首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C D Ingram  F Moos 《Neuroscience》1992,47(2):439-452
Immunocytochemical staining within the forebrain of lactating rats revealed oxytocin-immunoreactive perikarya in a continuum running from the anterior parvocellular hypothalamic paraventricular nucleus through the anterior commissural nucleus and perifornical region. Beaded axons could be seen arising from these perikarya to enter the bed nuclei of the stria terminalis. In sections cut at a 45 degree angle to the parasagittal plane, much of this pathway could be maintained intact, and in vitro tissue slices prepared in this orientation were used for electrophysiological studies of oxytocinergic innervation of the bed nuclei. By extracellular recording, neurons of the bed nuclei of the stria terminalis were tested for their response to exogenous oxytocin and to stimulation of the paraventricular hypothalamus. Both short latency (3-40 ms) orthodromic excitation (26/78 neurons) and longer latency (greater than 100 ms) excitation (12/78 neurons) were observed following paraventricular hypothalamic stimulation, possibly representing mono- and polysynaptic inputs, respectively. Removal of extracellular Ca2+ blocked these orthodromic responses (n = 6). Antidromic invasion was seen in a further 11/78 neurons with characteristics of constant latency (mean = 5.9 +/- 0.7 ms), high frequency following (40-80 Hz) and persistence in Ca(2+)-free medium. When tested for the effect of oxytocin (10(-7) M), none (0/11) of the antidromically activated neurons were excited, but nine of 34 of the orthodromically excited neurons (both short and long latency) responded with a marked increase in activity. In three of eight cases, the orthodromic synaptic excitation following hypothalamic stimulation could be reversibly attenuated by the receptor antagonist [d(CH2)5,D-Tyr(OEt)2,Val4,Cit8]-vasopressin (0.5 or 2.5 x 10(-6) M), further substantiating the involvement of oxytocin. These data provide anatomical and electrophysiological evidence for an oxytocinergic innervation of the bed nuclei of the stria terminalis. This pathway is discussed in terms of possible involvement in mediating the facilitatory effect of oxytocin on the milk-ejection reflex of lactating rats which has been suggested to act through this part of the limbic system.  相似文献   

2.
Long-term potentiation in the thalamo-cortical input to the somatosensory cortex barrel field has been reported to be inducible in vitro only during a narrow critical period of the first postnatal week. Here we explored whether this is due to inability of adult synapses to express LTP or lack of appropriate conditions for LTP induction in slice preparations. We recorded thalamo-cortical field potentials (FPs) from the barrel field of chronically prepared adult rats. In the first series, several parameters of conditioning tetanization of thalamus (T) have been tried. Statistically significant LTP of 135-150% relative to the baseline was observed only in rare cases (3/18) so that the mean changes were not statistically significant. In the second series, five trains of 100 Hz stimulation of T were paired with a "reinforcing" stimulation of the lateral hypothalamus (LH). In most cases (9/13), thalamo-cortical FPs were potentiated. The mean post-tetanic amplitude was 238 +/- 42% (+/- SEM) relative to the baseline (n = 13). The potentiation persisted for >1 h and typically even further increased when tested 24-48 h later. LTP magnitude strongly correlated with the initial paired-pulse ratio (PPR, coefficient of correlation r = 0.98) so that the LTP magnitude was larger (333 +/- 107, n = 6) in cases with PPR > 1.3. The mean PPR tended to decrease after LTP (from 2.05 to 1.65). Altogether the results suggest that LTP is inducible in the thalamo-cortical input to the barrel field of normal adult rats. The dependence of the LTP magnitude upon the initial PPR suggests that inputs with low initial release probability undergo larger LTP. Together with the tendency to a decrease in the PPR this suggests an involvement of presynaptic mechanisms in the maintenance of neocortical LTP.  相似文献   

3.
There is emerging evidence that injury of the cerebral cortex is followed by processes of enhanced neuroplasticity. In the present study, we investigate the functional properties of NMDA receptors (NMDARs) in the surround of focal lesions with recordings of extracellular field potentials (FPs) in acute slices of rat visual cortex at survival times of 2–6 days. FPs were recorded in cortical layer III lateral to the lesion, while long-term potentiation (LTP) was induced by theta-burst stimulation (TBS) in layer IV. The predominantly AMPA receptor-mediated FPs displayed a significantly enhanced LTP in the surround of the lesion at distances of 2–3.2 mm. The LTP was completely blocked by the NMDAR antagonist D-AP5. Ifenprodil, an antagonist of NMDARs containing the NR2B subunit, only slightly affected the LTP in slices from sham-operated animals, but significantly reduced the LTP in slices from lesioned rats. We quantitatively analysed the proportion of NMDARs containing the NR2B subunit after lesions by applying ifenprodil to pharmacologically isolated NMDAR-FPs. The NR2B antagonist reduced the NMDAR-FPs significantly more strongly at distances of 2.0–3.2 mm from the border of the lesion. This indicates that the early phase of increased synaptic long-term plasticity in the surround of cortical lesions is accompanied by an up-regulation of NMDARs containing the NR2B subunit.  相似文献   

