首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Until now, most widely used blood bag material has been a plasticized polyvinyl chloride (PVC) because it has many desirable properties as a blood bag material. One of main concerns of using plasticized PVC as a blood bag material is the toxicity of the plasticizers that are leached out of the material. We tried to solve this problem by the addition of polyethylene oxide (PEO)-containing amphiphilic block copolymers as additives in the PVC. The PEO additives may play two roles: they can act as nontoxic plasticizers to PVC, and they can also act as blood-compatible surface modifiers. In this study, PEO additive-entrapped PVC films were prepared by the addition (up to 30 wt%) of PEO-alkyl carbon block copolymers or PEO-polypropylene oxide (PPO)-PEO triblock copolymers with different PEO chain lengths in the PVC. The prepared PEO additive-containing PVC films were characterized by the measurements of water contact angle, Fourier transform IR spectroscopy in the attenuated total reflectance mode, mechanical properties (tensile strength and elongation at break), water absorption, and stability of the PEO additives entrapped in the films. It was observed that the PEO additive-entrapped PVC films were flexible and transparent. It seems that the PEO additives are surface active, resulting in the considerable change of surface characteristics without a significant change of the mechanical properties of the films compared to the control PVC without any additives or a commercial blood bag. The adhesion of platelets on the film surfaces was significantly reduced by the addition of PEO additives. It seems that 10% addition of PEO additives is enough for the suppression of platelet adhesion on the surfaces. This study demonstrated that the use of PEO-containing block copolymers as additives to the PVC can be a feasible approach to prepare a new type of blood bag.  相似文献   

2.
Yoo HJ  Kim HD 《Biomaterials》2005,26(16):2877-2886
A series of segmented multiblock polyurethanes (MPUs) were synthesized by polyaddition reaction using hexamethylene diisocyanate (HDI)/poly(ethylene oxide) (PEO, as a hydrophilic component)/ poly(tetramethylene oxide) (PTMO)/ poly(butadiene diol)(PBD)/1,4-butanediol(BD)/(2-[bis(2-hydroxyethyl) methyl ammonio]ethyl stearyl phosphate)[BESP, as a phospholipids component: 0-42 mol% (0-9 wt%)]. To improve the blood compatibility of biomedical grade polyurethane (Pellethene), the Pellethene was blended with MPUs and then crosslinked using dicumyl peroxide as a crosslinking agent. Effects of BESP content [0-42 mol% (0-9 wt%)] in MPUs on the properties of MPUs and blend (Pellethene/MPUs) films were investigated. The X-ray photoelectron spectra indicated that the BESP moieties were located at the surface of the crosslinked blend (Pellethene/MPUs) films. As the BESP content in MPUs increased, the water contact angle on the surfaces of crosslinked blend film was decreased but the water absorption and mechanical properties were markedly increased. By the test of platelet adhesion on the surfaces of crosslinked blend film, it was found that the platelet adhesion on the surface was significantly decreased from 70% to 6% by increasing BESP content from 0 to 42 mol% (0-9 wt%) in MPUs. These results suggest that crosslinked blend films may have more potential as a new material for biomedical applications, which are directly in contact with blood.  相似文献   

