首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The prion was defined by Stanley B. Prusiner as the infectious agent that causes transmissible spongiform encephalopathies. A pathological protein accumulating in the brain of scrapie-infected hamsters was isolated in 1982 and termed prion protein (PrPSc). Its cognate gene Prnp was identified more than a decade ago by Charles Weissmann, and shown to encode the host protein PrP(C). Since the latter discovery, transgenic mice have contributed many important insights into the field of prion biology, including the understanding of the molecular basis of the species barrier for prions. By disrupting the Prnp gene, it was shown that an organism that lacks PrP(C) is resistant to infection by prions. Introduction of mutant PrP genes into PrP-deficient mice was used to investigate the structure-activity relationship of the PrP gene with regard to scrapie susceptibility. Ectopic expression of PrP in PrP knockout mice proved a useful tool for the identification of host cells competent for prion replication. Finally, the availability of PrP knockout mice and transgenic mice overexpressing PrP allows selective reconstitution experiments aimed at expressing PrP in neurografts or in specific populations of haemato- and lymphopoietic cells. The latter studies have allowed us to clarify some of the mechanisms of prion spread and disease pathogenesis.  相似文献   

2.
Prion Protein Transgenes and the Neuropathology in Prion Diseases   总被引:2,自引:0,他引:2  
The concept that prions are novel pathogens which are different from both viroids and viruses has received increasing support from many avenues of investigation over the past decade. Enriching fractions from Syrian hamster (SHa) brain for scrapie prion infectivity led to the discovery of the prion protein (PrP). Prion diseases of animals include scrapie and “mad cow” disease; those of humans present as inherited, sporadic and infectious neurodegenerative disorders, two of which are called Creutzfeldt-Jakob disease (CJD) and Gerstmann-Sträussler-Scheinker disease (GSS). The inherited human prion diseases are genetically linked to mutations in the PrP gene that result in non-conservative amino acid substitutions. Transgenic (Tg) mice expressing PrP carrying a GSS mutation developed neurodegeneration spontaneously and produced prions de novo. In other studies, Tg mice expressing both SHa and mouse (Mo) PrP genes were used to demonstrate that the “species barrier” for scrapie prions resides in the primary structure of PrP. This concept was strengthened by the results of studies in which mice expressing chimeric Mo/human (Hu) PrP transgenes were constructed which differ from MoPrP by nine amino acids between residues 96 and 167. All of the Tg(MHu2M) mice developed neurologic disease ~200 days after inoculation with brain homogenate from three patients who died of CJD. About 10% of Tg(HuPrP) mice expressing HuPrP and non-Tg mice developed neurologic disease >500 days after inoculation with CJD prions. The different susceptibilities of Tg(HuPrP) and Tg(MHu2M) mice to human prions indicate that additional species specific factors such as chaperone proteins are involved in prion replication. Diagnosis, prevention and treatment of human prion diseases should be facilitated by study of Tg(MHu2M) mice. Our findings and those from other studies suggest that mutant and wtPrP interact, perhaps through a chaperone-like protein, during the pathogenesis of the prion diseases.  相似文献   

3.
Scrapie prions are composed largely, if not entirely, of PrPSc molecules. The prion isolates Sc237 and 139H exhibit markedly different incubation times in Syrian, Armenian, and Chinese hamsters, as well as in transgenic (Tg) 81 mice expressing Syrian hamster PrP (SHaPrP). Repassage of prions from transgenic mice or Chinese hamsters into Syrian hamsters revealed that the original properties of the prion isolates are retained. When Syrian hamsters were first inoculated with 139H prions and subsequently challenged with Sc237 prions, the incubation period was determined by the faster Sc237 isolate. Regional mapping studies demonstrated different kinetics and patterns of PrPSc accumulation for Sc237 and 139H prions in the brains of Syrian hamsters as well as Tg(SHaPrP)7 mice. That distinct prion isolates induce different region-specific accumulations of PrPSc in brain suggests a novel mechanism for propagation of isolates whereby they replicate in particular sets of neurons. The prion isolates could be targeted to specific CNS cells by differing conformations of PrPSc, post-translational modifications of PrPSc such as Asn-linked glycosylation, or an as yet undetected macromolecule complexed with PrPSc in the prion.  相似文献   