4.
1. The induction mechanism of long-term potentiation (LTP) in developing visual cortex was studied by recording intracellular responses from layer III-IV cells in slice preparations of kitten visual cortex at 30-40 days after birth. 2. Strong stimulation of white matter produced a late depolarizing response after an orthodromic action potential. This depolarizing response was abolished by membrane depolarization or hyperpolarization caused by current injection through the recording electrode. In addition, this response was reduced by bath application of a low concentration (100 microM) of Ni2+ without any changes in the rising slope of the excitatory postsynaptic potential (EPSP) or orthodromic action potential. This suggests that this response is mediated by low-threshold Ca2+ channels (LTCs). 3. The involvement of LTCs in the induction of LTP was tested. White matter was stimulated at 2 Hz for 15 min as a conditioning stimulus to induce LTP, and the resultant changes in EPSPs were tested by low-frequency (0.1 Hz) stimulation of white matter. Conditioning stimulation produced a large N-methyl-D-aspartate (NMDA) receptor-mediated depolarizing response in these cells, which obscured the presence of the late depoliarzation. Therefore the test was conducted in a solution containing an NMDA antagonist 2-amino-5-phosphonovalerate (APV). 4. Weak conditioning stimulation, which evoked no LTC responses, never induced LTP; whereas strong conditioning stimulation, which evoked LTC responses, always induced LTP. Strong conditioning stimulation failed to induce LTP when LTC responses were prevented either by membrane depolarization or hyperpolarization or by a bath application of 100 microM Ni2+. 5. In a solution without APV, the application of Ni2+ also prevented the induction of LTP. 6. When cells were impaled by an electrode containing a Ca2+ chelator 1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA), LTP was never induced, even though LTC responses were evoked by conditioning stimulation. These results indicate that Ca2+ influx into postsynaptic cells through LTCs induces the LTP. 7. The responses mediated by LTCs, which were evoked by the injection of current pulses into the cells, were maximum at the critical period of visual cortical plasticity, suggesting that LTCs in postsynaptic cells regulate the plastic changes in developing visual cortex.  相似文献   

5.
Repetitive intracortical microstimulation (ICMS) applied to the rat primary somatosensory cortex (SI) in vivo was reported to induce reorganization of receptive fields and cortical maps. The present study was designed to examine the effect of such an ICMS pattern applied to layer IV of brain slices containing SI on the efficacy of synaptic input to layer II/III. Effects of ICMS on the synaptic strength was quantified for the first synaptic component (s1) of cortical field potentials (FPs) recorded from layer II/III of SI. FPs were evoked by stimulation in layer IV. The pattern of ICMS was identical to that used in vivo. However, stimulation intensity had to be raised to induce an alteration of synaptic strength. In brain slices superfused with standard ACSF, repetitive ICMS induced a short-lasting (60 min) reduction of the amplitude (-37%) and the slope (-61%) of s1 evoked from the ICMS site, while the amplitude and the slope of s1 evoked from a control stimulation site in cortical layer IV underwent a slow onset increase (13% and 50%, respectively). In brain slices superfused with ACSF containing 1.25 microM bicuculline, ICMS induced an initial strong reduction of the amplitude (-50%) and the slope (-79%) of s1 evoked from the ICMS site. These effects decayed to a sustained level of depression by -30% (amplitude) and -60% (slope). In contrast to experiments using standard ACSF, s1 evoked from the control site was not affected by ICMS. The presynaptic volley was not affected in either of the two groups of experiments. A conventional high frequency stimulation (HFS) protocol induced input-specific long-term potentiation (LTP) of the amplitude and slope of s1 (25% and 76%, respectively). Low frequency stimulation (LFS) induced input-specific long-term depression (LTD) of the amplitude and slope of s1 (24% and 30%, respectively). Application of common forms of conditioning stimulation (HFS and LFS) resulted in LTP or LTD of s1, indicating normal susceptibility of the brain slices studied to the induction of common forms of synaptic plasticity. Therefore, the effects of repetitive ICMS on synaptic FP components were considered ICMS-specific forms of short-lasting (standard ACSF) or long-lasting synaptic depression (ACSF containing bicuculline), the latter resembling neocortical LTD. Results of this study suggest that synaptic depression of excitatory mechanisms are involved in the cortical reorganization induced by repetitive ICMS in vivo. An additional contribution of an ICMS-induced modification of inhibitory mechanisms to cortical reorganization is discussed.  相似文献   