3.
This study was designed to evaluate the effect of polyethylene oxide (PEO) and negatively charged side chains on blood compatibility. For this, novel copolymers (MMA/MPEOMA/VSA copolymers) with both PEO and negatively chargeable side chains were synthesized by random copolymerization of methyl methacrylate (MMA), methoxy PEO monomethacrylate (MPEOMA; PEO mol wt 1000), and vinyl sulfonic acid sodium salt (VSA) monomers of different compositions. MMA/MPEOMA copolymer (with PEO side chains) and MMA/VSA copolymer (with negatively chargeable side groups) also were synthesized for purposes of comparison. The synthesized copolymers were characterized by 1H-nuclear magnetic resonance spectroscopy and gel permeation chromatography. They were coated onto polyurethane (PU) or polymethyl methacrylate (PMMA) films by spin coating. The surface properties of MMA/MPEOMA/VSA copolymers were compared by water contact angle and zeta potential with those of MMA/MPEOMA and MMA/VSA copolymers of similar MPEOMA or VSA composition. Using electron spectroscopy for chemical analysis and scanning electron microscopy, respectively, the behaviors of the adsorption of blood proteins (albumin, gamma-globulin, fibrinogen, and plasma proteins) and the adhesion of platelets on the copolymer-coated surfaces also were compared. Among the copolymers, the MMA/MPEOMA/VSA copolymer with a monomer molar ratio 8:1:1 was observed to be particularly effective in preventing both protein adsorption and platelet adhesion on the surfaces, probably owing to the combined effects of highly mobile, hydrophilic PEO side chains and negatively charged side groups in aqueous solution.  相似文献   

4.
Surface modification of a segmented polyurethane was achieved by blending with novel PEO-containing amphiphilic triblock copolymers (PEO-polyurethane-PEO). Three copolymers having different PEO MW (550, 2000, 5000) were used as surface modification additives. The protein resistance of the blend surfaces was evaluated using radiolabeling methods. On the blends of copolymers with PEO blocks of MW 2000 and 5000, fibrinogen adsorption from physiologic buffer decreased with increasing copolymer content up to 20 wt%. On the blends with PEO blocks of MW 550, resistance to adsorption for a given copolymer content was much greater. For all three blend types at 20% copolymer content, reductions in adsorption compared to the unmodified PU matrix were greater than 95%. Reductions in adsorption were similar for the 20% blends and surfaces prepared by coating the copolymers directly on the matrix, suggesting that the 20% blend surfaces were completely covered by copolymer. At low copolymer content (< or =10 wt %), fibrinogen adsorption decreased with decreasing PEO block length. This was probably due to increasing surface coverage of the copolymers with decreasing block length. It is therefore concluded that surface density of PEO is more important than PEO MW for the protein resistance of these surfaces. Lysozyme, a much smaller protein, showed adsorption trends similar to fibrinogen. The adsorption of fibrinogen and lysozyme from binary solutions to blends of the copolymer with PEO blocks of 2000 MW was investigated to probe the effects of protein size on adsorption resistance. Fibrinogen and lysozyme showed similar fractional decreases in adsorption relative to the PU matrix independent of the surface density of PEO. However lysozyme was enriched in the surface relative to the solution, that is, it was adsorbed preferentially to fibrinogen.  相似文献   

5.
Dimethyldichlorosilane (DDS)-treated glass (DDS-glass) was modified with either poly(ethylene oxide) (PEO) films or poly(N-vinyl-2-pyrrolidone) (PNVP) films by plasma polymerization. The thickness of the plasma polymerized films was varied between 40 and 700 nm. The results showed that the hydrophilic plasma polymerized PEO and PNVP films on DDS-glass did not prevent platelet adhesion and activation. The film thickness had only marginal influence on the prevention of platelet activation. In contrast, platelet adhesion was prevented on DDS-glass adsorbed with a PEO-containing block copolymer (Pluronic® F-108 surfactant) even at a calculated thickness of the PEO layer of less than 40 nm. This study shows that surface hydrophilization is not sufficient for prevention of platelet adhesion and activation. The contrasting results in platelet adhesion between cross-linked plasma polymers and linear PEO-containing block copolymers may be explained qualitatively by a steric repulsion mechanism that is achieved by the conformational freedom of the linear PEO chains interacting with water.  相似文献   

