首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To examine synaptic input and association of terminals containing dopamine and other transmitters to rat striatal nitric oxide synthase-expressing neurons, an electron microscopic study using tyrosine hydroxylase (TH) immunohistochemistry combined with histochemistry for NADPH-diaphorase (NADPHd) was performed. NADPHd-positive neurons had medium-sized cell bodies containing a highly invaginated nucleus and received relatively sparse synaptic input; 3.6% of boutons apposed to the NADPHd-positive neurons were TH-immunoreactive. Of these TH-immunoreactive boutons, two synaptic contacts showing symmetrical synaptic specializations were found on a cell body and a proximal dendrite of a NADPHd-positive neuron. Other nonsynaptic TH-immunoreactive boutons were occasionally associated with unlabeled terminals adjacent to the NADPHd-positive dendrites and also forming asymmetric synaptic contacts with unlabeled spinous or dendritic profiles. These results suggest that activity of the striatal neurons that release nitric oxide may be regulated by direct synaptic input from dopaminergic neurons and also suggest that the TH-immunoreactive terminals associated with the dendrites of nitric oxide synthase-expressing neurons provide the sites where nitric oxide influences dopamine release from neighboring terminals.  相似文献   

2.
Parkinson’s disease is a neurodegenerative disorder characterized by severe motor deficits mainly due to degeneration of dopaminergic neurons in the substantia nigra. Decreased levels of the cell’s most important anti-oxidant, glutathione, have been detected in nigral neurons of Parkinson patients, but it is unknown if they are the cause or merely the consequence of the disease. To elucidate if glutathione depletion causes selective degeneration of nigral dopaminergic neurons, we down-regulated glutathione synthesis in different brain areas of adult rats by a viral vector-based RNAi approach. Decreased glutathione synthesis resulted in progressive degeneration of nigral dopaminergic neurons, while extra-nigral and striatal neurons were significantly less vulnerable. Degeneration of dopaminergic neurons was accompanied by progressive protein aggregate formation and functional motor deficits and was partially rescued by α-synuclein. That the survival of nigral dopaminergic neurons depends on the precise control of glutathione levels was further demonstrated by significant degeneration induced through moderate overproduction of glutathione. Over-expression of either of the two subunits of glutamate–cysteine ligase induced aberrant glutathiolation of cellular proteins and significant degeneration of dopaminergic neurons. Thus, while glutathione depletion was demonstrated to be a selective trigger for dopaminergic neuron degeneration, a glutathione replacement approach as a potential treatment option for Parkinson’s patients must be considered with great care. In conclusion, our data demonstrate that survival of nigral dopaminergic neurons crucially depends on a tight regulation of their glutathione levels and that the depleted glutathione content detected in the brains of Parkinson’s disease patients can be a causative insult for neuronal degeneration.  相似文献   

3.
Ryu JK  Shin WH  Kim J  Joe EH  Lee YB  Cho KG  Oh YJ  Kim SU  Jin BK 《Glia》2002,38(1):15-23
We recently showed that trisialoganglioside (GT1b) induces cell death of dopaminergic neurons in rat mesencephalic cultures (Chung et al., Neuroreport 12:611-614, 2001). The present study examines the in vivo neurotoxic effects of GT1b on dopaminergic neurons in the substantia nigra (SN) of Sprague-Dawley rats. Seven days after GT1b injection into the SN, immunocytochemical staining of SN tissue revealed death of nigral neurons, including dopaminergic neurons. Additional immunostaining using OX-42 and OX-6 antibodies showed that GT1b-activated microglia were present in the SN where degeneration of nigral neurons was found. Western blot analysis and double-labeled immunohistochemistry showed that inducible nitric oxide synthase (iNOS) was expressed in the SN, where its levels were maximal at 8 h post-GT1b injection, and that iNOS was localized exclusively within microglia. GT1b-induced loss of dopaminergic neurons in the SN was partially inhibited by N(G)-nitro-L-arginine methyl ester hydrochloride, an NOS inhibitor. Our results indicate that in vivo neurotoxicity of GT1b against nigral dopaminergic neurons is at least in part mediated by nitric oxide released from activated microglia. Because GT1b exists abundantly in central nervous system neuronal membranes, our data support the hypothesis that immune-mediated events triggered by endogenous compounds such as GT1b could contribute to the initiation and/or the progression of dopaminergic neuronal cell death that occurs in Parkinson's disease.  相似文献   