4.
Molecular Biology and Pathology of Scrapie and the Prion Diseases of Humans   总被引:2,自引:0,他引:2  
Scrapie and bovine spongiform encephalopathy of animals and Creutzfeldt-Jakob and Gerstmann-Sträussler-Scheinker diseases of humans are transmissible and genetic neurodegenerative diseases caused by prions. Infectious prion particles are composed largely, if not entirely, of an abnormal isoform of the prion protein which is encoded by a chromosomal gene. An as yet unidentified post-transla-tional process converts the cellular prion protein into an abnormal isoform. Scrapie neuropathology, incubation times, and prion synthesis in transgenic mice are controlled by the prion protein gene. Point mutations in the prion protein genes of animals and humans are genetically linked to development of neurodegeneration. Transgenic mice expressing mutant prion proteins spontaneously develop neurologic dysfunction and spongiform neuropathology. Studies of prion diseases may advance investigations of other neurodegenerative disorders and of how neurons differentiate, function for decades and grow senescent.  相似文献   

5.
Cerebral and cardiac amyloid deposits have been reported after scrapie infection in transgenic mice expressing variant prion protein (PrP(C)) lacking the glycophosphatidylinositol anchor. The amyloid fibril protein in the systemic amyloid deposits was not characterized, and there is no clinical or pathological association between prion diseases and systemic amyloidosis in humans. Nevertheless, in view of the potential clinical significance of these murine observations, we tested both human amyloidotic tissues and isolated amyloid fibrils for the presence of PrP(Sc), the prion protein conformation associated with transmissible spongiform encephalopathy (TSE). We also sequenced the complete prion protein gene, PRNP, in amyloidosis patients. No specific immunohistochemical staining for PrP(Sc) was obtained in the amyloidotic cardiac and other visceral tissues of patients with different types of systemic amyloidosis. No protease-resistant prion protein, PrP(res), was detectable by Western blotting of amyloid fibrils isolated from cardiac and other systemic amyloid deposits. Only the complete normal wild-type PRNP gene sequence was identified, including the usual distribution of codon 129 polymorphisms. These reassuringly negative results do not support the idea that there is any relationship of prions or TSE with human systemic amyloidosis, including cardiac amyloid deposition.  相似文献   

6.
The study of prion transmission and targeting is a major scientific issue with important consequences for public health. Only a few cell culture systems that are able to convert the cellular isoform of the prion protein into the pathologic scrapie isoform of the prion protein (PrP(Sc)) have been described. We hypothesized that central nervous system neural stem cells (NSCs) could be the basis of a new cell culture model permissive to prion infection. Here, we report that monolayers of differentiated fetal NSCs and adult multipotent progenitor cells isolated from mice were able to propagate prions. We also demonstrated the large influence of neural cell fate on the production of PrP(Sc), allowing the molecular study of prion neuronal targeting in relation with strain differences. This new stem cell-based model, which is applicable to different species and to transgenic mice, will allow thoughtful investigations of the molecular basis of prion diseases, and will open new avenues for diagnostic and therapeutic research.  相似文献   

7.
Prion diseases are fatal transmissible neurodegenerative diseases of humans and various vertebrate species. In their natural hosts these conditions are characterised by prolonged incubation times prior to the onset of clinical signs of terminal disease. Accordingly, tractable models of mammalian prion disease are required in order to better understand the mechanisms of prion replication and prion-induced neurotoxicity. Transmission of prion diseases can occur across a species barrier and this is facilitated in recipients transgenic for the same PrP gene as the individual from which the infectious prions are derived. Here we have tested the hypothesis that exogenous ovine prions can induce neurotoxicity in Drosophila melanogaster transgenic for ovine PrP. Drosophila that expressed ovine PrP pan neuronally and inoculated with ovine prions at the larval stage by oral exposure to scrapie-infected sheep brain homogenate showed markedly accelerated locomotor and survival defects. ARQ PrP transgenic Drosophila exposed to scrapie-infected brain homogenate showed a significant and progressive reduction in locomotor activity compared to similar flies exposed to normal sheep brain homogenate. The prion-induced locomotor defect was accompanied by the accumulation of potentially misfolded PrP in the brains of prion-inoculated flies. VRQ PrP transgenic Drosophila, which expressed less ovine PrP than ARQ flies, showed a reduced median survival compared to similar flies exposed to normal sheep brain homogenate. These prion-induced phenotypic effects were PrP-mediated since ovine prions were not toxic in non-PrP transgenic control flies. Our observations provide the basis of an invertebrate model of transmissible mammalian prion disease.  相似文献   

