case). The slope of the function was significantly steeper in the lesioned group than the sham-lesioned group, whereas the intercept did not differ significantly between the groups. The brains of the lesioned rats showed extensive atrophy/gliosis of the OPFC, with sparing of the dorsolateral prefrontal cortex. Conclusions. The results indicate that lesions of the OPFC can alter inter-temporal choice, either promoting or suppressing "impulsive choice", depending upon the relative sizes and delays of the two choice alternatives. Theoretical analysis based on a quantitative model of inter-temporal choice indicates that the pattern of effect of the OPFC lesion is likely to reflect two actions: (i) an increase in the rate of time discounting; (ii) an increase in sensitivity to the ratio of the sizes of two reinforcers. Electronic Publication  相似文献   

3.
Rationale Lesions of the orbital prefrontal cortex (OPFC) can cause pathologically impulsive behaviour in humans. Inter-temporal choice behaviour (choice between reinforcers differing in size and delay) has been proposed as a model of impulsive choice in animals. We recently found that destruction of the OPFC disrupted inter-temporal choice in rats. It is not known whether the dopaminergic projection to the OPFC contributes to the regulation of inter-temporal choice.Objective A quantitative method was used to compare inter-temporal choice in rats whose OPFC had been depleted of dopamine with that of sham-lesioned control rats.Methods Under halothane anaesthesia, rats received injections of 6-hydroxydopamine into the OPFC (2 g l–1, 0.5 l, two injections in each hemisphere), or sham lesions (injections of the vehicle). They were trained to press two levers (A and B) for sucrose reinforcement (0.6 M) in discrete-trials schedules. In free-choice trials, a press on A resulted in delivery of 50 l of the sucrose solution after a delay d A; a press on B resulted in delivery of 100 l of the same solution after a delay d B. d B was increased progressively across successive blocks of six trials in each session, while d A was manipulated systematically across phases of the experiment. The indifference delay, d B(50) (value of d B corresponding to 50% choice of B) was estimated for each rat in each phase. Linear functions of d B(50) versus d A were derived, and the parameters of the function compared between the groups. Concentrations of monoamines in the OPFC were determined by high-performance liquid chromatography at the end of the experiment.Results In both groups, d B(50) increased linearly with d A (r 2>0.9 in each case). The slope of the function was significantly steeper in the lesioned group than the sham-lesioned group, whereas the intercept did not differ significantly between the groups. When delays of 4 or 8 s were imposed on the smaller reinforcer, the lesioned rats showed greater tolerance of delay to the larger reinforcer (i.e. they exhibited longer values of d B(50)) than the sham-lesioned rats. Dopamine, noradrenaline and 5-hydroxytryptamine levels in the OPFC of the lesioned group were 20, 75 and 98% of those of the sham-lesioned group.Conclusions The results indicate that dopaminergic afferents to the OPFC contribute to the regulation of inter-temporal choice behaviour due to their role in determining organisms sensitivity both to reinforcer size and to delay of reinforcement.  相似文献   

4.
This experiment examined the effect of destruction of the ascending 5-hydroxytryptaminergic (5HTergic) pathways on performance in a free-operant timing schedule. Rats received either injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei or sham lesions. They were trained to press levers for a sucrose reinforcer. Training sessions consisted of 40, 50-s trials in which reinforcers were available on a variable-interval 25-s schedule; in the first 25 s of each trial, reinforcers were only available for responses on lever A, where in the last 25 s reinforcers were available only for responses on lever B. Data were collected probe trials (four per session) in which no reinforcers were delivered, during the last ten of 50 training sessions. Both groups showed decreasing response rates on lever A and increasing response rates on lever B as a function of time from the onset of the trial. Response rate on lever B, expressed as a percentage of overall response rate, could be described by a two-parameter logistic function; neither the indifference point (i.e the time corresponding to 50% responding on lever B) nor the slope of the function differed between the two groups. However, the lesioned group showed a higher rate of switching between response alternatives than the sham-lesioned group. The levels of 5HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not significantly altered. The results confirm previous findings that behaviour in timing schedules is sensitive to destruction of the central 5HTergic pathways, and suggest that these pathways may contribute to the inhibitory regulation of switching between behavioural states.  相似文献   