6.
Excitatory postsynaptic currents (EPSCs) in parasympathetic preganglionic neurons (PGNs) were examined using the whole cell patch-clamp recording technique in L6 and S1 spinal cord slices from neonatal rats (6-16 days old). PGNs were identified by labeling with retrograde axonal transport of a fluorescent dye (Fast Blue) injected into the intraperitoneal space 3-7 days before the experiment. Synaptic responses were evoked in PGNs by field stimulation of the lateral funiculus (LF) in the presence of bicuculline methiodide (10 microM) and strychnine (1 microM). In approximately 40% of the cells (total, 100), single-shock electrical stimulation of the LF elicited short, relatively constant latency [3.0 +/- 0.1 (SE) ms] fast EPSCs consistent with a monosynaptic pathway. The remainder of the cells did not respond to stimulation. At low intensities of stimulation, the EPSCs often occurred in an all-or-none manner, indicating that they were mediated by a single axonal input. Most cells (n = 33) exhibited only fast EPSCs (type 1), but some cells (n = 8) had fast EPSCs with longer, more variable latency polysynaptic EPSCs superimposed on a slow inward current (type 2). Type 1 fast synaptic EPSCs were pharmacologically dissected into two components: a transient component that was blocked by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX, 5 microM), a non-NMDA glutamatergic antagonist, and a slow decaying component that was blocked by 2-amino-5-phosphonovalerate (APV, 50 microM), a NMDA antagonist. Type 2 polysynaptic currents were reduced by 5 microM CNQX and completely blocked by combined application of 5 microM CNQX and 50 microM APV. The fast monosynaptic component of type 1 EPSCs had a linear current-voltage relationship and reversed at a membrane potential of 5.0 +/- 5.9 mV (n = 5), whereas the slow component exhibited a negative slope conductance at holding potentials greater than -20 mV. The type 1, fast synaptic EPSCs had a time to peak of 1.4 +/- 0.1 ms and exhibited a biexponential decay (time constants, 5.7 +/- 0.6 and 38.8 +/- 4.0 ms). In the majority of PGNs (n = 11 of 15 cells), EPSCs evoked by electrical stimulation of LF exhibited paired-pulse inhibition (range; 25-33% depression) at interstimulus intervals ranging from 50 to 120 ms. These results indicate that PGNs receive monosynaptic and polysynaptic glutamatergic excitatory inputs from axons in the lateral funiculus.  相似文献   

7.
Several lines of evidence suggest that integrin receptors play a pivotal role in consolidation of long-term potentiation (LTP), but which of the many integrin dimers are involved remains to be discovered. The present study used an LTP reversal paradigm to test if alpha3 integrins make an important contribution. Function blocking alpha3 monoclonal antibodies or vehicle were locally infused into recording sites in field CA1 of rat hippocampal slices and LTP induced with theta burst stimulation. Low frequency trains of pulses were applied 30 min after the theta bursts. Previous work indicates that low frequency stimulation reverses LTP when applied immediately after induction but is largely ineffective after 30-45-min delays. If the antibodies were to block consolidation, then they should extend the period over which potentiation is vulnerable to disruption. There was no detectable difference between the two groups in the initial degree of LTP or within slice decay of potentiation 1-10 min after induction; a small but reliable decay occurred from 10 to 30 min with antibody treatment (P<0.01) but not in control slices. Percent potentiation was not statistically different for vehicle (55 +/- 19%, mean +/- S.D.) and anti-alpha3 (43 +/- 21%) slices at 30 min post-theta bursts. Five-Hz stimulation ("theta pulse" stimulation) 30 min after induction caused a reduction of LTP. The percent loss of potentiation after the 1-min trains was greater in the antibody-treated slices than in controls (98 +/- 4% vs. 62 +/- 28%, P<0.01, U-test) and correlated (r=0.84, alpha3 slices) with the percent LTP present prior to low frequency stimulation, as expected if the stimulation reversed potentiation. Recovery occurred in both groups but percent LTP was significantly smaller in experimental slices at 10 min post-theta pulses (5 +/- 11% vs. 36 +/- 15%, P<0.01). Recovery continued for 20 min after theta pulses and, in accordance with earlier work, was nearly complete for the control slices (50 +/- 19% vs 55 +/- 15%, 40 min post- vs. immediately pre-theta pulses). LTP remained depressed after 40 min of recovery in the anti-alpha3 slices (23 +/- 19% vs. 43 +/- 21%) at which point it was substantially less than that found in controls (P<0.01). Western blots with anti-alpha3 antibodies identified a polypeptide with the molecular mass (155 kDa) expected for the alpha3 subunit and further showed that it is broadly distributed in brain. Subcellular fractionation experiments demonstrated that alpha3 is concentrated in synaptic membranes over homogenates to about the same degree as the GluR1 subunit of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate-type glutamate receptor.From these results we suggest that alpha3-containing integrins are localized to synapses and are needed to stabilize a slowly decaying form of LTP. The findings also show that vulnerability to reversal can be used in place of extended recording sessions in studying consolidation.  相似文献   

8.
Threshold of stimulation frequency in the perforant path to induce long-term potentiation (LTP) in dentate gyrus was determined in hippocampal slices obtained from two different lines of rats inbred for 30 generations according to their performance in an avoidance escape test in a shuttle box. High-performance (HP) rats were defined as those giving at least 70% conditioned responses (CRs) and low-performance (LP) rats as those giving less than 15% CRs. LTP was defined as a 30% or more increase in the amplitude of the evoked population spike (PS), lasting at least 20 min. Stimulation frequency threshold was determined by stimulating with a train of pulses of 0.5 ms duration during 1 s. The same slice was stimulated with trains of increasing frequency from 5 to 400 Hz, each train separated by an interval of at least 20 min. HP rats showed a lower threshold (13 +/- 4 Hz) than LP rats (92 +/- 42 Hz) for the induction of LTP; there were no differences in the magnitude of LTP. The greater learning ability of HP rats may be related to the plasticity of hippocampal synaptic transmission.  相似文献   