8.
Bank vole is a small rodent that shows high susceptibility to infection with diverse prion strains. To determine whether the increased susceptibility of bank voles to prion diseases can be attributed to the intrinsic nature of bank vole prion protein (PrP) or to host factors other than PrP, we produced transgenic mice overexpressing bank vole PrP. These transgenic mice spontaneously developed neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. Then, we produced transgenic mice overexpressing chimeric mouse/bank vole PrP, which differs from mouse PrP only at two residues located at the C‐terminus, to determine the minimum essential domain for the induction of spontaneous generation of abnormal PrP. These transgenic mice also developed spontaneous neurological illness with spongiform changes and the accumulation of abnormal PrP in the brain. In addition, knock‐in mice expressing bank vole PrP at the same level as that of wild‐type mice did not develop spontaneous disease but showed high susceptibility to infection with diverse prion strains, similarly to bank voles. Taken together, these findings show that bank vole PrP has a high propensity for the conformational conversion both in spontaneous disease and in prion infection, probably due to the characteristic structural properties of the C‐terminal domain.  相似文献   

9.
The first transmissions of human prion diseases to rodents used guinea pigs (Gps, Cavia porcellus). Later, transgenic mice expressing human or chimeric human/mouse PrP replaced Gps, but the small size of the mouse limits some investigations. To investigate the fidelity of strain-specific prion transmission to Gps, we inoculated 'type 1' and 'type 2' prion strains into Gps, and we measured the incubation times and determined the strain-specified size of the unglycosylated, protease-resistant (r) PrP(Sc) fragment. Prions passaged once in Gps from cases of sporadic (s) Creutzfeldt-Jakob disease (CJD) and Gerstmann-Str?ussler-Scheinker (GSS) disease caused by the P102L mutation were used, as well as human prions from a variant (v) CJD case, bovine prions from bovine spongiform encephalopathy (BSE) and mouse-passaged scrapie prions. Variant CJD and BSE prions transmitted to all the inoculated Gps with incubation times of 367 ± 4 and 436 ± 28 days, respectively. On second passage in Gps, vCJD and BSE prions caused disease in 287 ± 4 and 310 ± 4 days, whereas sCJD and GSS prions transmitted in 237 ± 4 and 279 ± 19 days, respectively. Although hamster Sc237 prions transmitted to two of three Gps after 574 and 792 days, mouse-passaged RML and 301V prion strains, the latter derived from BSE prions, failed to transmit disease to Gps. Those Gps inoculated with vCJD or BSE prions exhibited 'type 2' unglycosylated, rPrP(Sc) (19 kDa), whereas those receiving sCJD or GSS prions displayed 'type 1' prions (21 kDa), as determined by western blotting. Such strain-specific properties were maintained in Gps as well as mice expressing a chimeric human/mouse transgene. Gps may prove particularly useful in further studies of novel human prions such as those causing vCJD.  相似文献   

10.
Chronic wasting disease (CWD) is a fatal spongiform encephalopathy that is efficiently transmitted among members of the mammalian family Cervidae, including deer, elk, and moose. Typical of prion diseases, CWD is characterized by the conversion of the native protease-sensitive protein PrP(C) to a protease-resistant isoform, denoted PrP(RES). In native species, spread of the disease likely results from the ingestion of prion-containing excreta, including urine, saliva, or feces. Although cervid prion protein-expressing transgenic [Tg(CerPrP)] mice have been shown to be effective surrogates of natural CWD, uncertainties remain regarding the mechanisms by which CWD prions traffic in vivo, including the manner by which CWD prions traffic from the gastrointestinal tract to the central nervous system. We used elk prion protein-expressing transgenic [Tg(CerPrP-E)] mice, infected by three different routes of inoculation, and tissue-based IHC to elucidate that centripetal and centrifugal CWD prion transit pathways involve cells and fibers of the autonomic nervous systems, including the enteric nervous system and central autonomic network. Moreover, we identified CWD PrP(RES) associated with the cell bodies and processes of enteric glial cells within the enteric nervous system of CWD-infected Tg(CerPrP-E) mice. The present findings demonstrate the importance of the peripheral and central autonomic networks in CWD neuroinvasion and neuropathogenesis and suggest that enteroglial cells may facilitate the shedding of prions via the intestinal tract.  相似文献   