6.
Park JH  Bae YH 《Biomaterials》2002,23(8):1797-1808
In vitro protein adsorption, platelet adhesion and activation on new hydrogel surfaces, composed of poly(ethylene oxide) (PEO) and poly(tetramethylene oxide) (PTMO) or poly(dimethyl siloxane) (PDMS), were investigated. By varying PEO length (MW = 2000 or 3400), hydrophobic components (PTMO or PDMS) or polymer topology (block or graft copolymers), various physical hydrogels were produced. Their structures were verified by 1H NMR and ATR-IR and the molecular weights were determined by gel permeation chromatography. The hydrogels were soluble in a variety of organic solvents, while absorbed a significant amount of water with preserved three-dimensional structure by physical crosslinking. The dynamic contact angle measurement revealed that the surface hydrophilicity increased by incorporating longer PEO, PEO grafting, and adopting PDMS as a hydrophobic segment instead of PTMO. It was observed from in vitro protein adsorption study that the hydrogels exhibited significantly lower adsorption of human serum albumin (HSA), human fibrinogen (HFg), and IgG, when compared with Pellethane, a commercial polyurethane taken as a control. The hydrogels were attractive for HSA but not sensitive to HFg and IgG. And more than 65% of the proteins detected on the surfaces of the hydrogels were reversibly detached by being treated with an SDS solution. It was evident that the hydrogels synthesized in this study were much more resistant to platelet adhesion than the control, which might depend on the composition of proteins adsorbed on the surfaces and their degree of denaturation. Among the hydrogels tested, PEO3,4kPDMS exhibited albumin-rich and platelet-resistant surfaces, implying a potential candidate for biomaterial.  相似文献   

7.
Heparin was immobilized onto segmented polyurethane-urea surfaces (Biomer) using hydrophilic poly(ethylene oxide) spacers of different chain lengths. The use of the hydrophilic spacer, poly(ethylene oxide), reduces protein adsorption and subsequent platelet adhesion on the surface. In addition, the bioactivity of the immobilized heparin is enhanced by the incorporation of these spacers. Immobilized heparin bioactivity is shown to be a function of PEO spacer length. Use of hydrophilic PEO spacers demonstrates that immobilized heparin's bioactivity is consistently higher than that of the C6 alkyl spacer, but heparin-immobilized surfaces demonstrate no chain length effect on platelet adhesion, even though they show less platelet adhesion compared to Biomer controls. In the case of PEO-grafted surfaces, platelet adhesion is decreased compared to Biomer controls, and C6 alkyl spacer-grafted surfaces, and exhibits a minimum at PEO 1000. In ex vivo A-A shunt experiments under low flow and low shear conditions, all heparinized surfaces exhibit significant prolongation of occlusion times compared to Biomer controls, indicating an ability of immobilized heparin to inhibit thrombosis in whole blood.  相似文献   

8.
Measurements of platelet adhesion and fibrinogen adsorption from flowing whole blood to a series of polyethylene oxide (PEO)-based materials were carried out. A unique experimental design was used in which both quantities were measured in the same experiment. The materials consisted of a polyurethane (PU) as a matrix into which various triblock copolymers of general structure PEO-PU-PEO were blended; the PU block was the same in all materials but the PEO blocks ranged in molecular weight from 550 to 5000. Platelets were isolated from fresh human blood and labeled with 51Cr; purified fibrinogen was labeled with 125I. A whole blood preparation containing these labeled species was used for the adhesion/adsorption studies. The surfaces were exposed to the flowing blood in a cone and plate device at a wall shear rate of 300?s?1. It was found that both platelet adhesion and fibrinogen adsorption decreased with increasing copolymer content in the blends and with decreasing PEO block size for a given copolymer content. The block size effect was due probably to higher PEO surface coverage for the lower molecular weight blocks. Fibrinogen adsorption and platelet adhesion were linearly and strongly correlated. The best performing materials showed very low fibrinogen adsorption of the order of 25?ng/cm2, and correspondingly low platelet densities around 10,000 per cm2, i.e. fractional platelet coverage in the vicinity of 0.2%.  相似文献   

