首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We investigate whether arterial baroreceptors mediate the training-induced blood pressure fall and resting bradycardia in hypertensive (SHR) and normotensive rats (WKY). Male SHR and WKY rats, submitted to sino-aortic denervation (SAD) or sham surgery (SHAM group), were allocated to training (T; 55% of maximal exercise capacity) or sedentary (S) protocols for 3 months. Rats were instrumented with arterial and venous catheters for haemodynamic measurements at rest (power spectral analysis) and baroreceptor testing. Kidney and skeletal muscles were processed for morphometric analysis of arterioles. Elevated mean arterial pressure (MAP) and heart rate (HR) in SHAM SHRS were accompanied by increased sympathetic variability and arteriolar wall/lumen ratio [+3.4-fold on low-frequency (LF) power and +70%, respectively, versus WKYS, P < 0.05]. Training caused significant HR (∼9% in WKY and SHR) and MAP reductions (−8% in the SHR), simultaneously with improvement of baroreceptor reflex control of HR (SHR and WKY), LF reduction (with a positive correlation between LF power and MAP levels in the SHR) and normalization of wall/lumen ratio of the skeletal muscle arterioles (SHR only). In contrast, SAD increased pressure variability in both strains of rats, causing reductions in MAP (−13%) and arteriolar wall/lumen ratio (−35%) only in the SHRS. Training effects were completely blocked by SAD in both strains; in addition, after SAD the resting MAP and HR and the wall/lumen ratio of skeletal muscle arterioles were higher in SHRT versus SHRS and similar to those of SHAM SHRS. The lack of training-induced effects in the chronic absence of baroreceptor inputs strongly suggests that baroreceptor signalling plays a decisive role in driving beneficial training-induced cardiovascular adjustments.  相似文献   

2.
We sought to quantify the contribution of cardiac output ( Q ) and total vascular conductance (TVC) to carotid baroreflex (CBR)-mediated changes in mean arterial pressure (MAP) during mild to heavy exercise. CBR function was determined in eight subjects (25 ± 1 years) at rest and during three cycle exercise trials at heart rates (HRs) of 90, 120 and 150 beats min−1 performed in random order. Acute changes in carotid sinus transmural pressure were evoked using 5 s pulses of neck pressure (NP) and neck suction (NS) from +40 to −80 Torr (+5.33 to −10.67 kPa). Beat-to-beat changes in HR and MAP were recorded throughout. In addition, stroke volume (SV) was estimated using the Modelflow method, which incorporates a non-linear, three-element model of the aortic input impedance to compute an aortic flow waveform from the arterial pressure wave. The application of NP and NS did not cause any significant changes in SV either at rest or during exercise. Thus, CBR-mediated alterations in Q were solely due to reflex changes in HR. In fact, a decrease in the carotid-HR response range from 26 ± 7 beats min−1 at rest to 7 ± 1 beats min−1 during heavy exercise (   P = 0.001  ) reduced the contribution of Q to the CBR-mediated change in MAP. More importantly, at the time of the peak MAP response, the contribution of TVC to the CBR-mediated change in MAP was increased from 74 ± 14 % at rest to 118 ± 6 % (   P = 0.017  ) during heavy exercise. Collectively, these findings indicate that alterations in vasomotion are the primary means by which the CBR regulates blood pressure during mild to heavy exercise.  相似文献   

