首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We hypothesized that advanced age and medical conditions had an impact on the accumulation of CD4+CD25+ T regulatory cells (Treg), which in turn could deteriorate cytotoxic activity of CD8+ T and NK cells. Volunteers were divided according to the Senieur Protocol into healthy young and elderly and non-healthy young and elderly subjects. The numbers of Treg cells in peripheral blood, their influence on CD8+ T and NK cells and production of IL2 as well as apoptosis intensity of Treg cells were measured. The number of Treg cells was higher in both elderly groups than in respective young ones. Compared to healthy subjects, those with medical conditions were revealed to have higher numbers of Treg cells. In addition, the highest accumulation of Treg cells in non-healthy elderly could be a result of their resistance to undergo apoptosis. The frequency of Treg cells correlated inversely with the activity of autologous cytotoxic cells in PBMC and production of IL2 by autologous CD4+CD25- Th cells. Thus, these parameters were the most highly decreased in non-healthy subjects, notably in the elderly. However, these parameters improved in the cultures of pure sorted cells. The only subset capable of decreasing them to the levels noted in PBMC when added back was Treg cells, which proved the link between the number of Treg cells, cytotoxic activity and production of IL2. Concluding, we found that Treg accumulated as a result of ageing and/or medical conditions were capable of decreasing cytotoxic activity of CD8+ T and NK cells and production of IL2.  相似文献   

2.
The fields of regulatory T (Treg) cells and chemokines/chemokine receptors have progressed rapidly in the last few years. Treg cells, especially CD4+CD25+ Treg cells, play a critical role in maintaining self-tolerance and immune homeostasis. Chemokines and chemokine receptors are crucial for lymphoid development, homing and immunological regulation. This review will discuss the biological effects of chemokines and chemokine receptors on regulating the migration and development of CD4+CD25+ Treg cells, and the potential clinical implications of these findings when considering chemokine receptors as therapeutic targets.  相似文献   

3.
The immune system responds vigorously to invading pathogens (non-self, foreign), while remaining unresponsive (tolerant) to the body's own components and circulating constituents (self). This indifference to self components is a result of finely orchestrated events of thymic negative selection (central tolerance) of developing T cells that are autoaggressive combined with those operative in the periphery (peripheral tolerance) to control the activity of potentially autoreactive T cells that escaped thymic tolerance. Recently, autoimmune regulator expressed in the thymus has been identified as a critical mediator of central tolerance towards tissue-specific antigens. In the periphery, a variety of regulatory T cells are involved in effecting tolerance. There is immense interest and excitement about the newly identified subset of CD4(+)CD25(+) T cells. This is a unique subset of CD4(+) T cells that bear CD25 (IL-2Ralpha chain) on the cell surface in the na?ve state and express FoxP3 as a unique marker. These cells suppress the activity of autoreactive effector T cells primarily via cell-cell contact. The deficiency and/or altered function of CD4(+)CD25(+) T cells is associated with autoimmunity. Mice deficient in FoxP3 (scurfy mice) bear an autoimmune phenotype, and human males with mutations in the corresponding gene express the phenotype of wide-spread autoimmunity, the immune dysregulation, polyendocrinopathy and enteropathy, and X-linked syndrome. In vitro expansion of antigen-specific CD4(+)CD25(+) T cells and their adoptive transfer into patients suffering from autoimmunity is emerging as a promising new therapeutic approach for these debilitating disorders.  相似文献   

4.
5.
Liu G  Zhao Y 《Immunology》2007,122(2):149-156
Regulatory CD4(+) CD25(+) T (Treg) cells with the ability to suppress host immune responses against self- or non-self antigens play important roles in the processes of autoimmunity, transplant rejection, infectious diseases and cancers. The proper regulation of CD4(+) CD25(+) Treg cells is thus critical for optimal immune responses. Toll-like receptor (TLR)-mediated recognition of specific structures of invading pathogens initiates innate as well as adaptive immune responses via antigen-presenting cells (APCs). Interestingly, new evidence suggests that TLR signalling may directly or indirectly regulate the immunosuppressive function of CD4(+) CD25(+) Treg cells in immune responses. TLR signalling may shift the balance between CD4(+) T-helper cells and Treg cells, and subsequently influence the outcome of the immune response. This immunomodulation pathway may therefore have potential applications in the treatment of graft rejection, autoimmune diseases, infection diseases and cancers.  相似文献   