4.
一氧化氮合酶、谷氨酸在局灶脑缺血中的变化   总被引:4,自引:1,他引:4  
目的 观察一氧化氮合酶 (NOS)和谷氨酸 (Glu)在脑缺血时的改变。方法 应用大鼠大脑中动脉闭塞局灶脑缺血模型 ,观察脑缺血 1h后NOS和Glu含量的变化。结果 缺血 1h后NOS活性显著升高(P <0 .0 5 )、Glu含量亦显著升高 (P <0 .0 1) ;用L NMMA处理后 ,NOS活性显著降低 (P <0 .0 1) ,Glu含量亦降低 (P <0 .0 5 )。结论 Glu生成过多可激活NOS ;抑制NOS活性可减少Glu的生成。  相似文献   

5.
目的探讨凝血酶(Thrombin)诱导小胶质细胞(Micoglia)激活与黑质多巴胺能神经元变性的关系。方法采用立体定向术注射凝血酶至大鼠黑质,在不同时间点观察酪氨酸羟化酶(tyrosine hydroxylase,TH)神经元的表达及小胶质细胞的激活情况;同时检测黑质NO量及iNOS mRNA表达。结果(1)凝血酶注入大鼠黑质导致明显的黑质多巴胺能神经元变性,呈时间依赖性,TH阳性细胞数在第3d开始下降,第7d有大量的TH阳性细胞丢失,与对照侧相比下降达约53%(P〈0.01);高倍镜下可见胞体皱缩、突起明显缩短或减少;14d时细胞数下降至21%,30d时下降至12%(P〈0.01)。(2)凝血酶注射入黑质4h后小胶质细胞开始呈现为“灌木丛样”或少量呈现“阿米巴样”:12h后小胶质细胞数目明显增加且绝大部分呈现“阿米巴样”;24h后细胞已完全激活,“阿米巴样”细胞达高峰;3d维持高峰;14d后小胶质细胞染色变淡,体积变小,“阿米巴样”细胞数目下降。(3)与对照组相比,iNOSmRNA表达明显上调及NO合成增加(P〈0.05),并且有iNOS在小胶质细胞表达。结论凝血酶对多巴胺能神经元具有一定的损毁作用,小胶质细胞的激活先于多巴胺能神经元变性,其激活后释放的NO有可能参与多巴胺能神经元变性。  相似文献   

6.
Nitric oxide (NO), the diffusible gas formed by nitric oxide synthase (NOS) has been implicated in the enhanced locomotor activity attributed mainly to increased dopamine release in the shell of the nucleus accumbens (Acb). Furthermore, the release of both NO and dopamine are known to be altered by agonists of N-methyl-d-aspartate (NMDA) type glutamate receptors in this region. We examined the cellular sites of NO synthesis and the sites of potential relevancy for functional associations between neurons containing NOS and the NMDA receptor in the shell of the Acb. This was achieved by dual ultrastructural immunogold and immunoperoxidase labeling of antisera raised against the brain form of NOS and the NMDARI subunit of the NMDA receptor in this region of rat brain. NOS-like immunoreactivity (NOS-LI) was seen throughout the cytoplasm of isolated medium-large somata, aspiny dendrites and axon terminals. In 217 NOS-labeled profiles, NMDARI-like immunoreactivity (NMDARI-LI) was colocalized in 17% of somata and dendrites. Additionally, 35% of NOS-labeled dendrites apposed glial processes containing NMDARI-LI, and 29% apposed axon terminals containing NMDARI-LI. NOS-labeled terminals more rarely colocalized NMDARI or apposed NMDARI-labeled glial processes or dendrites. These results provide anatomical evidence that, in the shell of the Acb, NMDA receptors are localized so as to directly modulate the output of neurons producing NO as well as to influence other neurons and glia having the greatest access to the released gas.  相似文献   