3.
目的:观察运动训练对高血压前期的血压进展、血压调节以及中枢血管紧张素转换酶2(ACE2)-血管紧张素(Ang)(1-7)-MAS轴的影响,探讨运动训练延缓高血压进展的中枢机制。方法:5周龄雄性自发性高血压大鼠(SHR)和正常血压WKY大鼠各20只,随机分成安静组和运动训练组,每组10只。运动组大鼠进行20周中低强度跑台运动。采用尾套法测定大鼠尾动脉收缩压,药物法检测动脉压力反射敏感性(BRS)。Real-time PCR和Western blot分别检测压力反射中枢ACE2和MAS的mRNA和蛋白表达。侧脑室注射MAS受体激动剂Ang(1-7)及拮抗剂A779,检测注药前后的BRS变化。结果:始于高血压前期的运动训练可推迟高血压发生、延缓高血压进展,明显降低SHR和WKY大鼠血压(P0.05),并改善SHR血压调节功能,提高其BRS(P0.01);此处,运动训练可上调SHR压力反射中枢(孤束核、延髓头端腹外侧区和室旁核中)ACE2和MAS的mRNA和蛋白表达(P0.05);中枢给予A779抵消了运动对SHR BRS的改善作用(P0.01),相反,注射Ang(1-7)则增强安静组和运动组SHR的BRS(P0.05)。结论:运动训练延缓高血压前期进展到高血压的进程及改善血压调节作用可能与运动增强中枢ACE2-Ang(1-7)-MAS轴功能有关。  相似文献   

4.
This work aimed to analyze the effect of low-intensity exercise training on ultrastructural and molecular aortic remodeling. Male Wistar-Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) were allocated into four groups: sedentary WKY (SED-WKY), exercised WKY (EX-WKY, 1 h/day, 5 days/week treadmill exercise training), sedentary SHR (SED-SHR), and exercised SHR (EX-SHR). EX-SHR showed blood pressure reduction of 26% in comparison to SED-SHR after 1 month of exercise (P < 0.05). At the 20th week, BP level was not different between EX-SHRs and WKYs. Circumferential wall tension (CWT) was higher by 77% in SED-SHRs than in SED-WKYs (P < 0.001). Exercise training reduced CWT by 30% in EX- vs. SED-SHR (P < 0.001). In SED-SHRs, endothelial cells showed large and numerous cytoplasmatic vacuoles, fragmented inner elastic lamina and scarce elastin and fibrillin, while exercise training ameliorated it in EX-SHR group. The highest eNOS immunodensity was observed in EX-SHR, which was 50% higher than EX-WKY (P < 0.01) and 120% higher than SED-SHR (P < 0.0001). In conclusion, present findings indicate beneficial effects of exercise training in hypertensive rats since it increased elastin, fibrillin and eNOS content in the aortic wall.  相似文献   

5.
Although both α1- and α2-adrenergic receptors (ARs) are known to be expressed in the nucleus of the solitary tract (NTS), the functional significance of these receptors is still not fully established. In this study, we microinjected α1- and α2-AR agonists into the NTS of urethane-anaesthetized Wister rats to study the cardiovascular effects in response to their activation. When the α1-AR agonist phenylephrine was microinjected into the area where barosensitive neurons are dominantly located (baro-NTS), mean arterial pressure (MAP) and heart rate (HR) were significantly elevated. When tested in the area where chemosensitive neurons are dominantly located (chemo-NTS), however, MAP and HR were significantly decreased. Pretreatment with the non-specific α-AR antagonist phentolamine into the NTS inhibited the phenylephrine-induced cardiovascular responses. In contrast, microinjection of the α2-AR agonist clonidine into either the baro-NTS or the chemo-NTS decreased MAP and HR; they were also inhibited by the α2-adrenergic antagonist yohimbine. Moreover, we immunohistochemically identified that cardiovascular responses induced by α1-ARs may be mediated by NTS neurons while those induced by α2-ARs may be mediated by astrocytes located in the barosensitive and chemosensitive areas of the NTS. These results suggest that both types of α-AR expressed in the NTS may be involved in regulating cardiovascular homeostasis via modulation of input signals from baroreceptor and chemoreceptor afferents; however, cardiovascular responses produced by stimulation of α1-ARs are strictly location specific within the NTS.  相似文献   

