首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Presentation of antigen in the form of immune complexes to B lymphocytes by follicular dendritic cells (FDC) is considered to be a central step in the generation of memory B cells. During this process, which takes place in the microenvironment of the germinal center, B cells and FDC are in close physical contact. In the present study, we have explored the molecular basis of FDC-B cell interaction by using FDC and B cells derived from human tonsils. We found that FDC express high levels of the adhesion receptors intercellular adhesion molecule 1 (ICAM-1 [CD54]) and vascular cell adhesion molecule 1 (VCAM-1), while the B lymphocytes express lymphocyte function-associated antigen 1 (LFA-1 [CD11a/18]), very late antigen 4 (VLA-4 [CD49d], and CD44. Furthermore, we established that both the LFA-1/ICAM-1 and VLA-4/VCAM-1 adhesion pathways are involved in FDC-B lymphocyte binding, and therefore, these pathways might be essential in affinity selection of B cells and in the formation of B memory cells.  相似文献   

2.
Lymphocyte function-associated antigen 1/intercellular adhesion molecule 1 (LFA-1/ICAM-1)-and very late antigen 4/vascular cell adhesion molecule 1 (VLA-4/VCAM-1)-mediated adhesion of T lymphocytes to endothelial cells (EC) can be regulated by increased expression of ICAM-1 and VCAM-1 upon cytokine treatment of EC, or by activation of the integrin molecules LFA-1 and VLA-4 on T cells. Here, we provide evidence that preferential usage of LFA-1 over VLA-4 is yet another mechanism to control T cell adhesion. We observed that binding of activated T lymphocytes, as opposed to resting T cells, to EC is essentially mediated through LFA-1 and not through VLA-4. VLA-4- mediated adhesion of T cells to EC is only found when LFA-1 is not expressed or not functional, as observed for several T cell leukemia cell lines. These results suggest that LFA-1-mediated adhesion dominates and may downregulate VLA-4-mediated adhesion through an unidentified mechanism.  相似文献   

3.
4.
Cytokines such as interleukin 1 (IL-1) promote adhesiveness in human umbilical vein endothelial cells for leukocytes including basophils, eosinophils, and neutrophils, and induce expression of adherence molecules including ICAM-1 (intercellular adhesion molecule-1), ELAM-1 (endothelial-leukocyte adhesion molecule-1), and VCAM-1 (vascular cell adhesion molecule-1). In the present study, blocking monoclonal antibodies (mAb) recognizing ICAM-1, ELAM-1, and VCAM-1 have been used to compare their roles in IL-1-induced adhesion of human basophils, eosinophils, and neutrophils. IL-1 treatment of endothelial cell monolayers for 4 hours induced a four- to eight-fold increase in adhesion for each cell type. Treatment of endothelial cells with either anti-ICAM-1 or anti-ELAM-1 mAb inhibited IL-1-induced adherence of each cell type. In contrast, treatment with anti-VCAM-1 mAb inhibited basophil and eosinophil (but not neutrophil) adhesion, and was especially effective in blocking eosinophil adhesion. The effects of these mAb were at least additive. Indirect immunofluorescence and flow cytometry demonstrated expression of VLA-4 alpha (very late activation antigen-4 alpha, a counter-receptor for VCAM-1) on eosinophils and basophils but not on neutrophils. These data document distinct roles for ICAM-1, ELAM-1, and VCAM-1 during basophil, eosinophil, and neutrophil adhesion in vitro, and suggest a novel mechanism for the recruitment of eosinophils and basophils to sites of inflammation in vivo.  相似文献   