6.
The factors that influence the functionality of human CD4(+)CD25(+) regulatory T cells are not well understood. We sought to characterize the effects of dendritic cells (DCs) on the in vitro regulatory activity of CD4(+)CD25(+) T cells obtained from peripheral blood of healthy human donors. Flow cytometry showed that a higher proportion of CD4(+)CD25(+(High)) T cells expressed surface glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) and CTL-associated antigen 4 than CD4(+)CD25(-) or CD4(+)CD25(+(Med-low)) T cells. Intracellular Foxp3 was equivalently expressed on CD4(+)CD25(+(All)), CD4(+)CD25(+(High)), CD4(+)CD25(+(Med-low)) and CD4(+)CD25(-) T cell populations, irrespective of GITR and CTL-associated antigen 4 expression. CD4(+)CD25(+) T cells were isolated and then cultured in vitro with CD4(+)CD25(-) responder T cells and stimulated with anti-CD3 antibodies, and immature dendritic cells (iDCs), mature dendritic cells (mDCs), PBMCs or PBMCs plus anti-CD28 antibodies to provide co-stimulation. In addition, secretion of the T(h)1 cytokine IFN-gamma, IL-2 and the immunoregulatory cytokines, IL-10 and transforming growth factor (TGF)-beta, were also assessed in these cultures. We found that iDCs and mDCs were capable of reversing the suppression of proliferation mediated by CD4(+)CD25(+) regulatory T cells. However, the reversal of suppression by DCs was not dependent upon the increase of IFN-gamma and IL-2 production or inhibition of IL-10 and/or TGF-beta production. Therefore, DCs are able to reverse the suppressive effect of regulatory T cells independent of cytokine production. These results suggest for the first time that human DCs possess unique abilities which allow them to influence the functions of regulatory T cells in order to provide fine-tuning in the regulation of T cell responses.  相似文献   

7.
Phenotypic characterization of regulatory CD4+CD25+ T cells in rats   总被引:8,自引:0,他引:8  
CD25 has become widely used as a marker for a subset of regulatory CD4(+) T cells present in the thymus and periphery of mice, rats and humans. However, CD25 is also expressed on conventionally activated T cells that are not regulatory and not all peripheral regulatory T cells express CD25. The identification of a stable and unique marker for regulatory T cells would therefore be valuable. This study provides a detailed account of the phenotype of CD4(+)CD25(+) regulatory T cells in rats. In the thymus, CD4(+)CD8(-)CD25(+) cells were found to have a more mature phenotype than the corresponding CD4(+)CD8(-)CD25(-) cells with respect to expression of Thy1 (CD90), CD53 and CD44, suggesting that CD25 expression, and perhaps commitment to regulatory function, might be a late event in thymocyte development. CD4(+)CD25(+) cells in both the thymus and periphery were found to have enriched and heterogeneous expression of activation markers such as OX40 (CD134) and OX48 (an antibody determined in this study to be specific for CD86). CD4(+)CD25(+) T cells were also found to have enriched expression of CD80, at both the mRNA and protein level. However, functional studies in vitro and in vivo showed that neither OX40 or CD86 were useful markers for the further subdivision of regulatory T cells. Our studies indicate that, at present, CD25 remains the most useful marker to enrich for regulatory CD4(+) T cells in rats and no further subdivision of the regulatory component of CD4(+)CD25(-)CD45RC(low) T cells has yet been achieved.  相似文献   

8.
天然CD4+ CD25+ Treg细胞在针对自身抗原和外来抗原的免疫应答中起关键控制作用,其缺乏或功能性的缺陷将导致多重病理性的失调.本文就近年在其产生、作用机制以及与免疫耐受的诱导关系等方面的研究进展进行了综述.  相似文献   

9.
Natural regulatory CD4(+) CD25(+) T cells play an important role in preventing autoimmunity by maintaining self-tolerance. They express CD25 constitutively and are produced in the thymus as a functionally mature T-cell population. Changes in the potential of these cells to regulate the activity of conventional effector lymphocytes may contribute to an increased susceptibility to infection, cancer and age-associated autoimmune diseases. In this study we demonstrated that the thymi of aged mice are populated by a higher percentage of CD4(+) CD25(+) thymocytes than in young animals. The expression of several surface markers (CD69, CD5, CD28, CTLA-4, CD122, FOXP3), usually used to characterize the phenotype of CD4(+) CD25(+) T regulatory cells, was compared between young and aged mice. We also examined the ability of sorted thymus-deriving regulatory T cells of young and aged BALB/c mice to inhibit the proliferation of lymph node lymphocytes activated in vitro. Natural regulatory T cells isolated from the thymi of young mice suppress the proliferation of responder lymph node cells. We demonstrated that thymus-deriving CD4(+) CD25(+) T cells of old mice maintain their potential to suppress the proliferation of activated responder lymphocytes of young mice. However, their potential to inhibit the proliferation of old responder T cells is abrogated. Differences in the occurrence and activity of CD4(+) CD25(+) thymocytes between young and old animals are discussed in relation to the expression of these surface markers.  相似文献   