6.
Endothelium-dependent dilatation (EDD) is impaired with ageing in sedentary, but not in regularly exercising adults. We tested the hypotheses that differences in tetrahydrobiopterin (BH4) bioactivity are key mechanisms explaining the impairment in EDD with sedentary ageing, and the maintenance of EDD with ageing in regularly exercising adults. Brachial artery flow-mediated dilatation (FMD), normalized for local shear stress, was measured after acute oral placebo or BH4 in young sedentary (YS) ( n = 10; 22 ± 1 years, mean ± s.e.m. ), older sedentary (OS) ( n = 9; 62 ± 2), and older habitually aerobically trained (OT) ( n = 12; 66 ± 1) healthy men. At baseline, FMD was ∼50% lower in OS versus YS (1.12 ± 0.09 versus 0.57 ± 0.09 (Δmm (dyn cm−2)) × 10−2, P < 0.001; 1 dyn = 10−5 N), but was preserved in OT (0.93 ± 0.08 (Δmm (dyn cm−2)) × 10−2). BH4 administration improved FMD by ∼45% in OS (1.00 ± 0.10 (Δmm (dyn cm−2)) × 10−2, P < 0.01 versus baseline), but did not affect FMD in YS or OT. Endothelium-independent dilatation neither differed between groups at baseline nor changed with BH4 administration. These results suggest that BH4 bioactivity may be a key mechanism involved in the impairment of conduit artery EDD with sedentary ageing, and the EDD-preserving effect of habitual exercise.  相似文献   

7.
This study determined whether exercise training prevents pathological hypertrophy in the left ventricle by modulation of myocardial and apoptosis-associated genes. We used spontaneously hypertensive rats (n=15, non-exercise SHR), exercise-trained SHR (n=15, treadmill exercise for 12 weeks), and sedentary Wistar-Kyoto (WKY) rats (n=15). Exercise-trained SHR expressed adaptive changes such as reduced body weight, heart rate, blood pressures, left ventricle wall thickness, lipid profiles, and homocysteine level. The mRNA expression of angiotensin converting enzyme, endothelin-1, and brain natriuretic peptides in the heart was lower in the exercise-trained SHR and in the WKY than in the non-exercise SHR, whereas mRNA expression of caveolin-3 and eNOS in the heart was higher. Bcl-2 protein was higher in the exercise-trained SHR than in the WKY and the non-exercise SHR. In contrast, Bax protein levels were lower in the exercise-trained SHR and in the WKY than in the non-exercise SHR. Furthermore, the levels of the active forms of caspase-3 (20 kDa) were lower in the exercise-trained SHR and in the WKY than in the non-exercise SHR. These findings suggest that exercise training prevents pathological hypertrophy in the left ventricle by modulation of myocardial genes and that it interferes with a signal transduction pathway of apoptosis secondary to the pathological cardiac hypertrophy.  相似文献   