7.
目的评价电刺激底丘脑核(STN)对帕金森病黑质多巴胺能神经元变性的影响。方法 实验用大鼠随机分为四组:第1组 纹状体仅注射6-羟基多巴(6-OHDA);第2组 底丘脑核区插入电极进行刺激组;第3组 底丘脑核刺激后6-OHDA再注射纹状体组;第4组 假刺激底丘脑核后再注射6-OHDA入纹状体组。手术后6周,分别观察各组大鼠阿朴吗啡(APO)诱发旋转行为及黑质多巴胺能神经元改变情况。结果第1、4组出现明显的APO诱发对侧旋转行为,第2、3组出现同侧旋转;酪氨酸羟化酶(TH)免疫组织化学染色显示,黑质区TH免疫反应(TH-IR)神经元数目在2、3组双侧无明显不同,而1、4组注射侧TH-IR神经元数目显著降低(P<0.01)。结论我们的结果表明,STN电刺激可以保护黑质多巴胺能神经元免受6-OHDA的毒性损害,提示这种治疗方法可以阻止或延缓帕金森病的继续发展和恶化。  相似文献   

8.
The protective effects of cholecystokinin (CCK) against glutamate-induced cytotoxicity were examined using cultured neurons obtained from the rat cerebral cortex. Cell viabiilty was significantly reduced when the cultures were briefly exposed to glutamate or (NMDA) and then incubated with normal medium for 60 min. A 60-min exposure to kainate also reduced cell viability. CCK protected cortical neurons against glutamate-, NMDA- and kainate-induced cytotoxicity. Glutamate- and NMDA-induced cytotoxicity was also reduced by , a nitric oxide (NO) synthase inhibitor. However, CCK did not prevent the cytotoxic effects of sodium nitroprusside (SNP) which spontaneously releases NO. Moreover, CCK did not affect NMDA-induced CA2+ influx measured with rhod-2, a fluorescent Ca2+ indicator. Therefore, release of a NO-like factor from the cerebral cortex was assayed using the thoracic artery in vitro. When the artery was incubated with minced cerebral tissues, glutamate elicited marked relaxation. SNP also elicited relaxation of the smooth muscle. CCK inhibited glutamate-induced relaxation but did not affect that induced by SNP. These results indicate that CCK prevents NMDA receptor-mediated cytotoxicity without reducing the Ca2+ influx. It is suggested that CCK inhibits NO-formation triggered by NMDA receptor activation.  相似文献   

9.
Using in vivo microdialysis, we have monitored the release of three amino acids (arginine, glutamate and glutamine) in the hippocampus of freely moving rats in response to various drugs. In response to N-methyl-d-aspartate (NMDA) infusion, extracellular glutamate was increased, glutamine was decreased and arginine remained unchanged. By contrast, alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) elicited an increase in arginine release but had no effect on either glutamate or glutamine. When S-nitroso-N-acetylpenicillamine (SNAP), a nitric oxide (NO) donor, was infused into the hippocampus, an increase in glutamate, a decrease in glutamine and no change in arginine were recorded. The effect of SNAP on extracellular glutamine levels was reversed by prior infusion of the guanylate cyclase inhibitor oxadiazolo[4,3-alpha]quinoxalin-1-one (ODQ), however its effect on glutamate release was unchanged. Interestingly, SNAP was found to promote the release of arginine in the presence of ODQ. We also assessed the effect of two nitric oxide synthase inhibitors, N-nitro-l-arginine methylester (l-NAME) and 7-nitroindazole (7-NI), on the release of these amino acids. l-NAME was found to increase arginine and glutamate levels but decrease those of glutamine. In contrast, 7-NI reduced the release of all three amino acids. The results presented here confirm some but not all of the findings previously obtained using in vitro preparations. In addition, they suggest that complex relationships exist between the release of these amino acids, and that endogenous NO plays an important role in regulating their release.  相似文献   