11.
Mice to which human prions efficiently transmit in short incubation periods are valuable not only as research tools of human prions but also as reliable diagnostic tools. We recently produced a line of knock-in mouse expressing a unique human-mouse chimeric PrP (Ki-ChM mouse), which has mouse-specific residues practically only at the C-terminal part after posttranslational modification, and here we attempted transmission of various human prions to assess the susceptibility profile of the mouse. Susceptibility varied considerably depending on prions inoculated: highly susceptible to MM1 and MV1 types of sporadic Creutzfeldt-Jakob disease (CJD), developing disease within approximately 150 days, familial CJD with M232R mutation, and dura graft-associated CJD (dCJD) without amyloid plaque; less susceptible to MM2-type sporadic CJD and variant CJD, with some mice lacking any sign of transmission; and totally resistant to VV2 type sporadic CJD and dCJD with amyloid plaque. The rather short incubation time achieved by Ki-ChM mice suggests new approaches to produce mice that develop prion disease with very short incubation periods. We compared the characteristic susceptibility profile of Ki-ChM with those of other precedent transgenic mice and discussed, including the prospects in developing genetically engineered mice susceptible to human prions.  相似文献   

12.
Ovine prion strains have typically been identified by their transmission properties, which include incubation time and lesion profile, in wild type mice. The existence of scrapie isolates that do not propagate in wild type mice, defined here as "poor" transmitters, are problematic for conventional prion strain typing studies as no incubation time or neuropathology can be recorded. This may arise because of the presence of an ovine prion strain within the original inoculum that does not normally cross the species barrier into wild type mice or the presence of a low dose of an infectious ovine prion strain that does. Here we have used tg59 and tg338 mouse lines, which are transgenic for ovine ARQ or VRQ PrP, respectively, to strain type "poor" transmitter ovine scrapie isolates. ARQ and VRQ homozygous "poor" transmitter scrapie isolates were successfully propagated in both ovine PrP transgenic mouse lines. We have used secondary passage incubation time, PrPSc immunohistochemistry and molecular profile, to show that different prion strains can be isolated from different "poor" transmitter samples during serial passage in ovine PrP transgenic mice. Our observations show that poor or inadequate transmissibility of some classical scrapie isolates in wild type mice is associated with unique ovine prion strains in these particular sheep scrapie samples. In addition, the analysis of the scrapie isolates used here revealed that the tg338 mouse line was more versatile and more robust at strain typing ovine prions than tg59 mice. These novel observations in ovine PrP transgenic mice highlight a new approach to ovine prion strain typing.  相似文献   

13.
Expression of the normal form of prion protein (PrP(C)) has been reported on a wide range cells including lymphocytes and antigen presenting cells, however the functional role of PrP(C) remains to be fully elucidated. Here we report the effect of reintroducing the PrP gene into splenocytes derived from prion knockout (PrP 0/0) mice and comparing their responses with splenocytes lacking a functional PrP gene. Reintroduction of the PrP gene was carried out by transfecting cells with pC1PrPEH, a plasmid expressing mouse PrP. Following transfection, T cells demonstrated an increased capacity to proliferate in response to ConA and PMA/ionomycin compared to T cells lacking the functional PrP gene. A bioassay used to determine IL-2 levels indicated that the reintroduction of the PrP gene might enhance IL-2 expression in response to ConA. Levels of IFN-gamma produced also showed an increase following transfection with PrP expressing plasmid. A comparison between splenocytes derived from PrP 0/0 and PrP +/+ also demonstrated some differences in cytokine production and proliferation. Together these results show PrP(C) has an impact on the normal T cell activation and proliferation in response to mitogens and also potentially antigen responsiveness.  相似文献   