9.
Tiagabine is a potent GABA uptake inhibitor with demonstrated anticonvulsant activity. GABA uptake inhibitors are believed to produce their anticonvulsant effects by prolonging the postsynaptic actions of GABA, released during episodes of neuronal hyperexcitability. However, tiagabine has recently been reported to facilitate the depolarizing actions of GABA in the CNS of adult rats following the stimulation of inhibitory pathways at a frequency (100 Hz) intended to mimic interneuronal activation during epileptiform activity. In the present study, we performed extracellular and whole cell recordings from CA1 pyramidal neurons in rat hippocampal slices to examine the functional consequences of tiagabine-augmented GABA-mediated depolarizing responses. Orthodromic population spikes (PSs), elicited from the stratum radiatum, were inhibited following the activation of recurrent inhibitory pathways by antidromic conditioning stimulation of the alveus, which consisted of either a single stimulus or a train of stimuli delivered at high-frequency (100 Hz, 200 ms). The inhibition of orthodromic PSs produced by high-frequency conditioning stimulation (HFS), which was always of much greater strength and duration than that produced by a single conditioning stimulus, was greatly enhanced following the bath application of tiagabine (2-100 microM). Thus, in the presence of tiagabine (20 microM), orthodromic PSs, evoked 200 and 800 ms following HFS, were inhibited to 7.8 +/- 2.6% (mean +/- SE) and 34.4 +/- 18.5% of their unconditioned amplitudes compared with only 35.4 +/- 12.7% and 98.8 +/- 12.4% in control. Whole cell recordings revealed that the bath application of tiagabine (20 microM) either caused the appearance or greatly enhanced the amplitude of GABA-mediated depolarizing responses (DR). Excitatory postsynaptic potentials (EPSPs) evoked from stratum radiatum at time points that coincided with the DR were inhibited to below the threshold for action-potential firing. Independently of the stimulus intensity with which they were evoked, the charge transferred to the soma by excitatory postsynaptic currents (EPSCs), elicited in the presence of tiagabine (20 microM) during the large (1,428 +/- 331 pA) inward currents that underlie the DRs, was decreased on the average by 90.8 +/- 1.7%. Such inhibition occurred despite the presence of the GABAB receptor antagonist, CGP 52 432 (10 microM), indicating that GABAB heteroreceptors, located on glutamatergic terminals, do not mediate the observed reduction in the amplitude of excitatory postsynaptic responses. The present results suggest that despite facilitating the induction of GABA-mediated depolarizations, tiagabine application may nevertheless increase the effectiveness of synaptic inhibition during the synchronous high-frequency activation of inhibitory interneurons by enhanced shunting.  相似文献   

10.
The ability of layer I activation to facilitate the induction of long-term potentiation (LTP) in layer II/III horizontal connections of motor cortex (MI) was examined in rat brain slice preparations. Field potentials evoked in layer I and layer II/III horizontal pathways were recorded from radially aligned MI sites. While theta burst stimulation (TBS) of layer II/III pathways alone failed to induce LTP, simultaneous TBS of layer I and layer II/III inputs on alternate sides of the recording electrodes induced LTP in the layer II/III input in 8 out of 13 slices (mean change +20±6%; N=13). In the same cases, the layer I connections showed mixed effects: LTP in three cases, LTD in five cases, and no modification in five slices. Despite the facilitatory effect of layer I activation on layer II/III LTP induction, we found that the critical circuitry for this effect was outside layer I. Cutting the layer I fibers selectively in the slice did not prevent layer II/III LTP induction, while cuts preserving only layer I blocked layer II/III LTP after conjoint I+II/III TBS. Cholinergic fibers were evaluated as candidates for the facilitatory effect because they branch widely in both layers and they are thought to participate in synaptic modification. The cholinergic contribution to layer II/III LTP facilitation was investigated using bath application of muscarinic antagonists. Muscarinic blockade prevented facilitation of layer II/III LTP by layer I coactivation. Instead, conjoint stimulation in 10 μM atropine produced long-term depression (LTD) of layer II/III (–18±9%; N=11) as well as of layer I (–21±6%; N=11) horizontal responses. These results indicate that connections formed within layer I are ineffective in promoting LTP in the deeper-lying horizontal connections; the critical route by which layer I stimulation influenced LTP induction required the circuitry in the deeper layers, particularly the cholinergic system. Thus, it appears that diffuse cholinergic afferents provide an additional route to regulate activity-dependent synaptic modificaton in horizontal cortical connections. Received: 23 June 1998 / Accepted: 22 February 1999  相似文献   

