首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mini-matrices with release-sustaining properties were developed by hot-melt extrusion (diameter 3 mm, height 2 mm) using metoprolol tartrate as model drug (30%, w/w) and ethylcellulose as sustained-release agent. Polyethylene glycol or polyethylene oxide was added to the formulation to increase drug release. Changing the hydrophilic polymer concentration (0%, 1%, 2.5%, 5%, 10%, 20% and 70%, w/w) and molecular weight (6000, 100,000, 1,000,000 and 7,000,000) modified the in vitro drug release: increasing concentrations yielded faster drug release (irrespective of molecular weight), whereas the influence of molecular weight depended on concentration. Smooth extrudates were obtained when processed at 40 and 70 °C for polyethylene glycol and polyethylene oxide formulations, respectively. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of hydrophilic polymer concentration and molecular weight. Also drug and polymer crystallinity were independent of both parameters. An oral dose of 200 mg metoprolol tartrate was administered to dogs in a randomized order either as immediate-release preparation (Lopresor® 100), as sustained-release formulation (Slow-Lopresor® 200 Divitabs®), or as experimental mini-matrices (varying in hydrophilic polymer concentration). The sustained-release effect of the experimental formulations was limited, and relative bioavailabilities of 66.2% and 148.2% were obtained for 5% and 20% PEO 1,000,000 mini-matrices, respectively.  相似文献   

2.
The aim of this highly novel study was to use hot-melt extrusion technology as an alternative process to enteric coating. In so doing, oral dosage forms displaying enteric properties may be produced in a continuous, rapid process, providing significant advantages over traditional pharmaceutical coating technology. Eudragit® L100-55, an enteric polymer, was pre-plasticized with triethyl citrate (TEC) and citric acid and subsequently dry-mixed with 5-aminosalicylic acid, a model active pharmaceutical ingredient (API), and an optional gelling agent (PVP® K30 or Carbopol® 971P). Powder blends were hot-melt extruded as cylinders, cut into tablets and characterised using powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC) and dissolution testing conducted in both pH 1.2 and pH 6.8 buffers. Increasing the concentration of TEC significantly lowered the glass transition temperature (Tg) of Eudragit® L100-55 and reduced temperatures necessary for extrusion as well as the die pressure. Moreover, citric acid (17% w/w) was shown to act as a solid-state plasticizer. HME tablets showed excellent gastro-resistance, whereas milled extrudates compressed into tablets released more than 10% w/w of the API in acidic media. Drug release from HME tablets was dependent upon the concentration of TEC, the presence of citric acid, PVP K30, and Carbopol® 971P in the matrix, and pH of the dissolution media. The inclusion of an optional gelling agent significantly reduced the erosion of the matrix and drug release rate at pH 6.8; however, the enteric properties of the matrix were lost due to the formation of channels within the tablet. Consequently this work is both timely and highly innovative and identifies for the first time a method of producing an enteric matrix tablet using a continuous hot-melt extrusion process.  相似文献   

3.
The objective of this study was to investigate the use of Raman spectroscopy for the quantitative and qualitative analysis of an active ingredient in hot-melt extruded film formulations. Clotrimazole and ketoprofen were used as the active pharmaceutical ingredients (APIs) in the subject formulations. Films were prepared with contents varying from 1 to 20% of the respective API. Raman spectroscopy was used to quantify these APIs, both off-line and on-line. The spectral data were also used to ascertain the physical status of these APIs in the formulations. For off-line analysis, the films were cut into small rectangles, and the amount of the API was measured using a fiber optic probe equipped with a non-contact optic (NCO). For on-line analysis, real-time measurements were accomplished by fixing the probe over the extruded film for continuous data collection. Raman spectroscopy can be a convenient alternative to HPLC and other techniques currently employed for the quantification of the API in these formulations. Because Raman is also sensitive to changes in crystallinity, employment of the technique provided additional information to deduce the crystalline status of the API. The results reported in this paper suggest the suitability of Raman for PAT applications because of the on-line capability.  相似文献   