14.
Anonymous screening of lymphoreticular tissues removed during routine surgery has been applied to estimate the UK population prevalence of asymptomatic vCJD prion infection. The retrospective study of Hilton et al (J Pathol 2004; 203: 733-739) found accumulation of abnormal prion protein in three formalin-fixed appendix specimens. This led to an estimated UK prevalence of vCJD infection of ~1 in 4000, which remains the key evidence supporting current risk reduction measures to reduce iatrogenic transmission of vCJD prions in the UK. Confirmatory testing of these positives has been hampered by the inability to perform immunoblotting of formalin-fixed tissue. Animal transmission studies offer the potential for 'gold standard' confirmatory testing but are limited by both transmission barrier effects and known effects of fixation on scrapie prion titre in experimental models. Here we report the effects of fixation on brain and lymphoreticular human vCJD prions and comparative bioassay of two of the three prevalence study formalin-fixed, paraffin-embedded (FFPE) appendix specimens using transgenic mice expressing human prion protein (PrP). While transgenic mice expressing human PrP 129M readily reported vCJD prion infection after inoculation with frozen vCJD brain or appendix, and also FFPE vCJD brain, no infectivity was detected in FFPE vCJD spleen. No prion transmission was observed from either of the FFPE appendix specimens. The absence of detectable infectivity in fixed, known positive vCJD lymphoreticular tissue precludes interpreting negative transmissions from vCJD prevalence study appendix specimens. In this context, the Hilton et al study should continue to inform risk assessment pending the outcome of larger-scale studies on discarded surgical tissues and autopsy samples.  相似文献   

15.
In naturally and experimentally occurring scrapie in sheep, prions invade the immune system and replicate in lymphoid organs. Here we analysed immunohistochemically, in seven spleens of 6-month-old healthy sheep, the nature of the cells expressing prion protein (PrP) potentially supporting prion replication, as well as their relationship with autonomic innervation. PrP was identified using either RB1 rabbit antiserum or 4F2 monoclonal antibody directed against AA 108-123 portion of the bovine and AA 79-92 of human prion protein respectively. Using double labelling analysis, we demonstrated that PrPc is expressed by follicular dendritic cells using a specific monoclonal antibody (CNA42). We also showed the close vicinity of these PrP expressing cells with noradrenergic fibers, using a polyclonal tyrosine hydroxylase antibody. Our results may help the study of the cellular requirements for the possible neuroinvasion from the spleen.  相似文献   

16.
In most documented infectious forms of transmissible spongiform encephalopathies, prions must transit through the lymphoreticular compartment before invading the central nervous system. A major goal has been to identify the cell susbsets that support replication and propagation of prions from sites of penetration to sites of neuroinvasion. The conclusions, still fragmentary and confusing, point at a few candidates: follicular dendritic cells (FDCs) and more recently, dendritic cells (DCs). It is clear, however, that lymphoinvasion does not depend on a single-cell type but needs a coordinated network of cells. Discrepancies between models suggest that the actors may vary according to prion strains. A second center of interest has emerged following reports that anti-prion protein (PrP) antibodies blocked in vitro cell conversion of normal PrP into pathological PrP and cured infected cell lines. As isoform conversion is a critical event in prion propagation and formation of lesions, the identification of immune agents capable of inhibiting the reaction is of major importance. In vivo experiments suggest that antibodies produced in transgenic mice or an ongoing immune reaction induced by peptides can prevent PrP conversion and retard disease progression. These results do not say whether clinical disease can be durably delayed and if immunological tolerance to PrP can be easily broken in infected individuals. Altogether, these results suggest that the unconventional relationship between prions and the immune system is on the eve of new and fascinating developments. Whether they will provide innovative strategies for early diagnosis and preventive treatments is still an open question.  相似文献   