11.
1. Effects of hypothalamic stimulation on activity of dorsomedial medulla neurons that responded to subdiaphragmatic vagal stimulation were investigated in urethan-anesthetized rats. 2. Extracellular recordings were made from 231 neurons in the nucleus of the tractus solitarius (NTS) that fired repetitively in response to single-pulse subdiaphragmatic vagal stimulation and from 320 neurons in the dorsal motor nucleus of the vagal nerve (DMV) that responded antidromically to subdiaphragmatic vagal stimulation. The mean latencies of responses to subdiaphragmatic vagal stimulation were 90.3 +/- 17.1 ms (mean +/- SD) for NTS neurons, and 90.8 +/- 11.2 ms for DMV neurons. This indicated that both afferent and efferent subdiaphragmatic vagal fibers were thin and unmyelinated and had a conduction velocity of approximately 1 m/s. 3. In extracellular recordings from 320 DMV neurons, marked inhibition preceded the antidromic response and subdiaphragmatic vagal stimulation evoked orthodromic spikes in only a few neurons. 4. Intracellular recordings from 66 DMV neurons revealed inhibitory postsynaptic potentials (IPSPs) before the antidromic responses. These IPSPs suppressed spontaneous firing and prevented excitatory postsynaptic potentials (EPSPs) from generating action potentials. 5. Stimulation in all hypothalamic loci studied, the ventromedial hypothalamic nucleus (VMH), the lateral hypothalamic area (LHA), and the paraventricular nucleus (PVN), induced responses with similar characteristics of excitation alone or excitation followed by inhibition in most NTS and DMV neurons. 6. No reciprocal effect of VMH and LHA stimulation was observed on NTS and DMV neurons. 7. Intracellular recordings from DMV neurons revealed monosynaptic EPSPs in response to stimulation of the VMH, the LHA, and the PVN. 8. PVN stimulation evoked significantly more responses in NTS and DMV neurons than VMH stimulation and more responses in DMV neurons than LHA stimulation. This suggests a difference in the number of connections between each hypothalamic site and the dorsomedial medulla. 9. The same dorsomedial medulla neurons were tested with VMH and LHA stimulation. The respective mean latencies of the antidromic and the orthodromic NTS neuron responses were 37.3 +/- 3.2 and 39.6 +/- 12.9 ms for VMH stimulation and 29.8 +/- 5.3 and 31.8 +/- 8.7 ms for LHA stimulation. The mean latencies of the orthodromic DMV neuron responses were 39.4 +/- 8.3 ms for VMH stimulation and 31.1 +/- 5.2 ms for LHA stimulation. The estimated conduction velocity from the VMH to the dorsomedial medulla was approximately 0.25 m/s and from the LHA it was approximately 0.33 m/s, which was significantly faster.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
The timing of events within the nervous system is a critical feature of signal processing and integration. In neurotransmission, the synaptic latency, the time between stimulus delivery and appearance of the synaptic event, is generally thought to be directly related to the complexity of that pathway. In horizontal brain stem slices, we examined synaptic latency and its shock-to-shock variability (synaptic jitter) in medial nucleus tractus solitarius (NTS) neurons in response to solitary tract (ST) electrical activation. Using a visualized patch recording approach, we activated ST 1-3 mm from the recorded neuron with short trains (50-200 Hz) and measured synaptic currents under voltage clamp. Latencies ranged from 1.5 to 8.6 ms, and jitter values (SD of intraneuronal latency) ranged from 26 to 764 micros (n = 49). Surprisingly, frequency of synaptic failure was not correlated with either latency or jitter (P > 0.147; n = 49). Despite conventional expectations, no clear divisions in latency were found from the earliest arriving excitatory postsynaptic currents (EPSCs) to late pharmacologically polysynaptic responses. Shortest latency EPSCs (<3 ms) were mediated by non-N-methyl-D-aspartate (non-NMDA) glutamate receptors. Longer latency responses were a mix of excitatory and inhibitory currents including non-NMDA EPSCs and GABAa receptor-mediated currents (IPSC). All synaptic responses exhibited prominent frequency-dependent depression. In a subset of neurons, we labeled sensory boutons by the anterograde fluorescent tracer, DiA, from aortic nerve baroreceptors and then recorded from anatomically identified second-order neurons. In identified second-order NTS neurons, ST activation evoked EPSCs with short to moderate latency (1.9-4.8 ms) but uniformly minimal jitter (31 to 61 micros) that were mediated by non-NMDA receptors but had failure rates as high as 39%. These monosynaptic EPSCs in identified second-order neurons were significantly different in latency and jitter than GABAergic IPSCs (latency, 2.95 +/- 0.71 vs. 5.56 +/- 0.74 ms, mean +/- SE, P = 0.027; jitter, 42.3 +/- 6.5 vs. 416.3 +/- 94.4 micros, P = 0.013, n = 4, 6, respectively), but failure rates were similar (27.8 +/- 9.0 vs. 9.7 +/- 4.4%, P = 0.08, respectively). Such results suggest that jitter and not absolute latency or failure rate is the most reliable discriminator of mono- versus polysynaptic pathways. The results suggest that brain stem sensory pathways may differ in their principles of integration compared with cortical models and that this importantly impacts synaptic performance. The unique performance properties of the sensory-NTS pathway may reflect stronger axosomatic synaptic processing in brain stem compared with dendritically weighted models typical in cortical structures and thus may reflect very different strategies of spatio-temporal integration in this NTS region and for autonomic regulation.  相似文献   