5.
We have previously shown that antigen-induced eosinophil recruitment into the tissue of sensitized mice is mediated by CD4+ T cells and interleukin 5. To determine whether interferon gamma (IFN-gamma) regulates antigen-induced eosinophil recruitment into the tissue, we studied the effect of recombinant (r) murine IFN-gamma and of anti-IFN- gamma monoclonal antibody (mAb) on the eosinophil infiltration of the trachea induced by antigen inhalation in mice. The intraperitoneal administration of rIFN-gamma prevented antigen-induced eosinophil infiltration in the trachea of sensitized mice. The administration of rIFN-gamma also decreased antigen-induced CD4+ T cell but not CD8+ T cell infiltration in the trachea. On the other hand, pretreatment with anti-IFN-gamma mAb enhanced antigen-induced eosinophil and CD4+ T cell infiltration in the trachea. These results indicate that IFN-gamma regulates antigen-induced eosinophil recruitment into the tissue by inhibiting CD4+ T cell infiltration.  相似文献   

6.
Many ligands of adhesion molecules mediate costimulation of T cell activation. The generality of this emerging concept is best determined by using model systems which exploit physiologically relevant ligands. We developed such an "antigen-specific" model system for stimulation of resting CD4+ human T cells using the following purified ligands: (a) major histocompatibility complex class II plus the superantigen Staphylococcus enterotoxin A, to engage the T cell receptor (TCR); (b) adhesion proteins vascular cell adhesion molecule 1 (VCAM-1), intercellular adhesion molecule 1 (ICAM-1), and endothelial leukocyte adhesion molecule 1 (ELAM-1), to provide potential cell surface costimulatory signals; and (c) recombinant interleukin 1 beta (rIL-1 beta)/rIL-6 as costimulatory cytokines. In this biochemically defined system, we find that resting CD4+ T cells require costimulation in order to respond to TCR engagement. This costimulation can be provided by VCAM-1 or ICAM-1; however adhesion alone is not sufficient since ELAM-1 mediates adhesion but not costimulation. The cytokines IL-1 beta and IL-6 by themselves cannot mediate costimulation, but augment the adhesion ligand-mediated costimulation. Direct comparison with the model of TCR/CD3 engagement by CD3 monoclonal antibody demonstrated comparable costimulatory requirements in both systems, thereby authenticating the commonly used CD3 model. The costimulation mediated by the activation-dependent interaction of the VLA-4 and LFA-1 integrins with their respective ligands VCAM-1 and ICAM-1 leads to increased IL-2R alpha (CD25) expression and proliferation in both CD45RA+ CD4+ and CD45RO+ CD4+ T cells. The integrins also regulate the secretion of IL-2, IL-4, and granulocyte/macrophage colony-stimulating factor. In contrast the activation-independent adhesion of CD4+ T cell to ELAM-1 molecules does not lead to T cell stimulation as measured by proliferation, IL-2R alpha expression, or cytokine release. These findings imply that adhesion per se is not sufficient for costimulation, but rather that the costimulation conferred by the VLA-4/VCAM-1 and LFA-1/ICAM-1 interactions reflects specialized accessory functions of these integrin pathways. The new finding that VLA-4/VCAM-1 mediates costimulation adds significance to observations that VCAM-1 is expressed on a unique set of potential antigen-presenting cells in vivo.  相似文献   