5.
Rationale: Previous experiments have shown that rats whose 5-hydroxytryptaminergic (5-HTergic) pathways have been destroyed exhibit higher rates of switching between response alternatives on various temporal differentiation schedules. Objective: This paper reports two experiments investigating the effect of central 5-HT depletion on switching between concurrent schedules of reinforcement which do not entail temporal differentiation of behaviour. Methods: Rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei or sham lesions. They were trained to press levers for sucrose reinforcement. In experiment 1, the rats were exposed to concurrent pairs of variable-time (VT) schedules specifying equal inter-reinforcement intervals; responses on a single ”changeover lever” alternated between the two VT schedules. In experiment 2, the rats were exposed to concurrent pairs of variable-interval (VI) schedules specifying equal inter-reinforcement intervals; responses on one lever (”VI lever”) earned reinforcers, while responses on the other lever (”changeover lever”) alternated between the two VI schedules. Results: In experiment 1, both groups showed longer ”dwell-times” (intervals between successive changeover responses) when a reinforcer was delivered in the ”dwell” than when no reinforcer was delivered (”win-stay” effect). The lesioned rats showed higher rates of changeover responding and shorter dwell-times (with and without reinforcer delivery) than the sham-lesioned group. In experiment 2, the rate of responding on the VI lever did not differ significantly between the two groups; however, the lesioned rats showed higher rates of changeover responding, shorter dwell-times (with and without reinforcer delivery) and smaller numbers of inter-changeover responses on the VI lever than the sham-lesioned group. In both experiments, the levels of 5-HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not altered. Conclusions: These results provide further evidence for the involvement of the ascending 5-HTergic pathways in behavioural ”switching”, and indicate that this is not restricted to temporal differentiation schedules. Received: 28 September 1998 / Final version: 1 December 1998  相似文献   

6.
Rationale There is evidence that lesions of the nucleus accumbens core (AcbC) promote preference for smaller earlier reinforcers over larger delayed reinforcers in inter-temporal choice paradigms. It is not known whether this reflects an effect of the lesion on the rate of delay discounting, on sensitivity to reinforcer magnitude, or both. Aim We examined the effect of AcbC lesions on inter-temporal choice using a quantitative method that allows effects on delay discounting to be distinguished from effects on sensitivity to reinforcer size. Materials and methods Sixteen rats received bilateral quinolinic acid-induced lesions of the AcbC; 14 received sham lesions. They were trained under a discrete-trials progressive delay schedule to press two levers (A and B) for a sucrose solution. Responses on A delivered 50 μl of the solution after a delay d A; responses on B delivered 100 μl after d B. d B increased across blocks of trials, while d A was manipulated across phases of the experiment. Indifference delay d B(50) (value of d B corresponding to 50% choice of B) was estimated in each phase, and linear indifference functions (d B(50) vs d A) derived. Results d B(50) increased linearly with d A (r 2 > 0.95 in each group). The intercept of the indifference function was lower in the lesioned than the sham-lesioned group; slope did not differ between groups. The lesioned rats had extensive neuronal loss in the AcbC. Conclusions The results confirm that lesions of the AcbC promote preference for smaller, earlier reinforcers and suggest that this reflects an effect of the lesion on the rate of delay discounting.  相似文献   

7.
This experiment examined the effect of destruction of the ascending 5-hydroxytryptaminergic (5HTergic) pathways on memory for duration, using a delayed interval bisection task. Rats that had received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei, and sham-lesioned control rats, were trained in a series of discrete trials to press lever A following a 2-s presentation of a light stimulus, and lever B following an 8-s presentation of the same stimulus. Following stimulus offset a response on a panel placed midway between the two levers was required in order to initiate lever presentation; a single response on either lever resulted in withdrawal of both levers and, in the case of a ‘correct’ response, reinforcer delivery. When > 90% correct choices had been attained, an 8-s (phase I) or a 12-s (phase II) delay was interposed between stimulus offset and lever presentation in 50% of the trials, and probe trials (10% of both non-delay and delay trials) were introduced in which the light was presented for intermediate durations. Logistic functions were derived relating percent choice of lever B to stimulus duration. In both groups, the imposition of post-stimulus delays displaced the bisection point (duration yielding 50% choice of lever B) towards longer durations; this effect was significantly greater in the lesioned group than in the control group. Imposition of post-stimulus delays resulted in increases in the Weber fraction, which did not differ significantly between the two groups. The levels of 5HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not altered. Received: 30 April 1996 / Final version: 20 August 1996  相似文献   