8.
Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were compared concerning the interactions between cortico-hypothalamic alerting responses and baroreflex influences on neurogenic cardiovascular control. For this purpose mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were continuously recorded during night time in conscious, otherwise undisturbed rats. Baroreceptor sensitivity was assessed as percentage HR and RSNA reductions per mmHg MAP elevation when a standardized phenylephrine infusion was performed. A state of acute "mental stress" could be induced by a likewise standardized sudden blowing of air. These two opposing influences on neurogenic cardiovascular control were also experimentally superimposed in various ways and the effects on MAP, HR and RSNA followed. During "rest" RSNA was higher in SHR than in WKY and it also increased more during "mental stress". The baroreflex sensitivity was clearly reduced in SHR and WKY concerning HR reduction (0.44 +/- 0.06 vs. 0.78 +/- 0.08%/mmHg; p less than 0.01) but not so concerning RSNA, which was similar in SHR and WKY (2.6 +/- 0.2 vs. 2.9 +/- 0.4%/mmHg). If expressed (HR + 1 +/- 3%; p less than 0.025 vs. SHR and RSNA + 11% +/- 10, p less than 0.01 vs. SHR). These results) (0.10 +/- 0.02 vs. 0.06 +/- 0.01 microV/mmHg; p less than 0.12). Also single fibre recordings in anaesthetized rats showed the same principle difference between SHR and WKY.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
It is known that cerebral blood flow declines with age in sedentary adults, although previous studies have involved small sample sizes, making the exact estimate of decline imprecise and the effects of possible moderator variables unknown. Animal studies indicate that aerobic exercise can elevate cerebral blood flow; however, this possibility has not been examined in humans. We examined how regular aerobic exercise affects the age-related decline in blood flow velocity in the middle cerebral artery (MCAv) in healthy humans. Maximal oxygen consumption, body mass index (BMI), blood pressure and MCAv were measured in healthy sedentary ( n = 153) and endurance-trained ( n = 154) men aged between 18 and 79 years. The relationships between age, training status, BMI and MCAv were examined using analysis of covariance methods. Mean ± s.e.m. estimates of regression coefficients and 95% confidence intervals (95% CI) were calculated. The age-related decline in MCAv was −0.76 ± 0.04 cm s−1 year−1 (95% CI =−0.69 to −0.83, r 2= 0.66, P < 0.0005) and was independent of training status ( P = 0.65). Nevertheless, MCAv was consistently elevated by 9.1 ± 3.3 cm s−1 (CI = 2.7–15.6, P = 0.006) in endurance-trained men throughout the age range. This ∼17% difference between trained and sedentary men amounted to an approximate 10 year reduction in MCAv 'age' and was robust to between-group differences in BMI and blood pressure. Regular aerobic-endurance exercise is associated with higher MCAv in men aged 18–79 years. The persistence of this finding in older endurance-trained men may therefore help explain why there is a lower risk of cerebrovascular disease in this population.  相似文献   

10.
In the present study we have recorded spontaneous variations in mean arterial blood pressure (MAP), heart rate (HR) and mean rectified splanchnic nerve activity (SNA) in conscious undisturbed normotensive Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). The variability in blood pressure was not significantly different but HR variability tended to be lower in SHR. The variability in SNA expressed as % change from mean value was not significantly different between SHR and WKY. By computer techniques the correlation between HR, MAP and SNA could be calculated during spontaneous variations of these parameters. The slope of the regression line correlating HR and SNA was significantly steeper in SHR than in WKY (0.73, 0.47 resp.). Thus a certain change in HR was associated by a greater change in SNA in SHR compared with WKY. Spontaneous changes in SNA could be divided in principally two different patterns. One typical pattern was a rise in SNA in parallel with a drop in MAP. This pattern was most likely triggered by the arterial baroreceptors and was called a "baroreceptor-pattern". Marked spontaneous excitations in SNA and HR was also observed during natural behaviours such as eating, drinking and explorative behaviour, a so called "centrally mediated pattern".  相似文献   

11.
Elevated sympathetic outflow and altered autonomic reflexes, including impaired baroreflex function, are common findings observed in hypertensive disorders. Although a growing body of evidence supports a contribution of preautonomic neurons in the hypothalamic paraventricular nucleus (PVN) to altered autonomic control during hypertension, the precise underlying mechanisms remain unknown. Here, we aimed to determine whether the intrinsic excitability and repetitive firing properties of preautonomic PVN neurons that innervate the nucleus tractus solitarii (PVN-NTS neurons) were altered in spontaneously hypertensive rats (SHR). Moreover, given that exercise training is known to improve and/or correct autonomic deficits in hypertensive conditions, we evaluated whether exercise is an efficient behavioral approach to correct altered neuronal excitability in hypertensive rats. Patch-clamp recordings were obtained from retrogradely labeled PVN-NTS neurons in hypothalamic slices obtained from sedentary (S) and trained (T) Wistar-Kyoto (WKY) and SHR rats. Our results indicate an increased excitability of PVN-NTS neurons in SHR-S rats, reflected by an enhanced input-output function in response to depolarizing stimuli, a hyperpolarizing shift in Na(+) spike threshold, and smaller hyperpolarizing afterpotentials. Importantly, we found exercise training in SHR rats to restore all these parameters back to those levels observed in WKY-S rats. In several cases, exercise evoked opposing effects in WKY-S rats compared with SHR-S rats, suggesting that exercise effects on PVN-NTS neurons are state dependent. Taken together, our results suggest that elevated preautonomic PVN-NTS neuronal excitability may contribute to altered autonomic control in SHR rats and that exercise training efficiently corrects these abnormalities.  相似文献   