4.
There is a growing interest of extrusion drug and polymer together to manufacture various solid dosages. In those cases, the drug’s release profiles are greatly affected by the miscibility of two materials. The goal of this study is to test the drug’s solubility in molten polymer and obtain the mixture’s rheological properties for the purpose of optimizing the extrusion process. The dynamic and steady viscosities of APAP-PEO mixture were determined using oscillatory and capillary rheometers. The curves of viscosity vs. drug loading generally have a “V” shape, and the minimal point gives the APAP’s solubility in PEO. The test results suggest that different dynamic methods lead to essentially the same solubility data. At high shear rates, the mixtures show shear thinning behavior and the viscosity becomes less sensitive to the drug loading. In other words, it is desirable to use a low shear rate in order to deduce the drug’s solubility in polymer from the viscosity data. On the other hand, viscosity data at high shear rates are more representative of the materials’ rheological properties during extrusion.  相似文献   

5.
Different types of ethylcellulose-based mini-matrices were prepared by hot-melt extrusion and thoroughly characterized in vitro. Metoprolol tartrate was used as model drug, and various amounts and types of polyethylene glycol (PEG)/polyethylene oxide (PEO) were added as release rate modifiers. Based on the experimental results, appropriate mathematical theories were identified/developed, allowing for a better understanding of the underlying drug release mechanisms. For instance, it could be shown that at high initial PEG/PEO contents and/or intermediate initial PEG/PEO contents of low molecular weight, drug diffusion with time- and position-independent diffusivities is predominant. In contrast, at low initial PEG/PEO contents and intermediate initial PEG/PEO contents of high molecular weight, the time- and position-dependent dynamic changes in the matrix porosities significantly affect the conditions for drug and PEG/PEO diffusion. These dynamic changes must be taken into account in the mathematical model. Importantly, the proposed theories are mechanistic realistic and also allow for the quantitative prediction of the effects of the device design on the resulting drug release patterns. Interestingly, these quantitative predictions could be confirmed by independent experiments. Furthermore, Raman spectroscopy allowed for the determination of the resulting drug concentration-position profiles within the mini-matrices as a function of time and confirmed the theoretical predictions.  相似文献   

6.
The aim of this study was to investigate the influence of sulfobutyl ether β-cyclodextrin (SBE7-β-CD; Captisol®) on the dissolution properties of a poorly water-soluble drug from extrudates prepared by hot-melt extrusion. Ketoprofen was employed as a model drug. Extrudates containing the parent β-cyclodextrin (β-CD) were also produced for comparative evaluation to assess the benefits of SBE7-β-CD. Hot-melt extrudates were produced at 100 °C, which was close to the melting point of ketoprofen. The physiochemical properties and the in vitro drug release properties of ketoprofen from extrudates were investigated and compared with samples prepared by physical mixing, co-grinding, freeze-drying and heat-treatment. The solubilizing effects and the interactions of ketoprofen with SBE7-β-CD and β-CD were investigated using phase solubility and NMR studies, respectively. The dissolution rate of ketoprofen from samples prepared by hot-melt extrusion with SBE7-β-CD was significantly faster than both the physical mixture and the hot-melt extrudates prepared with the parent β-CD. Moisture absorption studies revealed that the hygroscopic nature of SBE7-β-CD led to particle aggregation and a corresponding decrease in drug release rate for all samples. However, the samples prepared by melt extrusion were least affected by exposure to elevated humidity.  相似文献   

7.
The aim of this study was to investigate the influence of pH, buffer species and ionic strength on the release mechanism of chlorpheniramine maleate (CPM) from matrix tablets containing chitosan and xanthan gum prepared by a hot-melt extrusion process. Drug release from hot-melt extruded (HME) tablets containing either chitosan or xanthan gum was pH and buffer species dependent and the release mechanisms were controlled by the solubility and ionic properties of the polymers. All directly compressed (DC) tablets prepared in this study also exhibited pH and buffer species dependent release. In contrast, the HME tablets containing both chitosan and xanthan gum exhibited pH and buffer species independent sustained release. When placed in 0.1N HCl, the HME tablets formed a hydrogel that functioned to retard drug release in subsequent pH 6.8 and 7.4 phosphate buffers even when media contained high ionic strength, whereas tablets without chitosan did not form a hydrogel to retard drug release in 0.1N HCl. The HME tablets containing both chitosan and xanthan gum showed no significant change in drug release rate when stored at 40 °C for 1 month, 40 °C and 75% relative humidity (40 °C/75% RH) for 1 month, and 60 °C for 15 days.  相似文献   