9.
In order to investigate the interaction between various sulfonated polyurethanes (PUs) and blood, a commercial PU surface was chemically modified by poly(ethylene oxide) (PEO), dodecanediol(DDO), and propane sultone to give hydrophilic, hydrophobic, and negative sulfonated surfaces, respectively. The blood compatibility of modified PUs was evaluated by an in vitro platelet adhesion test, activated partial thromboplastin time (APTT), and prothrombin time (PT) measurements as well as an ex vivo rabbit A-A shunt method. In the platelet adhesion test, the hydrophilic PEO grafted PUs showed less platelet adhesion than untreated PU and hydrophobic DDO grafted PU. Sulfonated PU-PEO exhibited a lower degree of adhesion and shape change of platelet. The APTT and PT, especially APTT, of the sulfonated PUs were extended, whereas those of PU-PEO and PU-DDO did not show any significant change compared with untreated PU. Meanwhile, in the ex vivo experiment, hydrophilic PEO grafted PUs showed longer occlusion times than untreated PU or hydrophobic DDO grafted PU. In addition, the incorporation of SO3 groups at the end of PU-DDO and PU-PEO, particularly PU-PEO-SO3, exhibited an enormous prolongation in occlusion time, indicating a synergistic effect of the hydrophilic PEO and the negative SO3 groups on thromboresistance. These occlusion times corresponded well to in vitro evaluation results: the less adhesion and shape change of platelet and the longer APTT and PT, the more extended the ex vivo occlusion time.  相似文献   

10.
Three polyethylene oxide-polyurethane-polyethylene oxide (PEO-PU-PEO) block copolymers of variable PEO block size (MW 550, 2000, and 5000) were used to modify the surface of a conventional segmented polyurethane (PU) with the objective of inhibiting interactions with proteins. The surface-active copolymers were blended with the PU by solution methods. Protein adsorption from human plasma to the modified materials was investigated using radiolabeling and immunoblotting methods. From the radiolabeling experiments, it was found that fibrinogen adsorption from plasma to all of the modified surfaces was much lower than to the unmodified PU matrix. For blends of low copolymer content, resistance to adsorption was greatest on the copolymer 1 (PEO550)-modified materials, and increased with increasing copolymer content for all three blend types. At high copolymer content inhibition of adsorption was very strong and independent of PEO block size. The immunoblotting experiments showed that on materials of high copolymer content (20 wt %), the proteins investigated (fibrinogen, albumin, complement C3, and apolipoprotein A-I) were undetectable. At low copolymer content (< or = 5 wt %), the blends of copolymer 1, with the shortest PEO block, exhibited greater protein resistance than those of copolymers 2 and 3 (PEO blocks of MW 2000 and 5000, respectively), and resistance decreased with decreasing protein size. Evidence of complement activation was seen for the blends of low copolymer content. Adsorption of C3 and complement activation decreased with increasing content of the copolymers. It was concluded that surface density of PEO is more important than chain length for protein resistance in contact with plasma.  相似文献   

11.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. Poly(ethylene oxide) (PEO) has been frequently used to modify biomaterial surfaces to minimize or prevent protein adsorption and cell adhesion. PEO was grafted onto a number of biomaterials in our laboratory. Nitinol stents and glass tubes were grafted with PEO by priming the metal surface with trichlorovinylsilane (TCVS) followed by adsorption of Pluronic and y-irradiation. Nitinol stents were also coated with Carbothane for PEO grafting. Chemically inert polymeric biomaterials, such as Carbothane, polyethylene, silicone rubber, and expanded polytetrafluoroethylene (e-PTFE), were first adsorbed with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymers and then exposed to gamma-irradiation for covalent grafting. For PEO grafting to Dacron (polyethylene terephthalate), the surface was sequentially treated with PEO-PB-PEO and Pluronics followed by gamma-irradiation. In vitro studies showed substantial reduction in fibrinogen adsorption and platelet adhesion to the PEO-grafted surfaces compared with control surfaces. Fibrinogen adsorption was reduced by 70-95% by PEO grafting on all surfaces, except for e-PTFE. The platelet adhesion corresponded to the fibrinogen adsorption. When the PEO-grafted surfaces were tested ex vivo/in vivo, however, the expected beneficial effect of PEO grafting was inconsistent. The beneficial effect of the PEO grafting was most pronounced on the PEO-grafted nitinol stents. Thrombus formation was reduced by more than 85% by PEO grafting on metallic stents. Only moderate improvement (i.e. 35% decrease in platelet deposition) was observed with PEO-grafted tubes of polyethylene, silicone rubber, and glass. For PEO-grafted heart valves made of Dacron, however, no effect of PEO grafting was observed at all. It appears that the extent of thrombus formation on PEO-grafted biomaterials was directly related to the extent of tissue damage during implantation surgery. Platelets can be activated and form aggregates in the bulk blood, and the formed platelet aggregates may be able to deposit on the PEO monolayer overcoming its repulsive property. Our studies indicate that the testing of in vitro platelet adhesion should include adhesion of large platelet aggregates, in addition to adhesion of individual platelets. Furthermore, the surface modification methods should be improved over the current monolayer grafting concept so that the repulsive force by the grafted PEO layers is large enough to prevent adhesion of platelet aggregates formed in the bulk blood before arriving at the biomaterial surface.  相似文献   