8.
Rationale: It has been proposed that the ascending 5-hydroxytryptaminergic (5-HTergic) pathways are involved in ”impulse control”. Previous experiments have shown that rats whose 5-HTergic pathways have been destroyed are more liable than intact rats to select a smaller, immediate reinforcer rather than a larger, delayed reinforcer (impulsive choice). However, it remains unclear whether this effect of central 5-HT depletion reflects a change in the rate of time discounting (i.e. a change in the rate at which reinforcers become devalued as a function of delay) or a change in sensitivity to reinforcer size. Objective: We examined the effect of central 5-HT depletion on time discounting using a quantitative model of inter-temporal choice (multiplicative hyperbolic model), which enables effects on time discounting to be differentiated from effects on sensitivity to reinforcer size. Methods: Rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei or sham lesions. They were trained to press two levers for food-pellet reinforcers in a discrete-trials adjusting-delay schedule. In free-choice trials, selection of lever A resulted in a brief fixed delay (d A ) followed by delivery of one pellet; selection of lever B resulted in a longer variable delay (d B ) followed by delivery of two pellets; d B was adjusted in accordance with the subject’s choices. The value of d A was varied (0.5–8.0 s) in successive phasesof the experiment, and the indifference value of d B was determined in each case. Results: In both groups, the indifference value of d B was linearly related to the value of d A ,in accordance with the multiplicative hyperbolic model. The lesioned group showed shorter indifference delays than the sham-lesioned group, this being reflected in a parallel displacement of the linear indifference function. In both experiments, the levels of 5-HT and 5-hydroxyindole-acetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not altered. Conclusions: According to the multiplicative hyperbolic model, parallel displacement of the linear indifference function uniquely specifies a change in time discounting. Thus these results indicate that central 5-HT depletion results in an increase in the rate of time discounting for food reinforcers. Received: 19 October 1999 / Final version: 6 January 2000  相似文献   

9.
The possible involvement of the ascending 5-hydroxytryptaminergic (5HTergic) pathways in determining the effectiveness of delayed positive reinforcers was investigated using Mazur's (1984) adjusting-delay paradigm. Fourteen rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei; 12 rats received sham lesions. The rats made repeated choices in a two-lever operant conditioning chamber between a smaller reinforcer delivered after a 2-s delay and a larger reinforcer delivered after a variable delay, the length of which was determined by the subject's previous choices. When the two reinforcers consisted of one and two food pellets, the indifference point (the delay to the larger reinforcer that rendered the two reinforcers equally effective) was shorter in the lesioned group than in the control group. Increasing the sizes of the reinforcers to three and six pellets reduced the indifference point in both groups and abolished the between-group difference. The levels of 5HT and 5-hydroxyindoleacetic acid (5HIAA) in the parietal cortex, hippocampus, amygdala, nucleus accumbens and hypothalamus were greatly reduced in the lesioned group, but the levels of noradrenaline and dopamine were not significantly affected. The results are consistent with the suggestion that the 5HTergic pathways play a role in maintaining the effectiveness of delayed reinforcers.  相似文献   

10.
Impulsive choice, or preference for small immediate reinforcers over large delayed reinforcers, has been associated with cigarette smoking. The direct effects of nicotine on impulsive choice in laboratory animals are unknown. We examined the effects of acute and chronic nicotine injections, and the termination of injections, on impulsive choice in rats. Five rats made choices between a one- and a three-pellet reinforcer in a discrete trials procedure. The delay to the smaller reinforcer was always 1 s. A computer adjusted the delay to the larger reinforcer until the pattern of choices reflected indifference between the two alternatives. We assessed the effects of acute and chronic nicotine (vehicle, 0.03, 0.1, 0.3 and 1.0 mg/kg nicotine). The latency to make the first response of the session increased under the acute 1.0 mg/kg dose. There were no consistent differences in the effects of acute and chronic nicotine on response latency and lever pressing during the delays between choices. Acute injections of nicotine dose-dependently increased impulsive responding. After chronic injections, impulsive responding was increased equivalently regardless of dose, and it was increased even in the absence of nicotine. After drug injections were terminated, behavior remained impulsive for about 30 drug-free sessions, and then responding gradually returned to baseline levels. The results suggest that increases in impulsive choice were not due to anorectic effects, response biases or changes in conditioned reinforcement. Nicotine may have decreased the value of delayed reinforcers. Chronic nicotine exposure produced long-lasting but reversible increases in impulsive choice.  相似文献   