8.
The aim of the study was the formulation of polyelectrolyte complexes composed of poorly water-soluble acid drugs and basic polymethacrylates by hot-melt extrusion enabling a tailor-made release pattern by the addition of inorganic salts. The influence of different electrolytes was analyzed at varying conditions in order to control drug delivery from the complexes. Poorly water-soluble model drugs naproxen and furosemide were applied in their non-ionic form.After hot-melt extrusion of the naproxen-polymethacrylate powder blend, XRPD and DSC measurements indicated the formation of a single-phase amorphous system. Milled extrudates were stable under storage at long-term and intermediate conditions. Polyelectrolyte complex formation by an acid–base reaction during hot-melt extrusion could be proven by the lack of vibrations of dimethylamino and carboxylic groups by FT-IR and Raman spectroscopy. The complexes did not dissolve in demineralized water. Drug release could be immediately induced by addition of neutral electrolytes. Tailor-made dissolution profiles were realized by controlled electrolyte triggering. Maximal effects were achieved by concentrations of 0.05–0.15 M NaCl. Different anions of alkali halogenides revealed variant magnitudes of the effect depending on the anion radius. Polyelectrolyte complex formation and dissolution principles were also confirmed for furosemide.  相似文献   

9.
目的:建立酮洛芬贴片体外透皮释放方法学。方法 :采用HPLC法测定释放液中酮洛芬的含量,测定条件:DiamonsilC18色谱柱(150 mm×4.6 mm,5μm),流动相为pH 3.5磷酸盐缓冲液-乙腈-水(2∶53∶45),检测波长为253 nm,流速为1.0mL.min-1,柱温25℃。以裸鼠皮肤为实验皮肤,采用Frans扩散池方法进行三批酮洛芬贴片样品的体外透皮实验。结果:在该HPLC条件下,酮洛芬与其他杂质分离良好,进样量在0.509~40.72μg.mL-1时,酮洛芬浓度与峰面积呈良好的线性关系(r=0.999 9),回收率为101.09%,RSD为1.23%。三批酮洛芬贴片样品的透皮释放速率分别为18.157,17.973,20.001μg.cm-2.h-1,药物透皮释放符合零级动力学过程。结论:本文建立的酮洛芬贴片体外透皮释放方法简便,重现性好,可以用于控制产品质量。  相似文献   

10.
The objective of this study was to test low frequency sonophoresis at 20 kHz for delivery of ketoprofen into and across the skin. Permeation studies were carried out in vitro on excised hairless rat skin over a period of 24 h using Franz diffusion cells after which, skin samples were subjected to skin extraction to quantify the amount of drug present in skin. Parameters like ultrasound application time, duty cycle coupling medium and distance of ultrasound horn from skin were optimized. Transepidermal water loss (TEWL) was measured to indicate the extent of barrier disruption following sonophoresis. Confocal microscopy was used to visualize dye penetration through sonophoresis treated skin. Application of ultrasound significantly enhanced permeation of ketoprofen from 74.87 ± 5.27 μg/cm2 for passive delivery to 491.37 ± 48.78 μg/cm2 for sonophoresis. Drug levels in skin layers increased from 34.69 ± 7.25 μg following passive permeation to 212.62 ± 45.69 μg following sonophoresis. TEWL increased from 31.6 ± 0.02 (passive) to 69.5 ± 12.60 (sonophoresis) indicating disruption of barrier properties. Confocal microscopy images depicted enhanced dye penetration through sonophoresis treated skin confirming barrier disruption. Low frequency sonophoresis with optimized ultrasound parameters can be effectively used to actively enhance transdermal and topical delivery of ketoprofen.  相似文献   