12.
The initial step of thrombus formation on blood-contacting biomaterials is known to be adsorption of blood proteins followed by platelet adhesion. Poly(ethylene oxide) (PEO) has been frequently used to modify biomaterial surfaces to minimize or prevent protein adsorption and cell adhesion. PEO was grafted onto a number of biomaterials in our laboratory. Nitinol stents and glass tubes were grafted with PEO by priming the metal surface with trichlorovinylsilane (TCVS) followed by adsorption of Pluronic and γ-irradiation. Nitinol stents were also coated with Carbothane® for PEO grafting. Chemically inert polymeric biomaterials, such as Carbothane, polyethylene, silicone rubber, and expanded polytetrafluoroethylene (e-PTFE), were first adsorbed with PEO-polybutadiene-PEO (PEO-PB-PEO) triblock copolymers and then exposed to γ-irradiation for covalent grafting. For PEO grafting to Dacron® (polyethylene terephthalate), the surface was sequentially treated with PEO-PB-PEO and Pluronics® followed by γ-irradiation. In vitro studies showed substantial reduction in fibrinogen adsorption and platelet adhesion to the PEO-grafted surfaces compared with control surfaces. Fibrinogen adsorption was reduced by 70-95% by PEO grafting on all surfaces, except for e-PTFE. The platelet adhesion corresponded to the fibrinogen adsorption. When the PEO-grafted surfaces were tested ex vivo/in vivo, however, the expected beneficial effect of PEO grafting was inconsistent. The beneficial effect of the PEO grafting was most pronounced on the PEO-grafted nitinol stents. Thrombus formation was reduced by more than 85% by PEO grafting on metallic stents. Only moderate improvement (i.e. 35% decrease in platelet deposition) was observed with PEO-grafted tubes of polyethylene, silicone rubber, and glass. For PEO-grafted heart valves made of Dacron, however, no effect of PEO grafting was observed at all. It appears that the extent of thrombus formation on PEO-grafted biomaterials was directly related to the extent of tissue damage during implantation surgery. Platelets can be activated and form aggregates in the bulk blood, and the formed platelet aggregates may be able to deposit on the PEO monolayer overcoming its repulsive property. Our studies indicate that the testing of in vitro platelet adhesion should include adhesion of large platelet aggregates, in addition to adhesion of individual platelets. Furthermore, the surface modification methods should be improved over the current monolayer grafting concept so that the repulsive force by the grafted PEO layers is large enough to prevent adhesion of platelet aggregates formed in the bulk blood before arriving at the biomaterial surface.  相似文献   