7.
This review focuses on providing insights into the structural basis and clinical relevance of LFA-1 and VLA-4 inhibition by peptides and small molecules as adhesion-based therapeutic strategies for inflammation and autoimmune diseases. Interactions of cell adhesion molecules (CAM) play central roles in mediating immune and inflammatory responses. Leukocyte function-associated antigen (LFA-1, alpha(L)beta(2), and CD11a/CD18) and very late antigen (VLA-4, alpha(4)beta(1), and CD49d/CD29) are members of integrin-type CAM that are predominantly involved in leukocyte trafficking and extravasation. LFA-1 is exclusively expressed on leukocytes and interacts with its ligands ICAM-1, -2, and -3 to promote a variety of homotypic and heterotypic cell adhesion events required for normal and pathologic functions of the immune systems. VLA-4 is expressed mainly on lymphocyte, monocytes, and eosinophils, but is not found on neutrophils. VLA-4 interacts with its ligands VCAM-1 and fibronectin (FN) CS1 during chronic inflammatory diseases, such as rheumatoid arthritis, asthma, psoriasis, transplant-rejection, and allergy. Blockade of LFA-1 and VLA-4 interactions with their ligands is a potential target for immunosuppression. LFA-1 and VLA-4 antagonists (antibodies, peptides, and small molecules) are being developed for controlling inflammation and autoimmune diseases. The therapeutic intervention of mostly mAb-based has been extensively studied. However, due to the challenging relative efficacy/safety ratio of mAb-based therapy application, especially in terms of systemic administration and immunogenic potential, strategic alternatives in the forms of peptide, peptide mimetic inhibitors, and small molecule non-peptide antagonists are being sought. Linear and cyclic peptides derived from the sequences of LFA-1, ICAM-1, ICAM-2, VCAM-1, and FN C1 have been shown to have inhibitory effects in vitro and in vivo. Finally, understanding the mechanism of LFA-1 and VLA-4 binding to their ligands has become a fundamental basis in developing therapeutic agents for inflammation and autoimmune diseases.  相似文献   

8.
This report examines the effect of an anti-VLA-4 monoclonal antibody (mAb) HP1/2 on antigen-induced bronchial hyperreactivity to methacholine, and on eosinophil and T lymphocyte infiltration in the airways of guinea pigs sensitized and challenged by aerosolized ovalbumin and used 24 h thereafter. The intravenous administration of 2.5 mg/kg of HP1/2, but not of its isotype-matched mAb 1E6, 1 h before and 4 h after antigen inhalation, markedly inhibited the increased bronchopulmonary responses to intravenous methacholine, as well as airway eosinophilia in bronchoalveolar lavage (BAL) fluid and in bronchial tissue. HP1/2 also suppressed the antigen-induced infiltration of the bronchial wall by CD4+ and CD8+ T lymphocytes, identified by immunohistochemical technique using specific mAbs that recognize antigenic epitopes of guinea pig T cells. Treatment with HP1/2 also resulted in a significant increase in the number of blood eosinophils, suggesting that inhibition by anti-VLA-4 mAb of eosinophil recruitment to the alveolar compartment may partially account for their accumulation in the circulation. These findings indicate that eosinophil and lymphocyte adhesion and subsequent infiltration into the guinea pig airways that follow antigen challenge are mediated by VLA-4. Furthermore, concomitant inhibition of antigen-induced bronchial hyperreactivity and of cellular infiltration by anti-VLA-4 mAb suggests a relationship between airway inflammation and modifications in the bronchopulmonary function.  相似文献   

9.
Hematopoietic stem cell interaction with elements of the underlying stroma is essential for sustained normal hematopoiesis. Here we have determined that adhesion receptors in the integrin family play a role in promoting adhesion of human hematopoietic stem cells to cultured human marrow stromal cells. Enriched CD34hi progenitor cells expressed VLA-4, VLA-5, and at least one or more beta 2 integrins. Homogeneous marrow stromal cell monolayers capable of supporting proliferation of cocultivated CD34hi cells expressed VCAM-1 and fibronectin (ligands for VLA-4 and VLA-5) as well as ICAM-1 (ligand for LFA-1 and Mac-1). Adhesion-blocking experiments indicated that VLA-4/VCAM-1, VLA-5/fibronectin, and beta 2-integrin/ICAM-1 pathways all are important for CD34hi cell attachment to stromal cells. Consistent with this suggestion, IL-1 stimulation of stromal cells caused both increased VCAM-1 and ICAM-1 expression and increased attachment by CD34hi bone marrow cells. In addition, CD34hi cells utilized VLA-4 to adhere to purified VCAM-1 and employed VLA-5 (and to a lesser extent VLA-4) to adhere to purified fibronectin. Together these results suggest that CD34hi stem cells may utilize multiple integrin-mediated adhesion pathways to localize within specialized microenvironmental niches created by marrow stromal cells.  相似文献   