12.
13.
Spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto rats (WKY) were compared concerning the interactions between cortico-hypothalamic alerting responses and baroreflex influences on neurogenic cardiovascular control. For this purpose mean arterial pressure (MAP), heart rate (HR) and renal sympathetic nerve activity (RSNA) were continuously recorded during night time in conscious, otherwise undisturbed rats. Baroreceptor sensitivity was assessed as percentage HR and RSNA reductions per mmHg MAP elevation when a standardized phenylephrine infusion was performed. A state of acute “mental stress” could be induced by a likewise standardized sudden blowing of air. These two opposing influences on neurogenic cardiovascular control were also experimentally superimposed in various ways and the effects on MAP, HR and RSNA followed. During “rest” RSNA was higher in SHR than in WKY and it also increased more during “mental stress”. The baroreflex sensitivity was clearly reduced in SHR and WKY concerning HR reduction (0.44±0.06 vs. 0.78±0.08%/mmHg; p<0.01) but not so concerning RSNA, which was similar in SHR and WKY (2.6±0.2 vs. 2.9±0.4%/mmHg). If expressed (HR + 1±3%; p<0.025 vs. SHR and RSNA + 11%±10, p<0.01 vs. SHR). These results) (0.10±0.02 vs. 0.06±0.01 μV/mmHg; p<0.12). Also single fibre recordings in anaesthetized rats showed the same principle difference between SHR and WKY. Addition of “mental stress” during phenylephrine baroreflex activation clearly increased both HR (24±7%) and RSNA (114±21 %) in SHR, while almost no change then occurred in WKY (HR + 1±3%; p<0.025 vs. SHR and RSNA + 11%±10, p<0.01 vs. SHR). These results suggest that a modestly accentuated cortico-hypothalamic activity ordinarily prevails in SHR, explaining the suppressed baroreflex control of heart rate and the augmented sympathetic activity to e.g. renal and splanchnic areas. Further, environmental alerting stimuli induce in SHR more powerful defence reactions which, unlike the situation in WKY, readily overcome baroreflex inhibitory influences on sympathetic activity.  相似文献   

14.
In previous studies we have shown that spontaneously hypertensive rats (SHR) develop a running behaviour and, secondary to the running behaviour, develop an endorphin-mediated analgesic effect. In the present study the role of the central endorphin system in the cardiovascular responses to spontaneous exercise in normotensive Wistar Kyoto rats (WKY) and SHR was investigated. The experimental design allowed us to record mean arterial pressure (MAP) and heart rate (HR) continuously for more than 1 week without interfering with the daily activities of the animals. They were active in running wheels during the dark period (19.00-07.00 h) and the activity was accompanied by a marked rise in HR. In SHR, a clear depression of blood pressure lasting for about for about 50 min was noted following each running period. The MAP during the post-running depression was 131.4 +/- 1.6 mmHg which was significantly lower than the pre-running control value (145.2 +/- 2.3 mmHg, P less than 0.01). In contrast, MAP in the post-running period in WKY was not significantly different from the pre-running values. In addition, the depression period of SHR had a mean post-running length of 49.7 +/- 3.4 min, which is significantly longer than in the WKYs (37.8 +/- 3.5 min, P less than 0.05). In control rats, naloxone infusion had no effect on blood pressure but a marked bradycardia was observed. In nine running SHR receiving a naloxone infusion, their MAP during the depression period was not different from the control pressure. Our study indicates that endorphin systems are involved in the regulating of blood pressure and HR during muscle exercise in SHR. These systems trigger the transient depression of blood pressure observed immediately after a running period in the SHR.  相似文献   