13.
Cellular interaction and platelet adsorption were investigated on poly(ethylene oxide) (PEO) immobilized silicone rubber membrane (SR) which has polyacrylic acid grafts on the surfaces. Polyacrylic acid (PAA) had been introduced to the SR surface after Ar plasma treatment of SR surfaces to introduce peroxide groups. Surface characterizations were made using ATR-FTIR, ESCA, SEM, and contact angle measurements. Experimental results obtained by ESCA high resolution curve fitting spectra indicated that the amount of bisamino PEO of different molecular weights immobilized onto SR surfaces were similar, which showed that the influence of the length of molecular chains (-C-C-O-) on the reactivity of terminal amino group is negligible. The wettability of modified SR surfaces increased with an increase in PEO molecular weight. Biological studies such as corneal epithelial cell culture and blood platelet adhesion were performed to understand the biocompatibility of modified SR surfaces. Biological studies using corneal epithelial cells showed that cell migration, attachment and proliferation onto PEO-20000 immobilized SR surface were suppressed, whereas these biological activities on PEO-600 were enhanced. Another study on platelet adhesion revealed that many platelets attached to PEO-600 immobilized SR, while platelet deposition was rarely observed on SR grafted with PEO-3350. The effects of different PEO molecular chains on biological response were discussed.  相似文献   

14.
Poly(ethylene oxide) (PEO)-grafted polyurethane (PU)/polystyrene (PS) interpenetrating polymer networks (IPNs) were synthesized. The effects of the mobile pendant PEO chains with their microphase separated structure on blood-compatibility were investigated. The morphology of both the fracture surface as well as the top surface indicate that the size of the dispersed domains of the PS-rich phase decreased as the grafting with the PEO was increased. The swelling ratio also decreased as the grafting with the PEO was increased. However, the dynamic contact angle and the interfacial energy between IPN surface and water decreased, due to the structural reorganization of the pendant PEO chains. PU/PS IPNs have an excellent mechanical property as compared with PU homopolymers. The adsorption of bovine plasma fibrinogen (BPF) onto the PU/PS IPNs and PU homopolymers was effectively suppressed by the PEO-grafting. In the platelet adhesion test, the amount of platelets adsorbed, activated, and/or coagulated upon the PEO-grafted PU/PS IPNs were reduced when compared to the ungrafted PU homopolymers.  相似文献   

15.
Poly(ethylene oxide) (PEO)-grafted polyurethane (PU)/polystyrene (PS) interpenetrating polymer networks (IPNs) were synthesized. The effects of the mobile pendant PEO chains with their microphase separated structure on blood-compatibility were investigated. The morphology of both the fracture surface as well as the top surface indicate that the size of the dispersed domains of the PS-rich phase decreased as the grafting with the PEO was increased. The swelling ratio also decreased as the grafting with the PEO was increased. However, the dynamic contact angle and the interfacial energy between IPN surface and water decreased, due to the structural reorganization of the pendant PEO chains. PU/PS IPNs have an excellent mechanical property as compared with PU homopolymers. The adsorption of bovine plasma fibrinogen (BPF) onto the PU/PS IPNs and PU homopolymers was effectively suppressed by the PEO-grafting. In the platelet adhesion test, the amount of platelets adsorbed, activated, and/or coagulated upon the PEO-grafted PU/PS IPNs were reduced when compared to the ungrafted PU homopolymers.  相似文献   

16.
Block copolymers constructed from chains of poly(2-hydroxyethyl methacrylate) (PHEMA) and either poly-ethyleneoxide (PEO) or poly-propyleneoxide (PPO) were synthesized. These block copolymers exhibited microdomain structure. Platelet adhesion on their surfaces was investigated by a column elution method to examine the effect of microdomain structure. The number of platelets adhered from whole blood was smaller for the block copolymer systems than for the homopolymers. Minimum points of platelet adhesion appeared at approximately 0.38 mol fraction of HEMA in the HEMA-PO system. Both block copolymer surfaces showed microdomains of alternate lamellar structure. Furthermore, the percent of platelets released from the column after incubation was investigated using PRP. In the case of homopolymers, released platelet percentages decreased with an increase of incubation time. Released platelet percentages from the block copolymers, however, were nearly constant with changing incubation time. These results show that HEMA-EO and HEMA-PO block copolymers had the ability to suppress both reversible and irreversible adhesion of platelets to their respective microdomain surfaces.  相似文献   