10.
Leukocytes extravasate from the blood in response to physiologic or pathologic demands by means of complementary ligand interactions between leukocytes and endothelial cells. The multistep model of leukocyte extravasation involves an initial transient interaction ("rolling" adhesion), followed by secondary (firm) adhesion. We recently showed that binding of CD44 on activated T lymphocytes to endothelial hyaluronan (HA) mediates a primary adhesive interaction under shear stress, permitting extravasation at sites of inflammation. The mechanism for subsequent firm adhesion has not been elucidated. Here we demonstrate that the integrin VLA-4 is used in secondary adhesion after CD44-mediated primary adhesion of human and mouse T cells in vitro, and by mouse T cells in an in vivo model. We show that clonal cell lines and polyclonally activated normal T cells roll under physiologic shear forces on hyaluronate and require VCAM-1, but not ICAM-1, as ligand for subsequent firm adhesion. This firm adhesion is also VLA-4 dependent, as shown by antibody inhibition. Moreover, in vivo short-term homing experiments in a model dependent on CD44 and HA demonstrate that superantigen-activated T cells require VLA-4, but not LFA-1, for entry into an inflamed peritoneal site. Thus, extravasation of activated T cells initiated by CD44 binding to HA depends upon VLA-4-mediated firm adhesion, which may explain the frequent association of these adhesion receptors with diverse chronic inflammatory processes.  相似文献   

11.
Erythroblastic islands are anatomical units consisting of a central macrophage surrounded by erythroblasts. We studied the adhesion molecules involved in the formation of these structures. Central macrophages of erythroblastic islands isolated from the spleens of phlebotomized mice were clearly stained for vascular cell adhesion molecule 1 (VCAM-1). The surrounding erythroblasts of the erythroblastic islands strongly expressed the alpha 4 integrin of very late activation antigen 4 (VLA-4: alpha 4 beta 1 integrin), the counter receptor of VCAM-1, whereas most reticulocytes and erythrocytes did not. Both monoclonal antibodies (mAbs) against alpha 4 integrin and VCAM-1 disrupted the erythroblastic islands cultured in the presence of erythropoietin. Moreover, adhesion of splenic erythroblasts to tumor necrosis factor alpha-stimulated mouse splenic endothelial cells, which showed high expression of VCAM-1 but not intercellular adhesion molecule 1, was inhibited by the anti-VCAM-1 and anti-alpha 4 mAbs. These findings suggest that VLA-4-VCAM-1 interaction plays a crucial role in the formation of erythroblastic islands.  相似文献   

12.
为了了解淋巴细胞功能相关抗原1(lymphocyte function—associated antigen1,LFA-1)和极迟反应抗原4(very lateantigen 4,VLA-4)在高增殖潜能内皮祖细胞(high proliferative potential endothelial progenitor cells,HPP—EPCs)归巢过程中与血管内皮的黏附和跨内皮迁移中的作用,利用流式细胞术检测HPP—EPC中整合蛋白B1和B2的表达以及小鼠骨髓内皮细胞相应的受体的表达。利用体外黏附和迁移实验研究经过功能级别的中和抗体阻断VLA-4和LFA-1后HPP—EPC黏附和迁移细胞数目的变化。结果表明,HPP—EPC表达整合蛋白B1和B2,活化后小鼠骨髓内皮细胞表达细胞间黏附分子1(intercellular adhesion molecule1,ICAM-1)和血管细胞黏附分子1(vascular cell adhesion molecule1,VCAM-1);加CDlla抗体组黏附细胞或CD49d抗体组黏附和迁移细胞均较同型对照抗体组少,而且加CDlla和CD49d两种抗体联用组黏附和迁移细胞明显减少,其细胞数较任何单一抗体组少。结论:LFA-1和VLA-4在HPP—EPC与血管内皮的黏附和跨内皮迁移中发挥了重要的作用。  相似文献   