15.
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h−1) on a rodent treadmill before and after BST treatment with CoCl2, a non-selective neurotransmission blocker. Bilateral microinjection of CoCl2 (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h−1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h−1. The BST treatment with CoCl2 did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl2 did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.  相似文献   

16.
Short-term (6 weeks) voluntary wheel running exercise in young female rats that were in an active growth phase resulted in whole-heart hypertrophy and myocyte concentric hypertrophy, when compared to sedentary controls. The cross-sectional area of ventricular myocytes from trained rats was significantly greater than for those isolated from sedentary rats, with the greatest change in morphology seen in sub-endocardial cells. There was no statistically significant effect of training on cell shortening in the absence of external mechanical loading, in [Ca2+]i transients, or in myofilament Ca2+ sensitivity (assessed during re-lengthening following tetanic stimulation). Under the external mechanical load of carbon fibres, absolute force developed in myocytes from trained rats was significantly greater than in those from sedentary rats. This suggests that increased myocyte cross-sectional area is a major contractile adaptation to exercise in this model. Training did not alter the passive mechanical properties of myocytes or the relative distribution of titin isomers, which was exclusively of the short, N2B form. However, training did increase the steepness of the active tension-sarcomere length relationship, suggesting an exercise-induced modulation of the Frank-Starling mechanism. This effect would be expected to enhance cardiac contractility. Training lengthened the action potential duration of sub-epicardial myocytes, reducing the transmural gradient in action potential duration. This observation may be important in understanding the cellular causes of T-wave abnormalities found in the electrocardiograms of some athletes. Our study shows that voluntary exercise modulates the morphological, mechanical and electrical properties of cardiac myocytes, and that this modulation is dependent upon the regional origin of the myocytes.  相似文献   

17.
In this study, we aimed to assess the ventilatory and cardiovascular responses to the combined activation of the muscle metaboreflex and the ventilatory chemoreflex, achieved by postexercise circulatory occlusion (PECO) and euoxic hypercapnia (end-tidal partial pressure of CO2 7 mmHg above normal), respectively. Eleven healthy subjects (4 women and 7 men; 29 ± 4.4 years old; mean ± s.d. ) undertook the following four trials, in random order: 2 min of isometric handgrip exercise followed by 2 min of PECO with hypercapnia; 2 min of isometric handgrip exercise followed by 2 min of PECO while breathing room air; 4 min of rest with hypercapnia; and 4 min of rest while breathing room air. Ventilation was significantly increased during exercise in both the hypercapnic (+3.17 ± 0.82 l min−1) and the room air breathing trials (+2.90 ± 0.26 l min−1; all P < 0.05). During PECO, ventilation returned to pre-exercise levels when breathing room air (+0.52 ± 0.37 l min−1; P > 0.05), but it remained elevated during hypercapnia (+3.77 ± 0.23 l min−1; P < 0.05). The results indicate that the muscle metaboreflex stimulates ventilation with concurrent chemoreflex activation. These findings have implications for disease states where effort intolerance and breathlessness are linked.  相似文献   

18.
Normotensive (WKY) and hypertensive rats (SHR) were, from 5 to 12 weeks of age, given 'low' (LNa), 'control' and 'high' (HNa) Na diets (0.5, 5 and 50 mmol X 100 g-1 food, respectively, during weekly recordings of body weight, conscious indirect systolic blood pressure (SBP) and heart rate (HR). During the last week, mean arterial pressure (MAP) and HR responses to standardized stress stimuli (air jet) were recorded before and after sequential cardiac nerve blockade. While resting, SBP was about equal in all WKY groups, but it was significantly reduced in SHR-LNa (152 mmHg versus 174 and 178 mmHg in SHR controls and HNa; P less than 0.05). In both LNa groups HR was elevated nearly 25% compared with controls, being in SHR 513 versus 419 bpm (P less than 0.01) and in WKY 489 versus 393 bpm (P less than 0.01). Cardiac nerve blockade indicated that this HR elevation was about equally due to elevations of sympathetic activity and 'intrinsic' pacemaker activity. SHR-LNa also showed attenuated MAP elevations to acute mental stress. There were, however, no significant differences between groups concerning haematocrit or plasma Na-K levels. The results suggest that SHR have a greater salt requirement than WKY, as Na restriction to one-tenth of normal led to a considerable MAP reduction in SHR despite compensatory sympathetic activation, and also to attenuated pressor responses to mental stress. Further, the cardiovascular effects in SHR were much more extensive when on a low-Na diet than when Na intake was increased tenfold above normal.  相似文献   