10.
目的:探讨CD4 CD25 调节性T细胞(CD4 CD25 regulatoryTcells,CD4 CD25 Tr)的发育及其与胸腺CD4-CD25 细胞的关系。方法:以流式细胞术检测小鼠从出生至发育成熟过程中,胸腺、脾脏、淋巴结和外周血中CD4 CD25 Tr比例变化,以及胸腺CD4-CD25 细胞比例变化;通过磁激活细胞分选(MACS)从小鼠淋巴结纯化CD4 CD25 T和CD4 CD25-T细胞,经CFDA-SE标记,以多种刺激形式诱导增殖。结果:小鼠出生1d到10周的发育过程中,胸腺CD4 CD25 Tr比例一直比较恒定,但在脾脏、淋巴结和外周血,随鼠龄增加而不断升高,从1d龄到1周时升高最迅速,其后的升高速度逐渐减慢,10周龄时达平台期。胸腺中CD4-CD25 细胞在出生1d的小鼠比例非常高,1d龄到1周龄期间迅速下降,10周龄时达平台期。ConA不能诱导CD4 CD25 Tr和CD4 CD25-T细胞增殖,但CD4 CD25 Tr出现一过性细胞增大;佛波醇酯加离子霉素能诱导CD4 CD25 Tr和CD4 CD25-T细胞增殖;包被的抗CD3抗体加可溶性抗CD28抗体能刺激CD4 CD25-T细胞增殖,但CD4 CD25 Tr不增殖,加入高浓度IL-2,CD4 CD25-T细胞增殖更强,CD4 CD25 Tr出现增殖。结论:胸腺CD4-CD25 细胞很有可能是CD4 CD25 Tr的前体。  相似文献   

11.
CD25(+)CD4(+) regulatory T cells inhibit the activation of autoreactive T cells in vitro and in vivo, and suppress organ-specific autoimmune diseases. The mechanism of CD25(+)CD4(+) T cells in the regulation of experimental autoimmune encephalomyelitis (EAE) is poorly understood. To assess the role of CD25(+)CD4(+) T cells in EAE, SJL mice were immunized with myelin proteolipid protein (PLP)(139-151) to develop EAE and were treated with anti-CD25 mAb. Treatment with anti-CD25 antibody following immunization resulted in a significant enhancement of EAE disease severity and mortality. There was increased inflammation in the central nervous system (CNS) of anti-CD25 mAb-treated mice. Anti-CD25 antibody treatment caused a decrease in the percentage of CD25(+)CD4(+) T cells in blood, peripheral lymph node (LN) and spleen associated with increased production of IFN-gamma and a decrease in IL-10 production by LN cells stimulated with PLP(130-151) in vitro. In addition, transfer of CD25(+)CD4(+) regulatory T cells from naive SJL mice decreased the severity of active EAE. In vitro, anti-CD3-stimulated CD25(+)CD4(+) T cells from naive SJL mice secreted IL-10 and IL-10 soluble receptor (sR) partially reversed the in vitro suppressive activity of CD25(+)CD4(+) T cells. CD25(+)CD4(+) T cells from IL-10-deficient mice were unable to suppress active EAE. These findings demonstrate that CD25(+)CD4(+) T cells suppress pathogenic autoreactive T cells in actively induced EAE and suggest they may play an important natural regulatory function in controlling CNS autoimmune disease through a mechanism that involves IL-10.  相似文献   

