首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alloantigen-induced regulatory CD8+CD103+ T cells   总被引:1,自引:0,他引:1  
Regulatory T cells (Tregs) appear of great importance in the balance between alloreactivity and tolerance and subsets of both CD4(+) and CD8(+) T cells have been recognized to function as regulatory T cells after allogenic transplantation. Among the CD8(+) T-cell subsets, the CD103(+) cells were most recently identified as regulatory. In this review, we describe their phenotypical and functional properties, as well as their relevance for the alloimmune response in vivo. These CD8(+)CD103(+) Tregs are generated within mixed lymphocyte cultures (MLCs) and are elevated by additional transforming growth factor-beta. Interestingly, myeloid dendritic cells are the responsible cell type for induction of CD103(+) Tregs. Allostimulated CD8(+)CD103(+) Tregs display an antigen-experienced effector phenotype with limited effector functions such as cytotoxicity and interferon-gamma production and show a reduced proliferation capacity after restimulation. Beside this anergic phenotype, CD8(+)CD103(+) Tregs are able to suppress alloreactive effector T cells. Through intracellular cytokine staining and transwell assays, we showed that the mechanism of suppression is cytokine independent, but close cell-cell contact is required for suppression.  相似文献   

2.
The suppressive effects of CD4+CD25+ regulatory T cells (Tregs) on T cells have been well documented. Here we investigated whether human CD4+CD25+ Tregs can inhibit the proinflammatory properties of monocytes/macrophages. Monocytes and T cells were isolated from peripheral blood of healthy volunteers by magnetic cell separation and cocultured for 40 h. Monocytes were analyzed directly for cytokine production and phenotypic changes or repurified and used in T-cell stimulation and lipopolysaccharide challenge assays. Coculture with CD4+CD25+ Tregs induced minimal cytokine production in monocytes, whereas coculture with CD4+CD25- T cells resulted in large amounts of proinflammatory (tumor necrosis factor-alpha, interferon-gamma, interleukin-6) and regulatory (interleukin-10) cytokines. Importantly, when these CD4+CD25+ Treg-treated monocytes were repurified after coculture and challenged with lipopolysaccharide, they were severely inhibited in their capacity to produce tumor necrosis factor-alpha and interleukin-6 compared with control-treated monocytes. In addition, monocytes that were precultured with CD4+CD25+ Tregs displayed limited upregulation of human leukocyte antigen class II, CD40 and CD80, and downregulation of CD86 compared with control-treated monocytes. This altered phenotype had functional consequences, as shown by the reduction in T cell-stimulatory capacity of Treg-treated monocytes. Together, these data demonstrate that CD4+CD25+ Tregs can exert direct suppressive effects on monocytes/macrophages, thereby affecting subsequent innate and adaptive immune responses.  相似文献   

3.
Toll-like receptor (TLR) ligands are notable for their ability to induce APC maturation, which in turn facilitates optimal T cell mediated immune responses. Toll-like receptor ligands, such as CpG DNA, can also modulate immune responses by blocking the suppressive effects of CD4+CD25+ regulatory T cells (Tregs). Recently, we have demonstrated that CpG DNA, in addition to its actions on APCs and Tregs, can provide direct costimulatory signals to CD4+CD25- T cells. Here we show that this costimulatory effect is sufficient to abrogate suppression by Tregs. These data indicate a previously undefined role for TLR ligands in directly modulating CD4+ T cell responses.  相似文献   

4.
Recent reports have hinted that it is possible to regenerate CD4+CD25+ regulatory T cells (Treg) from CD4+CD25- cells, a phenomenon termed conversion. We evaluated the relative contribution of this process to the Treg pool by transferring purified populations of CD4+ T cells into T cell-deficient mice. We report that conversion of CD25- cells into the CD4+CD25+Treg pool is minor if other bona fide CD25+ Tregs are present. Moreover, in the same hosts, the loss of CD25 expression by a population of Tregs also decreases in the presence of co-injected CD4+CD25- cells. Thus, the rate of exchange between CD25- and CD25+ T-cell populations is determined by the presence or absence of T-cell competitors. Our results attest for the role of competition in the contribution of different T-cell subsets for the regeneration of the peripheral CD4+ T-cell pool during lymphopenia.  相似文献   

5.
Periodontitis is an infectious disease, where putative periodontopathogens trigger chronic inflammatory and immune responses against periodontal structures, in which an unbalanced host response is also determinant to the disease outcome. It is reasonable to assume that patient susceptibility to periodontal tissue destruction could be determined by the balance between the response against periodontopathogens and regulatory mechanisms of these events mediated by suppressive T cells. In the present study, we identified and characterized natural regulatory T cells (Tregs) in the inflammatory infiltrate of human chronic periodontitis (CP) with emphasis on phenotypic analyses that were carried out to address the participation of Tregs in CP. Results showed that patients with CP presented increased frequency of T lymphocytes and CD4+CD25+ T cells in the inflammatory infiltrate of gingival tissues. These cells exhibited the phenotypic markers of Tregs such as forkhead box p3 (Foxp3), CTLA-4, glucocorticoid-inducible TNFR, CD103, and CD45RO and seemed to be attracted to the inflammation site by the chemokines CCL17 and CCL22, as their expression and its receptor CCR4 were increased in CP patients. Moreover, besides the increased detection of Foxp3 mRNA, diseased tissues presented high expression of the regulatory cytokines IL-10 and TGF-beta. In addition, the inflammatory infiltrate in CP biopsies was composed of CD25+Foxp3+ and CD25+TGF-beta+ cells, thus corroborating the hypothesis of the involvement of Tregs in the pathogenesis of CP. Finally, these results indicate that Tregs are found in the chronic lesions and must be involved in the modulation of local immune response in CP patients.  相似文献   