19.
The capacity of the vascular endothelium locally to release tissue-type plasminogen activator (t-PA) is critical for effective endogenous fibrinolysis. We determined the influence of ageing and regular aerobic exercise on the net release of t-PA across the human forearm in vivo using both cross-sectional and intervention approaches. First, we studied 62 healthy men aged 22-35 or 50-75 years of age who were either sedentary or endurance exercise-trained. Net endothelial release rates of t-PA were calculated as the product of the arteriovenous concentration gradient and forearm plasma flow to intra-arterial bradykinin and sodium nitroprusside. Second, we studied 10 older (60 ± 2 years) healthy sedentary men before and after a 3 month aerobic exercise intervention. Net endothelial t-PA release was significantly blunted with age in the sedentary men. At the highest dose of bradykinin the increase in t-PA antigen release was ≈35 % less (   P < 0.05  ) in the older (from −1.0 ± 0.4 to 37.8 ± 3.8 ng (100 ml tissue)−1 min−1) compared with young (from 0.1 ± 0.6 to 56.6 ± 9.2 ng (100 ml tissue)−1 min−1) men. In contrast, the endurance-trained men did not demonstrate an age-related decline in the net release of t-PA antigen. After the exercise intervention, the capacity of the endothelium to release t-PA increased ≈55 % (   P < 0.05  ) to levels similar to those of the young adults and older endurance-trained men. Regulated endothelial t-PA release declines with age in sedentary men. Regular aerobic exercise may not only prevent, but could also reverse the age-related loss in endothelial fibrinolytic function.  相似文献   

20.
We examined the effects of muscle mechanoreflex stimulation by passive calf muscle stretch, at rest and during concurrent muscle metaboreflex activation, on carotid baroreflex (CBR) sensitivity. Twelve subjects either performed 1.5 min one-legged isometric plantarflexion at 50% maximal voluntary contraction with their right or left calf [two ischaemic exercise (IE) trials, IER and IEL] or rested for 1.5 min [two ischaemic control (IC) trials, ICR and ICL]. Following exercise, blood pressure elevation was partly maintained by local circulatory occlusion (CO). 3.5 min of CO was followed by 3 min of CO with passive stretch (STR-CO) of the right calf in all trials. Carotid baroreflex function was assessed using rapid pulses of neck pressure from +40 to −80 mmHg. In all IC trials, stretch did not alter maximal gain of carotid–cardiac (CBR–HR) and carotid–vasomotor (CBR–MAP) baroreflex function curves. The CBR–HR curve was reset without change in maximal gain during STR-CO in the IEL trial. However, during the IER trial maximal gain of the CBR–HR curve was smaller than in all other trials (−0.34 ± 0.04 beats min−1 mmHg−1 in IER versus −0.76 ± 0.20, −0.94 ± 0.14 and −0.66 ± 0.18 beats min−1 mmHg−1 in ICR, IEL and ICL, respectively), and significantly smaller than in IEL ( P < 0.05). The CBR–MAP curves were reset from CO values by STR-CO in the IEL and IER trials with no changes in maximal gain. These results suggest that metabolite sensitization of stretch-sensitive muscle mechanoreceptive afferents modulates baroreflex control of heart rate but not blood pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号