12.
检测卵巢浆液性癌患者癌组织中CD4+CD25+及CD8+T细胞的数目,探讨其两种T细胞介导的免疫功能对疾病发展及预后的影响。免疫组织化学双标及单标的染色方法检测41例卵巢浆液性癌患者手术切除癌组织标本中CD4+CD25+和CD8+T细胞的数目。结果显示,癌灶中CD4+CD25+T淋巴细胞为(19.95±11.50)个/10HPF,CD8+T淋巴细胞为(43.46±16.69)个/10HPF。生存分析发现高CD4+CD25+T细胞组患者总生存期较低CD4+CD25+T细胞组缩短,差异有显著性(P<0.05);而高CD8+T细胞组患者总生存期与低CD8+T细胞组相比延长,且差异有显著性(P<0.05),此外两种T细胞数目与患者年龄、病理分级、临床分期、腹水细胞学及淋巴结转移等临床病理因素均无关(P>0.05)。结果表明,卵巢浆液性癌中高CD4+CD25+T细胞提示患者预后不良,可能与CD4+CD25+T细胞介导的免疫抑制导致肿瘤免疫逃逸有关;癌组织中高CD8+T细胞提示患者预后较好,两种T细胞对卵巢浆液性癌预后的评估有重要的价值,同时可以通过阻断CD4+CD25+T细胞的免疫抑制作用改善卵巢浆液性癌患者的预后,为卵巢癌治疗提供靶目标。  相似文献   

13.
CD4+CD25+调节性T细胞(Tr)是体内自然发生的调节性T细胞的重要亚群,具有无反应性和免疫抑制两大特性,主要通过与靶细胞的直接接触而起作用,其在体内不仅参与自身免疫性疾病、移植排斥反应等,还在肿瘤的发生、发展及免疫治疗中发挥重要作用.近几年来,Tr在肿瘤免疫中的作用倍受关注.  相似文献   

14.
BACKGROUND: CD4(+)CD25(+) regulatory T cells are key controllers of peripheral immunological self-tolerance and suppress various autoimmune diseases in animal models, but few studies have been done to define their roles in myasthenia gravis (MG) so far. OBJECTIVE: To investigate frequencies and dynamic changes of blood CD4(+)CD25(+) T cells from MG patients. METHODS: The peripheral blood CD4(+)CD25(+) T cells of 29 MG patients and 23 healthy controls were detected by three-color flow cytometry. RESULTS: Myasthenic patients with symptomatically uncontrollable disease showed slightly lower percentages of CD4(+)CD25(+) T cells (mean = 3.79 +/- 1.40%; P = 0.12), whereas MG patients with clinically stable disease had significantly increased CD4(+)CD25(+) T cells (mean = 8.45 +/- 1.96%, P = 0.0001), as compared with healthy controls (mean = 4.53 +/- 0.96%). In addition, thymectomized MG patients had significantly higher percentages of CD4(+)CD25(+) T cells (mean = 8.44 +/- 2.39%), as compared with both non-thymectomized MG patients (mean = 5.88 +/- 2.89%, P = 0.038) and healthy controls (P = 0.003). CONCLUSIONS: Our observations indicate that increased percentages of CD4(+)CD25(+) T cells in MG patients may be related to disease stability and that thymectomy in patients with MG resulted in augmented CD4(+)CD25(+) T cells.  相似文献   

15.
CD4+CD25+调节性T细胞(Tr)是同时具有免疫低反应性和免疫抑制性功能两大特征的T细胞.研究证实,CD4+ CD25+ Tr在抑制器官特异性自身免疫性疾病及GVHD是抗原特异性的,因此,应用器官特异性而不是多克隆性的Tr将大大促进以Tr为基础的免疫治疗.而具有调节活性的CD4+ CD25+ Tr仅占人类外周血CIM+ T细胞的1%~2%,因此,研究体外大量扩增的方法 对于以Tr基础的治疗至关重要.研究表明,树突状细胞(DC)作为机体强有力的专职抗原递呈细胞可以扩增具有抗原特异性的CD4+ CD25+ Tr且能增加后者的抑制活性,这为治疗自身免疫性疾病及GVHD提供了新的治疗前景.  相似文献   

16.
中国恒河猴(Macaca mulatta)外周血CD4+CD25+T淋巴细胞的研究   总被引:1,自引:1,他引:1  
目的:研究中国恒河猴外周血中CD4 CD25 T淋巴细胞亚群及其分布频率。方法:利用流式细胞术对50只中国恒河猴外周血CD4 CD25 T淋巴细胞进行了分析。结果:发现所有被检测的恒河猴个体中均存在明显的CD4 CD25 T淋巴细胞亚群;CD4 CD25 T淋巴细胞大约占CD4 T淋巴细胞的9.1%(变化范围为2.6%~18.1%);其中CD4 CD25highT淋巴细胞约占2.5%(0.3%~5.5%)。对不同年龄和性别个体中CD4 CD25 T淋巴细胞频率的初步分析未发现统计学上有年龄或性别差异。结论:中国恒河猴可用于与CD4 CD25 T细胞相关的人类疾病的研究中。  相似文献   