11.
This experiment examined the effect of destroying the 5-hydroxytryptaminergic (5HTergic) pathways on the acquisition and performance of discrimination between two brief time intervals. Rats that had received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei, and sham-lesioned control rats were trained in a series of discrete trials to press lever A following a 200-ms presentation of a light stimulus and lever B following an 800-ms presentation of the same stimulus. Both groups gradually acquired accurate performance, attaining 80%–85% accuracy by the end of 40 sessions. The lesioned group learnt the task significantly faster than the control group. When stable performance had been attained, probe trials were introduced in which the light was presented for intermediate durations. Both groups showed sigmoid functions relating percent choice of lever B to log stimulus duration. The bisection point (duration corresponding to 50% choice of lever B) did not differ significantly between the two groups; however, the Weber fraction was significantly smaller in the lesioned group than in the control group. The levels of 5HT and 5-hydroxy-indole-acetic acid were markedly reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not altered. The results indicate that destruction of the 5HTergic pathways facilitates acquisition of a temporal discrimination. The lack of an effect of the lesion on the bisection point contrasts with our previous finding using longer stimulus durations; it is suggested that different behavioural processes may underlie millisecond-range and second-range temporal discrimination, and that these may be differently affected by 5HT depletion.  相似文献   

12.
This experiment examined the effect of destruction of the ascending 5-hydroxytryptaminergic (5HTergic) pathways on performance on a new discrete-trials version of the “time-left” procedure. Rats received either injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei or sham lesions. They were trained in a discrete trials schedule in which reinforcers were provided for responding on either of two levers, A and B. At a random time point, t s after the start of each trial, the two levers were inserted into the operant chamber; a response on A resulted in the delivery of one food pellet after d A s, whereas a response on B resulted in the delivery of two pellets after 84-t s. The value of d A was varied between 1 and 12 s in different phases of the experiment. Both groups showed an increasing tendency to respond on lever B as a function of time within the trial. Logistic functions were fitted to the data from each group, and a value of the “indifference point” (T 50: the time within the trial at which proportional choice of B attained a value of 50%) was derived for each rat. For each value of d A, the values of T 50 were significantly greater in the lesioned rats than in the control rats, reflecting a rightward shift of the logistic function in the lesioned group. The levels of 5HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not significantly altered. The results provide further evidence for the involvement of the ascending 5HTergic pathways in the control of operant behaviour by delayed positive reinforcers. Received: 12 January 1998/Final version: 6 May 1998  相似文献   

13.
Seventeen rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei: 12 rats received sham injections. The rats were trained in a series of discrete trials to press lever A following a 2-s presentation of a light stimulus and to press lever B following an 8-s presentation of the same stimulus. Both groups learnt the task rapidly and maintained >90% accuracy throughout the experiment. When stable performance had been attained, probe trials were introduced in which the light was presented for intermediate durations. Both groups showed sigmoid functions relating percent choice of lever B to log stimulus duration. The bisection point (duration corresponding to 50% choice of lever B) was significantly shorter in the lesioned group than in the control group. There was no significant difference between the slopes of the psychophysical functions or the Weber fractions derived for the two groups. The levels of 5-hydroxytryptamine (5HT) and 5-hydroxyindoleacetic acid in the parietal cortex, hippocampus, amygdala, nucleus accumbens and hypothalamus were markedly reduced in the lesioned group, but the levels of noradrenaline and dopamine were not significantly affected by the lesion. The results confirm the involvement of 5HTergic function in timing behaviour, but suggest that destruction of these pathways does not disrupt the capacity for temporal discrimination.  相似文献   

14.
This experiment examined the effect of destruction of the ascending 5-hydroxytryptaminergic (5HTergic) pathways on performance in a free-operant timing schedule: the “time-left” procedure. Rats received either injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei or sham lesions. They were trained in a discrete trials schedule in which reinforcers were provided for responding on either of two levers, A and B. At a random time point, t s after the start of each trial, a response on A resulted in the delivery of one food pellet after d A s, whereas a response on B resulted in the delivery of two pellets after 60-t s. The value of d A was varied between 1 and 8 s in different phases of the experiment. Both groups showed decreasing response rates on lever A and increasing response rates on lever B as a function of time within the trial. An index of timing (T 75: the time within the trial at which relative response rate on B attained a value of 75%) was systematically related to the value of d A, but did not differ significantly between lesioned and control rats. However, the lesioned group showed significantly higher rates of switching between response alternatives than the sham-lesioned group at all values of d A. The levels of 5HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not significantly altered. The results provide further evidence that the ascending 5HTergic pathways may contribute to the inhibitory regulation of switching between behavioural states. Received: 27 March 1997 /Final version: 19 May 1997  相似文献   