11.
Poly(ethylene oxide) (PEO) was used to prepare thin polymer films containing clotrimazole (CT) utilizing hot-melt extrusion (HME) technology. Films containing PEOs of two different molecular weights and the drug were investigated for solid-state characteristics, moisture-sorption, bioadhesivity, mechanical properties, release characteristics, and physical and chemical stability of the drug within the HME films. The solid-state characterization of the drug and the polymer were performed utilizing differential scanning calorimetry and X-ray diffractometry. A Texture analyzer was utilized to study the bioadhesive and mechanical properties of the HME films. Physical and chemical stability of the films, stored at 25 degrees C/60% RH, was studied for up to 12 months. XRD profiles indicated that the drug was physically unstable (recrystallization of the drug occurred) after storage for 3 months at 25 degrees C/60% RH. Based on the DSC studies, it has been proposed that the recrystallization of the drug may be due to the folding (due to HME) and unfolding (upon storage) of the linear PEO chains. Desirable bioadhesive, mechanical, and thermoplastic properties of PEO qualify it as a promising and potential drug carrier. However, further investigation is necessary to enhance the physical stability of these PEO-drug systems.  相似文献   

12.
Mini-matrices (multiple unit dosage form) with release-sustaining properties were developed by hot-melt extrusion (cylindrical die: 3 mm) using metoprolol tartrate as model drug and ethylcellulose as sustained-release agent. Dibutyl sebacate was selected as plasticizer and its concentration was optimized to 50% (w/w) of the ethylcellulose concentration. Xanthan gum, a hydrophilic polymer, was added to the formulation to increase drug release. Changing the xanthan gum concentration modified the in vitro drug release: increasing xanthan gum concentrations (1%, 2.5%, 5%, 10% and 20%, w/w) yielded a faster drug release. Zero-order drug release was obtained at 5% (w/w) xanthan gum. Using kneading paddles, smooth extrudates were obtained when processed at 60 °C. At least one mixing zone was required to obtain smooth and homogeneous extrudates. The mixing efficacy and drug release were not affected by the number of mixing zones or their position along the extruder barrel. Raman analysis revealed that metoprolol tartrate was homogeneously distributed in the mini-matrices, independent of screw design and processing conditions. Simultaneously changing the powder feed rate (6–25–50 g/min) and screw speed (30–100–200 rpm) did not alter extrudate quality or dissolution properties.  相似文献   

13.
The passage of a drug through the skin is directly proportional to the concentration of the drug in the donor phase and to the permeability coefficient constant Kp. Kp is determined essentially by two factors: the dissolution of the drug in the stratum corneum (measured by the partition coefficient P) and the diffusion in the same stratum (measured by the diffusion constant D). In our study, several saturated solutions of ketoprofen in mixtures of a pH 6.5 phosphate buffer and various co-solvents were studied to find correlations between the solubility of the ketoprofen in the mixtures and its permeation parameters in in vitro permeation studies with Franz cells. The results show that D does not change in the different mixtures; the diffusion of the drug into the stratum corneum is not influenced by the presence of the co-solvents, whereas the partition coefficient is strongly influenced. In particular, Kp and P were found to be inversely proportional to solubility, meaning that when the co-solvent increases the solubility, the partition of the drug and consequently Kp decrease. These findings were confirmed in some developed gels, and the developed gels were found to enhance the ketoprofen permeation with respect to the formulation in a commercial Fastum gel.  相似文献   

14.
The purpose of this study was the in vitro and in vivo evaluation of the masking efficiency of hot melt extruded paracetamol (PMOL) formulations. Extruded granules containing high PMOL loadings in Eudragit EPO® (EPO) or Kollidon® VA64 (VA64) were prepared by hot-melt extrusion (HME). The taste masking effect of the processed formulation was evaluated in vivo by a panel of six healthy human volunteers. In addition, in vitro evaluation was carried out by an Astree e-tongue equipped with seven sensors. Taste sensing technology demonstrated taste improvement for both polymers by correlating the data obtained for the placebo polymers and the pure APIs alone. The best masking effect was observed for VA64 at 30% PMOL loading. The e-tongue results were in good agreement with the in vivo evaluation. In vitro dissolution of the extruded granules showed rapid PMOL releases.  相似文献   