13.
Leukocyte recruitment to target tissue is initiated by weak rolling attachments to vessel wall ligands followed by firm integrin-dependent arrest triggered by endothelial chemokines. We show here that immobilized chemokines can augment not only arrest but also earlier integrin-mediated capture (tethering) of lymphocytes on inflamed endothelium. Furthermore, when presented in juxtaposition to vascular cell adhesion molecule 1 (VCAM-1), the endothelial ligand for the integrin very late antigen 4 (VLA-4, alpha4beta1), chemokines rapidly augment reversible lymphocyte tethering and rolling adhesions on VCAM-1. Chemokines potentiate VLA-4 tethering within <0.1 s of contact through Gi protein signaling, the fastest inside-out integrin signaling events reported to date. Although VLA-4 affinity is not altered upon chemokine signaling, subsecond VLA-4 clustering at the leukocyte-substrate contact zone results in enhanced leukocyte avidity to VCAM-1. Endothelial chemokines thus regulate all steps in adhesive cascades that control leukocyte recruitment at specific vascular beds.  相似文献   

14.
Recent studies suggest that some T and B lymphocyte cell lines bind to the integrin lymphocyte function-associated molecule 1 (LFA-1) chiefly through a pathway independent of its two known counter-receptors, intercellular adhesion molecules (ICAMs)-1 and -2. A monoclonal antibody (mAb) was raised that, in combination with blocking mAb to ICAM-1 and ICAM-2, can completely inhibit binding of these cell lines to purified LFA-1. This third ligand, designated ICAM-3 based on its functional relatedness to ICAM-1 and -2, is a highly glycosylated protein of 124,000 Mr. It is well expressed on all leukocytes and absent from endothelial cells. In assays of adhesion of resting lymphocytes to purified LFA-1, ICAM-3 is by far the most functionally important ICAM, implying an important role for ICAM-3 in the generation of immune responses.  相似文献   

15.
The potential roles of adhesion molecules in the expansion of T cell-mediated immune responses in the periphery were examined using DNA immunogen constructs as model antigens. We coimmunized cDNA expression cassettes encoding the adhesion molecules intracellular adhesion molecule-1 (ICAM-1), lymphocyte function associated-3 (LFA-3), and vascular cell adhesion molecule-1 (VCAM-1) along with DNA immunogens, and we analyzed the resulting antigen-specific immune responses. We observed that antigen-specific T-cell responses can be enhanced by the coexpression of DNA immunogen and adhesion molecules ICAM-1 and LFA-3. Coexpression of ICAM-1 or LFA-3 molecules along with DNA immunogens resulted in a significant enhancement of T-helper cell proliferative responses. In addition, coimmunization with pCICAM-1 (and more moderately with pCLFA-3) resulted in a dramatic enhancement of CD8-restricted cytotoxic T-lymphocyte responses. Although VCAM-1 and ICAM-1 are similar in size, VCAM-1 coimmunization did not have any measurable effect on cell-mediated responses. These results suggest that ICAM-1 and LFA-3 provide direct T-cell costimulation. These observations are further supported by the finding that coinjection with ICAM-1 dramatically enhanced the level of interferon-gamma (IFN-gamma) and beta-chemokines macrophage inflammatory protein-1alpha (MIP-1alpha), MIP-1beta, and regulated on activation normal T-cell expression and secreted (RANTES) produced by stimulated T cells. Through comparative studies, we observed that ICAM-1/LFA-1 T-cell costimulatory pathways are independent of CD86/CD28 pathways and that they may synergistically expand T-cell responses in vivo.  相似文献   