17.
Kim JH  Kim SC 《Biomaterials》2002,23(9):2015-2025
Polyurethane (PU) homopolymers and PU/polystyrene (PS) interpenetrating polymer networks (IPNs) were successfully synthesized changing the length of the pendant poly(ethylene oxide) (PEO) chains and the grafting density of PEO chains. All the PU/PS IPNs had the microphase-separated structures in which the PS-rich phase domains were dispersed in the matrix of the PU-rich phase. The domain size decreased a little, as the degree of grafting with PEO chains was increased. The water swelling ratio increased, and the interfacial energy decreased, as the length of the pendant PEO chains, and the grafting density of PEO chains of the PEO-grafted PU/PS IPNs were increased, since the mobile hydrophilic pendant PEO chains effectively induced and absorbed the water, when they were contacted with water. The hydrophilic and highly concentrated pendant PEO chains could easily prohibit the adhesion of the fibrinogens and the platelets on the surface, and the blood compatibility of IPNs was enhanced by increasing of grafting with PEO chains. The adsorption of the fibrinogens and the platelets was suppressed, as the length of pendant PEO chains, and the grafting density were increased.  相似文献   

18.
The adherence of three clinical isolates of Staphylococcus epidermidis to model polystyrene surfaces was studied in vitro using epifluorescent image analysis. A series of 16 Pluronic surfactants (A-B-A block copolymers where A is poly(ethylene oxide) (PEO) and B is poly(propylene oxide) (PPO)) were used as surface modifiers for the model polystyrene surfaces. Substantial reductions (up to 97%) in bacterial adhesion levels were achieved with all copolymers tested, irrespective of the PPO or PEO block lengths. It appears likely that such treatments create a sterically stabilized surface with adsorbed PEO chains, conferring nonspecific anti-adhesive properties which can limit bacterial attachment.  相似文献   

19.
由聚谷氨酸苄酯PBLG(或聚谷氨酸甲酯PMLG)薄膜与醇胺和脂肪族二胺反应制备聚羟烷谷氨酰胺 (PHAG)交联膜。红外光谱分析表明 ,PBLG与乙醇胺、丙醇胺的氨解比较完全 ,PMLG与戊醇胺只能部分氨解。溶胀实验发现 ,醇胺和交联剂的碳链越长 ,交联剂用量越多 ,水溶胀度Q就越小。拉伸试验结果说明 ,氨解与交联后干膜的抗张强度有所减少。体外酶解实验表明 ,水溶胀度Q越小的样品 ,其半量酶解时间也越大 ,生物降解性就越小。因此 ,PHAG交联膜的生物降解性可以通过改变交联剂种类和交联剂用量的方法来控制。  相似文献   

20.
Hydrophilic-hydrophobic multiblock copolymers synthesized from telechelic oligomers of poly(ethylene oxide) (PEO) and polystyrene (PS) have been used to study the influence of hydrophilic and hydrophobic balance on interfacial interactions of these surfaces with blood components. In vitro coagulation assays show no inherent ability of these amphiphilic surfaces to affect contact activation or coagulation factors. In vitro platelet adhesion and release reactions from rabbit platelet-rich plasma were shown to be greatest on Biomer and PS homopolymer surfaces and least on cross-linked PEO surfaces, with the PEO-PS block copolymers demonstrating intermediate responses. These same substrates were tested in a new low-flow, low-shear arterio-artery shunt system in rabbits. Whole blood occlusion times were not a direct function of hydrophilic content as both PEO and PS homopolymers and Biomer showed short occlusion times, while PEO-PS block copolymers prolonged occlusion times considerably, depending on composition. Overall, results suggest that PEO-PS block copolymers promote unique whole blood responses in contrast to homopolymer and Biomer controls which are more complex than direct correlations to bulk hydrophilic and hydrophobic contents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号