10.
The effects of prostaglandin (PG) E2 on glutamate-induced cytotoxicity were examined using primary cultures of rat cortical neurons. The cell viability was significantly reduced when cultures were briefly exposed to either glutamate or (NMDA) then incubated with normal medium for 1 h. Similar cytotoxicity was observed with the brief application of ionomycin, a calcium ionophore, and S-nitrosocysteine, a nitric oxide (NO)-generating agent. PGE2 at concentrations of 0.01–1 μM dose-dependently ameliorated the glutamate-induced cytotoxicity. PGE1, butaprost, an EP2 receptor agonist, and 8-bromo-cAMP were also effective in protecting cultures against glutamate cytotoxicity. By contrast, neither 17-phenyl-ω-trinor-PGE2, an EP1 receptor agonist, nor M & B 28767, an EP3 receptor agonist, affected glutamate-induced cytotoxicity. NMDA-induced cytotoxicity was ameliorated by PGE2, butaprost, MK-801, , a NO synthase inhibitor, and hemoglobin, which binds NO. These agents excluding MK-801 ameliorated the ionomycin-induced cytotoxicity. The cytotoxicity induced by S-nitrosocysteine was prevented only by hemoglobin but not by the other agents including PGE2. These findings indicate that PGE2 protects cultured cortical neurons against NMDA receptor-mediated glutamate neurotoxicity via EP2 receptors. EP2 receptor stimulation may suppress a step in NO formation triggered by Ca2+-influx through NMDA receptors.  相似文献   

11.
Dopaminergic neurotoxicity is characterized by damage and death of dopaminergic neurons. Parkinson's disease (PD) is a neurodegenerative disorder that primarily involves the loss of dopaminergic neurons in the substantia nigra. Therefore, the study of the mechanisms, as well as the search for new targets for the prevention and treatment of neurodegenerative diseases, is an important focus of modern neuroscience. PD is primarily caused by dysfunction of dopaminergic neurons; however, other neurotransmitter systems are also involved. Research reports have indicated that the glutamatergic system is involved in different pathological conditions, including dopaminergic neurotoxicity. Over the last two decades, the important functional interplay between dopaminergic and glutamatergic systems has stimulated interest in the possible role of metabotropic glutamate receptors (mGluRs) in the development of extrapyramidal disorders. However, the specific mechanisms driving these processes are presently unclear. The participation of the universal neuronal messenger nitric oxide (NO) in the mechanisms of dopaminergic neurotoxicity has attracted increased attention. The current paper aims to review the involvement of mGluRs and the contribution of NO to dopaminergic neurotoxicity. More precisely, we focused on studies conducted on the rotenone-induced PD model. This review is also an outline of our own results obtained using the method of electron paramagnetic resonance, which allows quantitation of NO radicals in brain structures.  相似文献   

12.
We planned a study to determine whether or not the mechanism of nitric oxide (NO) neurotoxicity involves the elevation of extracellular glutamate or changes of brain temperature in the pathogenesis of delayed neuronal death of gerbil hippocampal CA1 neurons following 5-min transient forebrain ischemia. Intraventricular injection of 5 μl of 5.0 mg/ml Nω-nitro-l-arginine (LNNA) significantly preserved neuronal density in the central part of the CAI region examined 7 days after 5-min ischemia [188.5 ± 8.5/mm: 90.0% of the 209.5 ± 11.1 /mm density in the sham-operated controls vs. 16.7 ± 6.4/mm in those injected with artificial cerebrospinal fluid (CSF) only]. There was no difference between these two groups in hippocampal temperature before, during or after 5-min ischemia. The glutamate concentration ([Glu.]) during 5-min ischemia measured by a microdialysis technique was similar in the two groups (peak [Glu.] = 2.76 ± 0.62 pmol/μl dialysate in the artificial CSF group and = 2.93 ± 0.64 pmol/μ1 dialysate in the LNNA group). It was found that the neuronal toxicity of NO does not involve hyperthermia or the increase of extracellular glutamate concentration in the hippocampal CA1 region during 5-min ischemia.  相似文献   