15.
The study was performed to evaluate the percutaneous penetration of ketoprofen after transdermal administration using a microdialysis technique in pigs, in comparison with rats. Ketoprofen release from patches was determined by analysis of the remaining drug content after application to hairless rats and pigs. Skin and knee joint penetration of ketoprofen was tested by microdialysis, and recovery was determined by retrodialysis. Residual rates in hairless rats and pigs were 68.1 ± 1.6% and 81.7 ± 4.4%, respectively, at 10 h. The average recoveries of ketoprofen over 480 min in the skin and knee joint cases were 72.0 ± 3.4% and 9.8 ± 6.2% in rats and 72.3 ± 2.5% and 57.6 ± 3.1% in pigs, respectively. In rats, ketoprofen was rapidly absorbed with transdermal administration, with Cmax values of 191.7 ± 76.2 and 35.5 ± 21.7 ng/mL and AUC0-8h values of 918.2 ± 577.5 and 195.9 ± 137.1 ng h/mL, respectively, for the skin and knee joint. The Cmax values for the pig were 20.9 ± 18.5 and 3.7 ± 3.0 ng/mL, with AUC0-8h values of 73.1 ± 69.2 and 16.1 ± 16.1 ng h/mL. Ketoprofen concentrations within skin and knee joint of non-application sites in rats and pigs were less than 0.8 ng/mL. Transdermal administration of ketoprofen significantly reduced prostaglandin E2 levels in the skin of the application site and showed a tendency for inhibition in the knee joint. We thus demonstrated that topical patches containing ketoprofen can deliver the drug through the skin and knee joint of pigs and rats via direct diffusion, and microdialysis data with the pig may be useful for the prediction of human tissue penetration of drugs with transdermal administration.  相似文献   

16.
Solvent evaporation method for preparation of nanomatrix has the disadvantages, such as residual organic solvent, environmental pollution, explosion-proofing and so on. To overcome these shortcomings, a series of fenofibrate nanomatrix drug delivery system (NDDS) consisting of nano-porous silica Sylysia®350 (S350) and pH sensitive material Eudragit® L100-55 (EL100-55) were prepared using hot-melt extrusion (HME), and their in vitro dissolution and in vivo bioavailability were compared. Finally, the formulation with the highest in vivo bioavailability was selected as the optimized formulation for DSC and PXRD characterization. The results showed that the optimized NDDS showed a higher bioavailability than the reference formulation, although there was crystalline form drug remaining in NDDS. The relative bioavailability of the optimized formulation was 157.1% compared with the commercial product Lipanthyl®. In addition, the relative bioavailability of the optimized formulation was 124.8% in comparison with the formulation prepared by solvent evaporation method, showing that the NDDS prepared by the HME method was effective in improving the bioavailability of fenofibrate. In conclusion, HME was a promising method to prepare NDDS.  相似文献   

17.
The aim of the study was the formulation of solid dispersions of the poorly water-soluble drug celecoxib and a polymethacrylate carrier by hot-melt extrusion. The objectives were to elucidate the mechanism of drug release from obtained extrudates and milled strands addicted to the solid-state properties of the solid dispersions and to examine and eliminate stability problems occurring under storage, exposure of mechanical stress, and in vitro dissolution.Transparent extrudates containing up to 60% drug could be prepared with a temperature setting below the melting point of celecoxib. XRPD and DSC measurements indicated the formation of a glassy solid solution, where the drug is molecularly dispersed in the carrier. The amorphous state of the glassy solid solution could be maintained during the exposure of mechanical stress in a milling process, and was stable under storage for at least 6 months. Solid-state properties and SEM images of extrudates after dissolution indicated a carrier-controlled dissolution, whereby the drug is molecularly dispersed within the concentrated carrier layer. The glassy solid solution showed a 58-fold supersaturation in 0.1 N HCl within the first 10 min, which was followed by a recrystallization process. Recrystallization could be inhibited by an external addition of HPMC.  相似文献   