17.
Regulatory CD4+ T cells (Tregs) control immune responses using secretion of anti-inflammatory cytokines and/or cytotoxic mechanisms and play a central role in the outcomes of several immune pathologies. Previous studies suggest an impaired function of Tregs in allergy, especially during allergen seasons, but the underlying mechanism is not known. Therefore, we analysed the impact of the T helper type 2 cytokine interleukin (IL)-4 on in vitro generated adaptive Tregs (aTregs), which have been reported to use the granzyme B (GrB)/perforin pathway to kill autologous immune cells. aTregs were generated by co-ligation of CD3 and CD46 on CD4+ T lymphocytes and granzyme expression was analysed using flow cytometry. To quantify GrB and perforin expression as well as IL-10 secretion in response to IL-4, specific enzyme-linked immunosorbent assays were performed in cell lysates and/or culture supernatants. Using a flow cytometry-based cytotoxicity assay the impact of IL-4 on the cytotoxic potential of aTregs was investigated. While IL-4 did not affect IL-10 secretion and perforin expression in aTregs, a significant suppression of GrB synthesis was detected in the presence of IL-4. In addition, IL-4-mediated suppression of GrB led to impaired cytotoxicity of aTregs against K562 target cells. In conclusion, our data suggest that IL-4 might play a role in impaired aTreg function in allergy.  相似文献   

18.
In normal mice a subpopulation of CD4 T cells constitutively expresses the IL-2 receptor alpha chain (CD25). This natural CD4 CD25(+) subset is thymus-born, constitutively expresses IL-10 mRNA,does not produce IL-2 and is resistant to apoptosis. These cells behave as regulatory T cells in the control of self-tolerance, inflammatory reactions and T cell homeostasis. The mechanisms by which natural CD4 CD25(+) cells control the immune response is unclear. We examined CD25-deficient mice, which over-express various cytokines, including proinflammatory molecules, after bacterial superantigen stimulation in vivo. We observed that this abnormal cytokine production could be controlled by the injection of natural CD4 CD25(+) T cells and that IL-10 production is needed, as CD4 CD25(+) T cells from IL-10 knockout mice do not correct cytokine over-production in vivo. As the circulating IL-10 produced by CD25-deficient mice was ineffective, we deduced that the key source of IL-10 was the regulatory T cell population. IL-10 is also involved in the control of cytokine production by normal T cells. However, the target of IL-10 in this control is undefined. Whether it acts directly on the effector T cells or on the regulatory CD4 CD25(+) T cells themselves to induce their functional maturation has to be clarified.  相似文献   

19.
目的 探讨CD4^+CD25^+调节性T细胞是否对树突状细胞发挥免疫调节作用及其可能的机制。方法 用MACS(magnetic cell sorting)从BALB/c小鼠静息T细胞分离纯化CD4^+CD25^+T细胞,体外细胞增殖实验观察其对CD4^+CD25^+T细胞的免疫抑制作用;GM-CSF/IL-4培养自体小鼠骨髓来源DC,FACS(fluorescence-activated cell sorting)鉴定其表面分子特性;以CD3/CD28单克隆抗体活化CD4^+CD25^+调节性T细胞,FACS体外杀伤实验研究其对自体DC的调节作用,并观察穿孔素抑制剂EGTA对上述作用的影响。结果 用MACS法成功分离出CD4^+CD25^+T细胞,纯度可达98%,特异性表达而Faxp3基因,能明显抑制CD4^+CD25^+T细胞的体外增殖;骨髓来源的DC表达CDllc、MHCⅡ及少量协同刺激分子CD80、CD86;FACS体外杀伤实验证实以CD3/CD28抗体体外活化的CD4^+CD25^+调节性T细胞对自体DC有显著杀伤作用(P〈0.05),穿孔素抑制剂EGTA能部分抑制该杀伤效应(P〈0.05)。结论 CD4^+CD25^+调节性T细胞可通过杀伤作用对自体DC发挥免疫调节作用,穿孔素/颗粒酶杀伤途径可能参与其中。  相似文献   

20.
CD4+ CD25+ 调节性T细胞(Tr)是一个具有独立功能的T细胞亚群,是机体维持自身免疫耐受的重要组成部分,在免疫病理、移植物耐受、阻止自身免疫反应和维持机体免疫平衡方面都有一定作用,其T细胞亚群在多种免疫性疾病中发挥重要的调节作用,但国内外有关该群细胞在肾脏疾病中作用的报道较少.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号