13.
The effects of the pro-inflammatory cytokine interleukin-18 (IL-18) were investigated on both normal and isolated N-methyl-D-aspartate (NMDA) receptor-mediated field excitatory post synaptic potentials (fEPSP) and on the induction of long-term potentiation (LTP) in the rat dentate gyrus in vitro. Bath perfusion with IL-18 (100 ng/ml) for 20 min prior to high-frequency stimulation had no significant effect on baseline synaptic transmission or paired pulse depression, but did impair the induction of LTP (115.7+/-8.8% versus 150.8+/-8.1% in vehicle control slices, n=6, P<0.05 at 60 min). Further analysis demonstrated that IL-18 significantly depressed the amplitude of pharmacologically isolated NMDA receptor-mediated fEPSP (NMDA-fEPSP; 77.4+/-4.3% of baseline compared to controls at 1 h; P<0.05, n=7), an effect that may underlie the impairment of LTP by IL-18. This action of IL-18 on LTP and NMDA-fEPSPs was attenuated in full by pretreatment of slices with exogenously applied IL-1 receptor antagonist (IL-1ra, 100 ng/ml), the naturally occurring antagonist of IL-1 type 1 receptors. This ability of IL-1ra to block the inhibitory effects of IL-18 is likely to be receptor-specific as no reversal of the tumour necrosis factor-alpha-induced inhibition of LTP was seen with IL-1ra administration (110.7+/-5.4% versus tumour necrosis factor-alpha-treated slices; 107.4+/-8.7%, P=0.6, n=6).These are the first experiments providing evidence of a direct neuromodulatory role for IL-18 in synaptic plasticity.  相似文献   

14.
The effect of exogenously applied cholinergic agents upon mitral-granule cell complex activity of the olfactory bulb was studied in anesthetized rats. Output neurons were activated by electrical paired-pulse stimulation (40-80 ms time interval) applied either to the olfactory nerve (orthodromic stimulation) or to the lateral olfactory tract (antidromic stimulation). Evoked field potentials were recorded in the granule cell layer. Cholinergic agents were introduced close to the mitral cell body layer through a push-pull cannula. With both orthodromic and antidromic stimulations, acetylcholine in the presence of eserine (an acetylcholinesterase blocker), did not alter the conditioning volley, while it induced a significant increase in the amplitude of the test volley. This effect could be replicated using the cholinergic agonist carbachol. This attenuation of the paired-pulse inhibition is due to a reduction of the dendrodendritic inhibitory action of granule cells upon relay cells. Muscarinic and nicotinic transmission were studied using antidromic and orthodromic stimulations, respectively. The selective effect of acetylcholine on the test volley was totally abolished by the blockade of the muscarinic transmission (by atropine). The blockade of the GABAergic transmission (by picrotoxin), could also prevent the acetylcholine-induced effect. The results lead us to propose that in deep bulbar layers, acetylcholine may activate muscarinic receptors situated on second-order GABAergic interneurons. These interneurons could in turn inhibit granule cells (first-order interneurons). The nicotinic antagonist d-tubocurarine selectively enhanced the duration of the late component and did not appear to modify early components when stimulation was applied to the olfactory nerve. This effect related to both the conditioning and the test volleys and the enhancement in the duration of depolarization of granule cell dendrites suggests that normal activation of nicotinic receptors contributes to a faster repolarization of granule cells. Since nicotinic receptors belong to the outer glomerular layer, this result points to the existence of interneurons belonging to the periglomerular region where they receive nicotinic input and project to deep layers where they modulate granule cell activity. Taken together, our results suggest the presence of a phasic muscarinic and a tonic nicotinic modulation of bulbar interneuronal activity. Since both could finally reduce the inhibitory action of granule cells, the action of cholinergic afferents would facilitate transmission of bulbar output neurons to central structures.  相似文献   

15.
Long-term potentiation of Ca2+ signal in the rat auditory cortex.   总被引:3,自引:0,他引:3  
The Ca2+ signal in supragranular layers of the rat auditory cortex (AC) was studied in slice preparations using rhod-2, a Ca2+ indicator. White matter stimulation elicited an increase in the Ca2+ signal, which was maximal in the image taken 34 ms after stimulation. This peak time was the same as that of the Ca2+ signal in pyramidal neurons injected with rhod-2. The intensity of the Ca2+ signal was proportional to the amplitude of the field potentials in supragranular layers. The Ca2+ signal was inhibited almost completely by 200 microM Ni2+ , but only slightly by 50 microM D-2-amino-5-phosphonovalerate (APV), an NMDA-receptor antagonist. Tetanic stimulation of the white matter or supragranular layers elicited long-term potentiation (LTP) of the Ca2+ signal in AC slices, but the potentiation was not clear in slices of the visual cortex (VC). The induction of LTP of the field potentials in AC slices was blocked by 50 microM APV or 50 microM Ni2+. These results indicate that Ca2+ influx through Ni2+ -sensitive Ca2+ channels in pyramidal neurons is potentiated by tetanic stimulation in parallel with LTP of neural activities and might be important for the induction of LTP in AC slices.  相似文献   