15.
Rationale The nucleus accumbens core (AcbC) is believed to contribute to the control of operant behaviour by reinforcers. Recent evidence suggests that it is not crucial for determining the incentive value of immediately available reinforcers, but is important for maintaining the values of delayed reinforcers. Objective This study aims to examine the effect of AcbC lesions on performance on a progressive-ratio schedule using a quantitative model that dissociates effects of interventions on motor and motivational processes (Killeen 1994 Mathematical principles of reinforcement. Behav Brain Sci 17:105–172). Materials and methods Rats with bilateral quinolinic acid-induced lesions of the AcbC (n = 15) or sham lesions (n = 14) were trained to lever-press for food-pellet reinforcers under a progressive-ratio schedule. In Phase 1 (90 sessions) the reinforcer was one pellet; in Phase 2 (30 sessions), it was two pellets; in Phase 3, (30 sessions) it was one pellet. Results The performance of both groups conformed to the model of progressive-ratio performance (group mean data: r 2  > 0.92). The motor parameter, δ, was significantly higher in the AcbC-lesioned than the sham-lesioned group, reflecting lower overall response rates in the lesioned group. The motivational parameter, a, was sensitive to changes in reinforcer size, but did not differ significantly between the two groups. The AcbC-lesioned group showed longer post-reinforcement pauses and lower running response rates than the sham-lesioned group. Conclusions The results suggest that destruction of the AcbC impairs response capacity but does not alter the efficacy of food reinforcers. The results are consistent with recent findings that AcbC lesions do not alter sensitivity to reinforcer size in inter-temporal choice schedules.  相似文献   

16.
This experiment examined the effect of destroying the ascending 5-hydroxytryptaminergic (5-HTergic) pathways on timing and switching behaviour in the free-operant psychophysical procedure. Rats received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei or sham lesions. They were trained to press levers for sucrose reinforcement; sessions consisted of fifty 50-s trials in which reinforcers were available on a variable-interval 30-s schedule. In the first 25 s, of each trial, reinforcement was only available for responses on lever A; in the last 25 s, it was available only for responses on lever B. In phase 1 (70 sessions) repetitive switching between the levers was prevented by withdrawal of lever A after the first response on lever B in each trial; in phase 2 (40 sessions) this constraint on switching was removed; in phase 3 (40 sessions) the constraint was reinstated. Data were collected from probe trials (four per session) in which no reinforcers were delivered, during the last ten sessions of each phase. In all phases, both groups showed declining response rates on lever A and increasing response rates on lever B as a function of time from the onset of the trial. Response rate on lever B, expressed as percentage of overall response rate, could be described by a two-parameter logistic function. Removal of the constraint on switching reduced the slope of the function without changing the indifference point (time corresponding to 50% responding on lever B). The parameters of the timing function did not differ between the groups in any of the phases. However, the lesioned group showed a greater enhancement of switching rate during phase 2 than the control group. The levels of 5-HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not altered. The results provide further evidence for the involvement of the ascending 5-HTergic pathways in switching between response alternatives, but cast doubt on our previous suggestion that the effects of 5-HT depletion on temporal differentiation of behaviour are mediated by facilitated switching. Received: 12 July 1998/Final version: 9 October 1998  相似文献   

17.
In a two-lever testing chamber, rats lever pressed for lateral hypothalamic brain stimulation or intravenous heroin reinforcers on a concurrent FR1 FR1 schedule of reinforcement. Responding for stimulation did not alter the rate of heroin self-administration, and responding for heroin caused increased responding for stimulation. Discontinuing heroin injections, or administering 3 mg/kg of naloxone, disrupted responding for both reinforcers, while changing the unit dose of heroin did not appreciably affect response rates for stimulation. This experiment demonstrates that rats are able to lever press during the period between successive self-administered heroin infusions, suggesting that the pausing normally seen between infusions is not due to debilitation, stereotyping, or sedation.  相似文献   