16.
Asthma is a disease of airway inflammation and hyperreactivity that is associated with a lymphocytic infiltrate in the bronchial submucosa. The interactions between infiltrating T lymphocytes with cellular and extracellular matrix components of the airway and the consequences of these interactions have not been defined. We demonstrate the constitutive expression of CD44 on human airway smooth muscle (ASM) cells in culture as well as in human bronchial tissue transplanted into severe combined immunodeficient mice. In contrast, basal levels of intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) expression are minimal but are induced on ASM by inflammatory mediators such as tumor necrosis factor alpha (TNF-alpha). Activated, but not resting T cells, adhere to cultured ASM; stimulation of the ASM with TNF-alpha enhanced this adhesion. Adhesion was partially blocked by monoclonal antibodies (mAb) specific for lymphocyte function-associated antigen 1 (LFA-1) and very late antigen 4 (VLA-4) on T cells and ICAM-1 and VCAM-1 on ASM cells. The observed integrin-independent adhesion was mediated by CD44/hyaluronate interactions as it was inhibited by anti-CD44 mAb 5F12 and by hyaluronidase. Furthermore, the adhesion of activated T lymphocytes induced DNA synthesis in growth-arrested ASM cells. Thus, the interaction between T cells and ASM may provide insight into the mechanisms that induce bronchial inflammation and possibly ASM cell hyperplasia seen in asthma.  相似文献   

17.
BACKGROUND: Low-density lipoproteins (LDL) can induce the adhesion of monocytes to endothelial cells. Monocytes of patients with familial hypercholesterolemia (FH) are exposed to high concentrations of LDL, and it has been reported that adhesiveness of these cells in hypercholesterolemic patients is enhanced. We investigated whether LFA-1 or VLA-4 mediated adhesion is altered in FH patients and whether HMG-CoA reductase inhibitors influence this adhesion. PATIENTS AND METHODS: LFA-1 and VLA-4 mediated adhesion to ICAM-1 and VCAM-1 coated beads was investigated using freshly isolated monocytes and T-lymphocytes from patients with homozygous FH, heterozygous FH (before and after cholesterol lowering treatment), and from controls. In addition, the expression of beta1- and beta2-integrins on these cells was determined. RESULTS: Both LFA-1 and VLA-4 mediated adhesion and integrin expression of monocytes and CD3+ cells from patients with homozygous FH and heterozygous FH was similar to that of monocytes from a control population. Treatment with HMG-CoA reductase inhibitors did not affect the adherence to ICAM-1 or VCAM-1, and did not influence the expression of integrins. CONCLUSIONS: In contrast to studies by others, we demonstrated in the present study that the actual LFA-1 and VLA-4 mediated adhesion of T-lymphocytes and monocytes is not altered in patients with FH.  相似文献   

18.
Vascular cell adhesion molecule-1 (VCAM-1) is induced on endothelial cells by inflammatory cytokines, and binds mononuclear leukocytes through the integrin very late antigen-4 (VLA-4) (alpha 4 beta 1). This adhesion pathway has been implicated in a diverse group of physiological and pathological processes, including B cell development, leukocyte activation and recruitment to sites of inflammation, atherosclerosis, and tumor cell metastasis. The major form of VCAM-1 (VCAM-7D) has seven extracellular immunoglobulin (Ig)-like domains, of which the three NH2-terminal domains (domains 1-3) are similar in amino acid sequence to domains 4-6. By functional analysis of VCAM-7D relative to VCAM-6D (a minor 6-domain form of VCAM-1 in which domain 4 is deleted because of alternative splicing), and chimeric constructs between VCAM-1 and its structural relative intercellular adhesion molecule-1 (ICAM-1), we show that either the first or the homologous fourth domain of VCAM-1 is required for VLA-4-dependent adhesion. Either of these binding sites can function in the absence of the other. When both are present, cell binding activity is increased relative to monovalent forms of the molecule. The homologous binding regions appear to have originated by internal duplication of a portion of a monovalent ancestral gene, before the mammalian radiation. Thus VCAM-1 exemplifies evolution of a functionally bivalent cell-cell adhesion molecule by intergenic duplication. We have also produced a new class of anti-VCAM-1 monoclonal antibodies that block domain 4-dependent adhesion, and demonstrate that both binding sites participate in the adhesion function of VCAM-1 on endothelial cells in vitro. Therefore both sites must be blocked in clinical, animal, or in vitro studies depending on the use of anti-VCAM-1 antibodies to inactivate the VCAM-1/VLA-4 adhesion pathway.  相似文献   