16.
1. Intracellular recording was made from layer II-III cells in slice preparations of kitten (30-40 days old) visual cortex. Low-frequency (0.1 Hz) stimulation of white matter (WM) usually evoked an excitatory postsynaptic potential (EPSP) followed by an inhibitory postsynaptic potential (IPSP). The postsynaptic potentials (PSPs) showed strong dependence on stimulus frequency. Early component of EPSP and IPSP evoked by weak stimulation both decreased monotonically at frequencies greater than 0.5-1 Hz. Strong stimulation similarly depressed the early EPSP at higher frequencies (greater than 2 Hz) and replaced the IPSP with a late EPSP, which had a maximum amplitude in the stimulus frequency range of 2-5 Hz. 2. Very weak WM stimulation sometimes evoked EPSPs in isolation from IPSPs. The falling phase of the EPSP revealed voltage dependence characteristic to the responses mediated by N-methyl-D-aspartate (NMDA) receptors and was depressed by application of an NMDA antagonist DL-2-amino-5-phosphonovalerate (APV), whereas the rising phase of the EPSP was insensitive to APV. 3. The early EPSPs followed by IPSPs were insensitive to APV but were replaced with a slow depolarizing potential by application of a non-NMDA antagonist 6,7-dinitro-quinoxaline-2,3-dione (DNQX), indicating that the early EPSP is mediated by non-NMDA receptors. The slow depolarization was mediated by NMDA receptors because it was depressed by membrane hyperpolarization or addition of APV. 4. The late EPSP evoked by higher-frequency stimulation was abolished by APV, indicating that it is mediated by NMDA receptors, which are located either on the recorded cell or on presynaptic cells to the recorded cells. 5. Long-term potentiation (LTP) of EPSPs was examined in cells perfused with solutions containing 1 microM bicuculline methiodide (BIM), a gamma-aminobutyric acid (GABA) antagonist. WM was stimulated at 2 Hz for 15 min as a conditioning stimulus to induce LTP, and the resultant changes were tested by low-frequency (0.1 Hz) stimulation of WM. 6. LTP of early EPSPs occurred in more than one-half of the cells (8/13) after strong conditioning stimulation. The rising slope of the EPSP was increased 1.6 times on average. 7. To test involvement of NMDA receptors in the induction of LTP in the early EPSP, the effect of conditioning stimulation was studied in a solution containing 100 microM APV, which was sufficient to block completely synaptic transmission mediated by NMDA receptors. LTP occurred in the same frequency and magnitude as in control solution.  相似文献   

17.
It has been suggested that in mammals, trigeminal lamina I neurons play a role in the processing and transmission of sensory information from the orofacial region. We investigated the physiological and morphological properties of trigeminal subnucleus caudalis (Sp5C) lamina I neurons in slices prepared from the medulla oblongata of 13- to 15-day-old postnatal rats using patch-clamp recordings and subsequent biocytin-streptavidin-Alexa labeling. Twenty-five neurons were recorded and immunohistochemically stained. The Sp5C lamina I consisted of several types of neurons which, on the basis of their responses to somatic current injection, can be classified into four groups: tonic neurons, which fired throughout the depolarizing pulse; phasic neurons, which expressed an initial burst of action potentials; delayed onset neurons, which showed a significant delay of the first action potential; and single spike neurons, characterized by only one to five action potentials at the very beginning of the depolarizing pulse even at high levels of stimulation intensity. Electrical stimulation of the spinal trigeminal tract evoked AMPA receptor-mediated excitatory postsynaptic currents (EPSC) exhibiting a strong polysynaptic component. AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSC) were characterized by a 10-90% rise time of 0.50+/-0.06 ms and a decay time constant of 2.5+/-0.5 ms. The kinetic properties of NMDA receptor-mediated EPSCs were measured at +40 mV. The 10-90% rise time was 8+/-2 ms and the deactivation time constants were 94+/-31 and 339+/-72 ms, respectively. Intracellular staining and morphological analysis revealed three groups of neurons: fusiform, pyramidal, and multipolar. Statistical analysis indicated that the electrophysiological properties and morphological characteristics are correlated. Tonic and phasic neurons were fusiform or pyramidal and delayed onset and single spike neurons were multipolar. Our results show that both the physiological and morphological properties of Sp5C lamina I neurons exhibit significant differences, indicating their specific integration in the processing and transmission of sensory information from the orofacial region.  相似文献   