17.
Jeong JK  Seo JS  Moon MH  Lee YJ  Seol JW  Park SY 《Neurobiology of aging》2012,33(5):1006.e1-1006.10
The human prion protein fragment, PrP (106-126), may contain a majority of the pathological features associated with the infectious scrapie isoform of PrP, known as PrP(Sc). Based on our previous findings that hypoxia protects neuronal cells from PrP (106-126)-induced apoptosis and increases cellular prion protein (PrP(C)) expression, we hypothesized that hypoxia-related genes, including hypoxia-inducible factor-1 alpha (HIF-1α), may regulate PrP(C) expression and that these genes may be involved in prion-related neurodegenerative diseases. Hypoxic conditions are known to elicit cellular responses designed to improve cell survival through adaptive processes. Under normoxic conditions, a deferoxamine-mediated elevation of HIF-1α produced the same effect as hypoxia-inhibited neuron cell death. However, under hypoxic conditions, doxorubicin-suppressed HIF-1α attenuated the inhibitory effect on neuron cell death mediated by PrP (106-126). Knock-down of HIF-1α using lentiviral short hairpin (sh) RNA-induced downregulation of PrP(C) mRNA and protein expression under hypoxic conditions, and sensitized neuron cells to prion peptide-mediated cell death even in hypoxic conditions. In PrP(C) knockout hippocampal neuron cells, hypoxia increased the HIF-1α protein but the cells did not display the inhibitory effect of prion peptide-induced neuron cell death. Adenoviruses expressing the full length Prnp gene (Ad-Prnp) were utilized for overexpression of the Prnp gene in PrP(C) knockout hippocampal neuron cells. Adenoviral transfection of PrP(C) knockout cells with Prnp resulted in the inhibition of prion peptide-mediated cell death in these cells. This is the first report demonstrating that expression of normal PrP(C) is regulated by HIF-1α, and PrP(C) overexpression induced by hypoxia plays a pivotal role in hypoxic inhibition of prion peptide-induced neuron cell death. These results suggest that hypoxia-related genes, including HIF-1α, may be involved in the pathogenesis of prion-related diseases and as such may be a therapeutic target for prion-related neurodegenerative diseases.  相似文献   

18.
Summary. Prion proteins (PrPs) contain 2 N-linked glycosylation sites and are present in cells in 3 different forms. An abnormal isoform of prion protein (PrPSc) has different glycoform patterns for different prion strains. However, the molecular basis of the strain-specific glycoform variability in prions has remained elusive. To understand the molecular basis of these glycoform differences, we analyzed PrPSc in 2 lines of transgenic mice (MHM2 and MH2M with PrP null background) that expressed a chimeric PrP. Our result indicated that PrP 131–188 (substitutions at I139M, Y155N, and S170N) contributed to both PrPC and PrPSc glycoform ratios. Furthermore, the PrPSc glycoform pattern within these transgenic mice showed a subtle difference depending on the inoculated prion. This study indicated that the PrPSc glycoform ratio was influenced by both host PrPC and the prion strain.  相似文献   

19.
Transgenic analysis of prion diseases   总被引:2,自引:0,他引:2  
Prion diseases are fatal transmissible neurological disorders afflicting a range of mammalian species. Although still controversial, a large body of data suggests that the causative agent may be composed entirely of a small glycoprotein. The brains of infected animals have accumulations of a pathogenic protease-resistant isoform (PrPsc) of a normal host-encoded glycoprotein, PrPc or prion protein. A number of lines of biochemical evidence implicate the disease-specific isoform, PrPsc, as the transmissible agent and genetic analysis has shown tight linkage between PrP gene mutations and polymorphisms and differential susceptibility to prion diseases, Perhaps the strongest evidence for a protein-only model of the agent is that PrP gene-ablated mice are resistant to scrapie and that mice with PrP mutation, corresponding to those found in a human familial prion disease, spontaneously develop a transmissible prion disease. This review describes the critical role that transgenic technology has played in the study of the biology of prion diseases and considers the issues raised by this work.   相似文献   

20.
An experimental oral bovine spongiform encephalopathy (BSE) challenge study was performed to elucidate the route of infectious prions from the gut to the central nervous system in preclinical and clinical infected animals. Tissue samples collected from the gut and the central and autonomic nervous system from animals sacrificed between 16 and 44 months post infection (mpi) were examined for the presence of the pathological prion protein (PrP(Sc)) by IHC. Moreover, parts of these samples were also bioassayed using bovine cellular prion protein (PrP(C)) overexpressing transgenic mice (Tgbov XV) that lack the species barrier for bovine prions. A distinct accumulation of PrP(Sc) was observed in the distal ileum, confined to follicles and/or the enteric nervous system, in almost all animals. BSE prions were found in the sympathetic nervous system starting at 16 mpi, and in the parasympathetic nervous system from 20 mpi. A clear dissociation between prion infectivity and detectable PrP(Sc) deposition became obvious. The earliest presence of infectivity in the brain stem was detected at 24 mpi, whereas PrP(Sc) accumulation was first detected after 28 mpi. In summary, our results decipher the centripetal spread of BSE prions along the autonomic nervous system to the central nervous system, starting already halfway in the incubation time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号