13.
Destruction of nigrostriatal dopaminergic (DA) pathway triggers various persistent responses, such as inflammation and increased synthesis of neural growth factors, both in striatum and in substantia nigra. The pathological processes involved in such responses are poorly characterized and could contribute to secondary damage and/or regeneration in the central nervous system (CNS). Cystatin C was previously implicated in the process of neurodegeneration. However, its biological role during neurodegeneration is not understood and remains controversial. The present study identified an increased cystatin C mRNA level in the DA-depleted rat striatum, starting from the second week following a 6-OHDA-induced lesion. Immunohistochemical analysis confirmed the increase in cystatin C protein level in the striatum following DA depletion. Double-labeled fluorescence immunohistochemistry revealed that nigrostriatal neurons, astrocytes, and microglia contributed to the elevated level of cystatin C. Exposure to 6-hydroxydopamine, a DA-specific neurotoxin, resulted in DA neurons loss in the fetal mesencephalic cultures, an effect which could be partially reversed by treatment with cystatin C. Moreover, in vivo DA neurons survival study showed that administration of cystatin C in rats with 6-OHDA-induced lesion partially rescued the nigral DA neurons. The results indicate that the 6-OHDA lesioning induced a relatively slow but sustained up-regulation of cystatin C expression and suggest that the inhibitor may exert a neuroprotective action on DA neurons. The findings raise the possibility that cysteine proteinase inhibitors may be new candidates for neuroprotective treatment of Parkinson's disease. Cystatin C may be useful therapeutically in limiting neuropathy in Parkinson's disease.  相似文献   

14.
Cytidine-5'-diphosphocholine (citicoline or CDP-choline) is an essential endogenous intermediate in the biosynthesis of phosphatidylcholine. In the present study, primary dopaminergic cultures from mouse mesencephala were treated with citicoline to investigate its neuroprotective potential on the survival of dopaminergic neurons exposed to MPP(+) and glutamate. Treatment with citicoline alone significantly increased the survival of dopaminergic neurons compared to controls. MPP(+) or glutamate decreased the total number of dopaminergic neurons whereas citicoline afforded significant protection against either toxicity. Moreover, citicoline significantly decreased propidium iodide uptake by cultured cells. The study concludes that citicoline exerts stimulant and neuroprotective actions on cultured dopaminergic neurons.  相似文献   

15.
The isthmo-optic nucleus of the centrifugal system in birds receives primarily input from the ipsilateral tectum and projects to the contralateral retina. The present study using brain slices and microiontophoresis shows that synaptic transmission from the tectum to the centrifugal nucleus in pigeons is excitatory. About 75% of tecto-isthmo-optic fibers are glutamatergic, mediated by alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid but not N-methyl-D-aspartate-receptors, and 25% of others may use nitric oxide as a transmitter or modulator. On the other hand, about 60% of isthmo-optic cells receive glutamatergic afferents, 20% receive nitric oxidergic afferents, and 20% of others receive both glutamatergic and nitric oxidergic afferents from the tectum. In the last group, it is more likely that both glutamate and nitric oxide may co-release from the same tecto-isthmo-optic terminals. All the isthmo-optic cells examined in the present study also receive gamma-aminobutyric acid (GABA)ergic afferents via GABA(A) and GABA(B) receptors probably from some extratectal structures.  相似文献   

16.
目的探讨自由基清除剂依达拉奉对脂多糖(LPS)诱导的多巴胺能神经元变性的保护作用。方法18只大鼠随机分成3组:磷酸缓冲液(PBS)对照组、生理盐水+LPS组(生理盐水治疗组)和依达拉奉+LPS组(依达拉奉治疗组)。黑质内立体定向注射15μg(2μl)LPS或PBS,采用免疫组织化学方法观察注射后14d大鼠黑质酪氨酸羟化酶(TH)阳性细胞的数量以及小胶质细胞的形态学变化。结果与对照组相比,生理盐水治疗组TH阳性细胞数减少到对侧的16%(P<0.05),细胞突触也明显减少;依达拉奉治疗组TH阳性细胞数较生理盐水治疗组明显增多,为对侧的59%(P<0.05),部分突触存在。两治疗组小胶质细胞形态无明显差异。结论依达拉奉显著抑制LPS诱导的黑质多巴胺能神经元变性。  相似文献   