18.
We have examined the spatiotemporal properties of ensemble activity, an evoked all-or-none polysynaptic activity in rat neocortical slices. Ensemble activity occurred in cortical slices bathed in normal artificial cerebrospinal fluid (ACSF) and was evoked by a single electrical shock either to the white matter or directly to the cortical tissue. This activity was seen in slices of somatosensory and auditory cortices; in other cortical areas we have not been able to evoke it. The activity developed 10 to 250 ms poststimulus and lasted 280 +/- 120 ms in local field potential (LFP) recordings. Voltage-sensitive dye imaging showed that this activity was an area of activation 0.8 +/- 0.4 mm wide that propagated slowly (11.4 +/- 6.2 mm/s, n = 60, 6 animals) in the horizontal direction. Due to this propagation, the actual duration in the whole tissue may be longer (approximately 400 ms) than that recorded by a single LFP electrode. Ensemble activity produced a low-amplitude optical signal (7-14% of the interictal-like spikes in the same tissue), suggesting a moderate net depolarization of the population. These were very different from hyperexcitable (epileptiform) events in the same tissue that had about 10 times the optical signal amplitude and propagated at 125 +/- 24 mm/s (n = 21, 6 animals). On a global spatial scale (approximately 0.8 mm wide in layers II-III) ensemble activity had a smooth waveform in voltage-sensitive dye signals (population transmembrane potential). On a local scale, field potential recordings showed large fluctuations with complex oscillations and substantial trial-to-trial variation. This suggests that oscillations in cortical circuits occurred only in small clusters of correlated neurons. Ensemble activity was sensitive to the excitation-inhibition balance of the local network. Antagonists of N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and GABAa receptors, and muscarinic agonists and other modest manipulations such as increasing bath concentration of Mg(2+) to 2.5-4 mM (normally at 2 mM), or K(+) to 5-7 mM (normally 3 mM), all significantly reduced the probability of evoking the activity. The metabotropic glutamate receptor agonist, aminocyclopentane-1,3-dicarboxylic acid, blocked the activity at a low concentration (10-15 microM), while the antagonist (R,S)-alpha-methyl-4-carboxyphenylglycine had no effect even at high concentration (240 microM). Our data suggest that locally organized neuronal clusters may play a role in the organization of oscillatory activities in the gamma band and may participate in cortical integration/amplification occurring on a scale of approximately 1 mm x 300 ms.  相似文献   

19.
1. A slice preparation was used to study layer III field potentials (FPs) evoked by electrical stimulation of the white matter-layer VI border and their potentiation by patterned stimuli. 2. The dependence of the FP on recording position was investigated. The maximum field was recorded in layer III at a position radial to the site of stimulation. Because this negative FP reflects an excitatory synaptic current sink, this site was chosen for all subsequent experiments. 3. Under normal recording conditions, components of the layer III FP with latencies greater than 3 ms were completely abolished by kynurenate but unaffected by 2-amino-5-phosphonovalerate (AP5), indicating that this potential reflects the activation of non-NMDA excitatory amino acid receptors. 4. Addition of the gamma-aminobutyric acid (GABA)A receptor antagonist bicuculline methiodide (BMI) broadened the field potential and revealed an AP5-sensitive component. By filling the recording pipette with BMI, it was possible to substantially reduce inhibition locally around the recording site while avoiding stimulus-driven and spontaneous epileptiform activity. 5. Tetanic stimulation elicited a long-term potentiation (LTP) of the FP in 14 of 17 experiments when the BMI-filled pipette method was used. 6. Addition of 100 microM D,L-AP5 significantly reduced the average probability and magnitude of LTP. Nonetheless, in 2 of 8 experiments, significant LTP was observed after a tetanus in the presence of AP5. Control experiments confirmed that this concentration of AP5 was sufficient to maximally block cortical NMDA receptors. 7. We conclude that LTP of layer III field potentials can be reliably elicited, provided that GABAA-receptor mediated inhibition is blocked locally at the site of recording and that NMDA receptors are recruited during the conditioning stimulation. However, activation of NMDA receptors is apparently not an obligatory step for the induction of use-dependent increases in synaptic strength in the kitten striate cortex.  相似文献   

20.
Extracellularly recorded field potentials, evoked by stimulation of cortico-nucleus accumbens border, were recorded in the nucleus accumbens (NAcc) in horizontal slices of rat ventral forebrain. The field excitatory postsynaptic potential (EPSP) event (N2) was calcium dependent, blocked by tetrodotoxin (1 microM), and reduced by over 70% by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (10 microM), the antagonist of AMPA-type glutamate receptors. The EPSP amplitude was enhanced by either of the GABA(A) receptor antagonists, picrotoxin (10 microM; by 252+/-33%, n=18) and bicuculline methiodide (20 microM; by 216+/-34%, n=4). Additionally, picrotoxin (3-50 microM) and bicuculline methiodide (20 microM) promoted epileptiform activity within the NAcc, manifest as the emergence of additional late components, N3, N4 and N5, in the evoked synaptic waveform. In slices with the frontal cortex removed, picrotoxin (10-50 microM) and bicuculline methiodide (20 microM) were unable to promote epileptiform activity within the NAcc, although a smaller increase in the peak amplitude of the field EPSP (163+/-18%, n=6) was observed at the highest concentrations of picrotoxin (50 microM). Histological examination of the slice demonstrated that in such decorticated slices, the piriform cortex (PC) had been removed. We propose that stimulation of the cortico-NAcc border not only evokes an orthodromic EPSP in the NAcc, but also causes antidromic activation of cortical tissue. Disinhibition by GABA(A) antagonists of circuits intrinsic to the cortex, possibly the piriform cortex, is the principal cause of the facilitation of the EPSP and of regenerative epileptiform activity in NAcc evoked by stimulation of cortical input.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号