19.
The infiltration of the synovial membrane (SM) by mononuclear cells, mostly T cells, is a typical histopathological feature associated with rheumatoid arthritis (RA). The entry of T lymphocytes into the SM is believed to be mediated by a number of molecules in the endothelium that are induced in response to a series of inflammatory mediators. In this study, we have investigated the adhesion of synovial T cells from RA patients to two endothelial ligands: endothelial-leukocyte adhesion molecule-1 (ELAM-1), the only selectin known to function as a vascular addressin for T cells, and vascular cell adhesion molecule-1 (VCAM-1), the cellular ligand of VLA-4. Our results clearly demonstrate that synovial T cells isolated from both SM and synovial fluid (SF), bearing an activated and memory phenotype, displayed an enhanced capacity to interact with these two endothelial molecules as compared with T cells from peripheral blood (PB) either of the same RA patients or healthy donors. A further enhancement of VLA-4-mediated T cell binding to VCAM-1 and fibronectin could be observed when already in vivo-activated synovial T cells were stimulated in vitro with phorbol esters, suggesting the existence of several cellular affinity levels for both very late activation-4 (VLA-4) ligands. Moreover, both PB and synovial T cells from RA patients exhibited strong proliferative responses when they were cultured with either fibronectin or VCAM-1 in combination with submitogenic doses of anti-CD3 mAb. This increased endothelial binding ability of synovial T lymphocytes together with their proliferation in response to the interaction with VCAM-1 and fibronectin may represent important mechanisms in the regulation of T cell penetration and persistence in the chronically inflamed SM of RA.  相似文献   

20.
OBJECTIVE: To evaluate the effect of treatment with interleukin 1beta (IL-1beta) on the concentrations of soluble adhesion molecules after an endotoxic challenge. DESIGN: Randomized, controlled study. SETTING: Experimental Unit, Virgen de las Nieves University Hospital. SUBJECTS: Seventy-two female CBA/H mice of 20 to 21 g, supplied by the animal center of the Experimental Unit. INTERVENTION: The mice were randomized into three groups of 24. Group 1 (sham) received two intraperitoneal (ip) doses of 0.1 mL of phosphate-buffered saline; group 2 (lipopolysaccharide) was injected with 125 mg/kg lipopolysaccharide (Escherichia coli) (i.p.) 24 hrs after 0.1 mL of phosphate-buffered saline; group 3 was pretreated with 80 ng (i.p.) of IL-1beta per mouse 24 hrs before the endotoxic challenge. MEASUREMENTS AND MAIN RESULTS: At 1, 2, 4, and 24 hrs after the endotoxic challenge, the concentrations of soluble endothelial/leukocyte adhesion molecule 1 (ELAM-1), intercellular adhesion molecule 1 (ICAM-1), and vascular cell adhesion molecule 1 (VCAM-1) were measured in the three groups. There was a significant increase (p <.01) in these concentrations at these times in comparison with the sham group. The use of IL-1beta produced a significant decrease (p <.05) in the three molecules among the treated group versus the group submitted only to the challenge; concentrations of ELAM-1 significantly decreased to below those of the sham group, and those of VCAM-1 reduced to levels that did not significantly differ from those of the sham group. CONCLUSION: Endotoxin administration significantly increases the concentrations of soluble ELAM-1, ICAM-1, and VCAM-1 in mice. Treatment with IL-1beta significantly decreases these concentrations, probably attenuating cell injury and organ dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号