18.
We have hypothesized that nicotine has two effects on reinforcement; it increases the probability of responses resulting in nicotine delivery (primary reinforcement) and enhances the apparent reward value of non-nicotine reinforcers (reinforcement enhancing effect). The present studies investigated two predictions generated by this hypothesis: (1) that the reinforcement enhancing effect will depend on apparent stimulus reward value and (2) that the temporal profile of this effect would depend on the pharmacological profile of nicotine. In Experiment 1, rats were trained to lever press for one of two audio-visual stimuli that differed in their intrinsic reinforcing value and then the effect of pre-session nicotine (0.4 mg/kg base) or saline injections was tested. The stimulus that supported very low rates of operant responding displayed smaller increases in responding after pre-session injections of nicotine. In Experiment 2 the effect of nicotine injected 5 min before the session was compared to the effect of nicotine injected 1h after the session using the more reinforcing stimulus condition from the first experiment. A control group received only vehicle injections. In contrast to nicotine injected just prior to the session, post-session injections of nicotine had no detectable effect on responding for the more reinforcing stimulus. These results indicate that the reinforcement enhancing action of nicotine depends on the intensity of the primary reinforcer and that enhanced reinforcement by nicotine depends on coincident access to a stimulus with reinforcing properties.  相似文献   

19.
This experiment examined the effect of destroying central noradrenergic neurones, using the selective neurotoxin DSP4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine], on performance in a free-operant timing schedule. Rats received either systemic treatment with DSP4 or vehicle-alone injections. They were trained to press levers for a sucrose reinforcer. Training sessions consisted of 40, 50-s trials in which reinforcers were available on a variable-interval 25-s schedule; in the first 25 s of each trial, reinforcers were only available for responses on lever A, whereas in the last 25 s reinforcers were available only for responses on lever B. Data were collected from probe trials (four per session), in which no reinforcers were delivered, during the last ten of 60 training sessions. Both groups showed decreasing response rates on lever A, and increasing response rates on lever B, as a function of time from the onset of the trial. Quantitative indices of timing behaviour were derived from a two-parameter logistic function fitted to the relative response rates on lever B (response rate on lever B, expressed as a percentage of overall response rate); this function accounted for > 90% of the data variance in each group. The DSP4-treated group showed a significantly lower value of the indifference point (i.e. the time corresponding to 50% responding on lever B) than the control group. The slope of the function and the rate of switching between response alternatives did not differ significantly between the two groups. The concentrations of noradrenaline were markedly reduced in the neocortex and hippocampus of the DSP4-treated group, but the concentrations of dopamine, 5-hydroxytryptamine and 5-hydroxyindoleacetic acid were not significantly altered. It is suggested that results may be consistent with a role of the dorsal ascending noradrenergic pathway in behavioural “arousal”. Received: 23 April 1997/Final version: 13 October 1997  相似文献   

20.
This experiment examined the effect of destruction of the ascending 5-hydroxytryptaminergic (5HTergic) pathways on the acquistion of a temporal discrimination and on memory for duration, using a delayed conditional discrimination task. In phase I, rats that had received injections of 5,7-dihydroxytryptamine into the dorsal and median raphe nuclei, and shamlesioned control rats, were trained in a series of discrete trials to press lever A following a 2-s presentation of a light stimulus, and lever B following an 8-s presentation of the same stimulus. Following stimulus offset, a response on a panel placed midway between the two levers was required in order to intiate lever presentation; a single response on either lever resulted in withdrawal of both levers and, in the case of a correct response, reinforcer delivery. Both groups gradually acquired accurate discrimination, achieving >90% correct choices within 20–30 sessions; the lesioned group acquired accurate performance significantly faster than the control group. In phase II, delays were interposed between stimulus offset and lever presentation in 50% of the trials (2, 4, 8, 16 and 32 s; 10% of trials in each case). Accuracy declined as a function of post-stimulus delay in both groups, and there was no significant difference between the performances of the two groups. Both groups showed an increasing tendency to respond on lever A following longer post-stimulus delays (choose-short effect); this effect was somewhat enhanced in the lesioned group. The levels of 5HT and 5-hydroxyindoleacetic acid were reduced in the brains of the lesioned rats, but the levels of noradrenaline and dopamine were not altered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号