18.
Hot-melt extrusion technology was used to prepare thin polymer films containing hydroxypropyl cellulose and clotrimazole (CT). Films containing hydroxypropyl celluloses of different molecular weight and the drug were investigated for moisture-sorption, mechanical properties, and release characteristics. Stability of the films was also studied at 25 degrees C/60% relative humidity (RH) and 40 degrees C/75% RH for up to 3 months. To study the moisture-sorption of the hot-melt extruded films, a rapid dynamic vapor sorption technique was used. Mechanical properties were evaluated using the Texture Analyzer. The molecular weight of the polymer had a significant effect on the mechanical and release characteristics of the films but did not influence the equilibrium moisture content in the films stored at RHs ranging from 0 to 90%. However, the time to reach equilibrium was longer for the higher molecular weight polymers. The drug release rate was dependent on the rate of erosion, which in turn depended on the molecular weight of the polymer. The films were stable at 25 degrees C/60% RH for up to 3 months with no significant degradation or recrystallization of CT. However, recrystallization of the drug was observed within the films stored in accelerated stability conditions at the end of 3 months in which only 92.9% (+/-1.9) CT remained.  相似文献   

19.
Kollidon® SR as a drug carrier and two model drugs with two different melting points, ibuprofen and theophylline, were studied by hot-melt extrusion. Powder mixtures containing Kollidon® SR were extruded using a twin-screw extruder at temperatures 70 and 80 °C for ibuprofen and 80 and 90 °C for theophylline. The glass transition temperature (Tg) and maximum torque were inversely related to ibuprofen concentrations, indicating its plasticizing effect. The results of differential scanning calorimetry (DSC) and X-ray diffraction analysis showed that ibuprofen remained in an amorphous or dissolved state in the extrudates containing drug up to 35%, whereas theophylline was dispersed in the polymer matrix. The increase in amounts of ibuprofen or theophylline in the hot-melt extrudates resulted in the increase in the drug release rates. Theophylline release rate in hot-melt extruded matrices decreased as the extrusion temperature increased. In contrast, a higher processing temperature caused the higher ibuprofen release. This was a clear indication of the plasticizing effect of ibuprofen on Kollidon® SR and a result from water uptake. Theophylline release rate from hot-melt extrudates decreased with increasing triethyl citrate (TEC) level because of the formation of a denser matrix. By adding of Klucel® LF as a water-soluble additive to the hot-melt extruded matrices, an increase in ibuprofen and theophylline release rates was obtained.  相似文献   

20.
The indirect effect of diet on the single-and multiple-dose pharmacokinetics of sustained-release ketoprofen was studied in 16 healthy male volunteers. In an open, cross-over design, 200 mg ketoprofen was administered as a gastric-juice-resistant, sustained-release tablet once daily during two periods of 5 days. A low-calorie/low-fat diet (LCFD) was given in the first period and a high-calorie/high-fat diet (HCFD) in the second period. The first meal on each day was given 4 h after drug intake. Ketoprofen plasma concentrations were measured over 24 h after the first dose on day 1 and over 36 h after the final dose on day 5 of each period.On average, plasma concentrations of ketoprofen were higher with the LCFD than with the HCFD. With the HCFD there was a tendency to longer absorption-lag times on day 5. The maximum concentration and the area under the curve over one 24-h dosage period (AUC0–24) were significantly higher with the LCFD, both on day 1 and on day 5. For AUC0–24 the differences were on average 15% (day 1) and 24% (day 5). The same tendency was observed for the amount excreted in urine over 24 h (Ae), but the difference was only significant on day 1 (14%). The elimination rate constant (K) and the mean residence time were similar for the two diets, both on day 1 and on day 5.From these results, we conclude that there was an acute indirect effect of diet when a meal was had 4 h after intake of the medication. This resulted in a greater extent of ketoprofen absorption with the LCFD than with the HCFD. The absorption rate was apparently not influenced by this acute effect. The longer gastric residence time of ketoprofen with the HCFD may be the result of a long-term indirect effect on gastric emptying rate. If the extreme difference between the diets in this study is taken into account, it seems unlikely that the observed indirect effects have implications for clinical practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号