17.
Obata T  Yamanaka Y 《Brain research》2001,902(2):223-228
We examined the effect of N(G)-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase (NOS) inhibitor, on extracellular potassium ion concentration ([K(+)](o))-enhanced hydroxyl radical (.OH) generation due to 1-methyl-4-phenylpyridinium ion (MPP(+)) was examined in the rat striatum. Rats were anesthetized, and sodium salicylate in Ringer's solution (0.5 nmol/microl per min) was infused through a microdialysis probe to detect the generation of.OH as reflected by the non-enzymatic formation of 2,3-dihydroxybenzoic acid (DHBA) in the striatum. Induction of KCl (20, 70 and 140 mM) increased MPP(+)-induced.OH formation trapped as 2,3-dihydroxybenzoic acid (DHBA) in a concentration dependent manner. However, the application of L-NAME (5 mg/kg i.v.) abolished the [K(+)](o) depolarization-induced.OH formation with MPP(+). Dopamine (DA; 10 microM) also increased the levels of DHBA due to MPP(+). However, the effect of DA after application of L-NAME did not change the levels of DHBA. On the other hand, the application of allopurinol (20 mg/kg i.v., 30 min prior to study), a xanthine oxidase (XO) inhibitor was abolished the both [K(+)](o)- and DA-induced.OH generation. Moreover, when iron(II) was administered to MPP(+) then [K(+)](o) (70 mM)-pretreated animals, a marked increase in the level of DHBA. However, when corresponding experiments were performed with L-NAME-pretreated animals, the same results were obtained. Therefore, NOS activation may be no relation to Fenton-type reaction via [K(+)](o) depolarization-induced.OH generation. The present results suggest that [K(+)](o)-induced depolarization augmented MPP(+)-induced.OH formation by enhancing NO synthesis.  相似文献   

18.
We prepared neuron-rich cultures from cortical and hippocampal CA1 regions of postnatal day 1 (P1) rats. Using these cultures, we investigated the sensitivity of neurons to hypoxic insults. The effects of MK-801, cycloheximide, NG-nitro- -arginine ( -NNA), and anti-platelet-activating factor (anti-PAF) IgG on neuronal injury under hypoxic conditions also were examined. The percentage of astroglial cells was higher in CA1 than cortical cultures despite use of the same culture procedure. Despite this finding, the percentage of lactate dehydrogenase (LDH) released into the medium was greater in CA1 than cortical cultures under the conditions of 24-h hypoxia and 24-h incubation (P<0.05). We then added MK-801 (500 nM), cycloheximide (3 μM), -NNA (100 μM) and anti-PAF IgG (50 μg/ml) prior to inducing the hypoxia and measured LDH in the medium after 24-h hypoxia and 48-h incubation. Under the hypoxic condition, MK-801, -NNA, and anti-PAF IgG significantly protected the CA1 neurons from hypoxic injury compared with cortical neurons, while cycloheximide protected both cultures equally. These results suggest that CA1 neurons are more sensitive to hypoxia than cerebral cortical neurons, and glutamate, nitric oxide, and PAF may participate in the mechanism of selective neural death in neurons of the CA1 region due to hypoxia.  相似文献   

19.
20.
Considerable evidence suggests that reactive oxygen species mediate the neurotoxic effects of ionotropic glutamate receptor activation. Accordingly, we have examined neuronal degeneration resulting from intrastriatal injection of quinolinic acid, an NMDA receptor agonist, and kainic acid in gene targeted and transgenic mice that under- or over-express copper, zinc superoxide dismutase (Cu,Zn-SOD; SOD-1). Elevated SOD-1 activity significantly protects against quinolinic acid and kainic acid neurotoxicity in the mouse striatum whereas reduced activity appears to potentiate neurotoxicity. Thus a `gene-dose' effect of SOD-1 has been demonstrated with regard to excitotoxic mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号