6.
The pan-NK cell marker NK1.1, present in some mouse strains, is also found on a subset of TCRalphabeta+ lymphocytes termed NKT cells. These cells are primarily CD4+ or CD4-CD8- (double negative, DN), and both NKT subpopulations contain cells reactive with the MHC class I-like molecule CD1d. Murine NK cells express clonally distributed inhibitory receptors of the Ly49 family that bind to different alleles of MHC class I molecules and transmit negative signals regulating NK cell function. Ly49 receptors are also found on TCRalphabeta+ NK1.1+ T cells. To investigate the potential role of inhibitory Ly49 markers in the regulation of NKT cells, we have done a thorough analysis of their expression on different NKT populations. The CD4+ and DN NK1.1+ T cell subsets have traditionally been dealt with as one NK1.1+ T cell population, but we found dramatic differences between these two NKT cell subsets. We demonstrate here expression of Ly49 receptors on DN, but not on CD4+, NK1.1+ T cells in spleen and liver. Absence of the specific MHC class I ligand in the host was associated with elevated levels of expression and, to a greater extent than has been found for NK cells, increased the frequencies of Ly49-positive cells within the DN subset, while CD4+ NK1.1+ cells remained negative. In the thymus and bone marrow both NK1.1+ T cell subsets contained high frequencies of Ly49-positive cells. Results from in vitro stimulation of DN NKT cells further suggest that activation and expansion of NKT cell subsets are regulated by the Ly49 receptors.  相似文献   

7.
CD4+CD25+Foxp3+ regulatory T cells (Tregs) are of special interest in immunology because of their potent inhibitory function. Many fundamental aspects of Tregs, including their antigenic profile, development and peripheral homeostasis, remain highly controversial. Here, we propose a Treg-centered antigen-non-specific immunoregulation model focused on the T-cell system, particularly on CD4+ T cells. The T-cell pool consists of naive T cells (Tnais), Tregs and effector T cells (Teffs). Regardless of antigen specificity, the ratio of the activated T-cell subsets (Treg/Teff/Tnai) and their temporal and spatial uniformity dictate the differentiation of Tnais. Activated Tregs inhibit the activation, proliferation, induction and activity of Teffs; in contrast, activated Teffs inhibit the induction of Tregs from Tnais but cooperate with Treg-specific antigens to promote the proliferation and activity of Tregs. In many cases, these interactions are antigen-non-specific, whereas the activation of both Tregs and Teffs is antigen-specific. Memory T-cell subsets are essential for the maintenance of adaptive immune responses, but the antigen-non-specific interactions among T-cell subsets may be more important during the establishment of the adaptive immune system to a newly encountered antigen. This is especially important when new and memory antigens are presented closely—both temporally and spatially—to T cells, because there are always baseline levels of activated Tregs, which are usually higher than levels of memory T cells for new antigens. Based on this hypothesis, we further infer that, under physiological conditions, Tregs in lymph nodes mainly recognize antigens frequently released from draining tissues, and that these self-reactive Tregs are commonly involved in the establishment of adaptive immunity to new antigens and in the feedback control of excessive responses to pathogens.  相似文献   

8.
9.
10.
Different subsets of T lymphocytes have different functions in atherosclerosis advancement. T helper 1 cells and T regulatory 1 cells have been demonstrated to play opposite roles in rupture of atherosclerotic lesion. However, the role of novel subset of T regulatory cells, known as CD4+CD25+Foxp3+ T cells, remains largely unknown in coronary artery disease (CAD). In this study, we investigated the peripheral CD4+CD25+Foxp3+ T cells of patients with CAD and controls. The patients submitted were divided into three groups: stable angina pectoris (SA) group, unstable angina pectoris (UA) group and acute myocardial infarction (AMI) group. We analyzed the frequencies of peripheral CD4+CD25+Foxp3+ T cells and T helper 1/T helper 2 cells, expression of Foxp3 in CD4+CD25+ T subsets and cytokines pattern in patients and controls. We found that the reduction of CD4+CD25+Foxp3+ T lymphocytes was consistent with the expansion of Th1 cells in patients with unstable CAD. The reversed development between CD4+CD25+ Tregs and Th1 cells might contribute to plaque destabilization.  相似文献   

11.
CD4+ T regulatory cells (Tregs) are activated during auto-immune, injury, and inflammatory responses, however, the molecular events that trigger Treg activation are poorly understood. The purpose of this study was to investigate whether Tregs (FoxP3+ CD4+ T cells) and non-Treg CD4+ T cells might display differences in T cell receptor (TCR) dependent signaling responses following in vitro or in vivo stimulation. This study used phospho-flow cytometry as a tool to profile the kinetics and extent of TCR signaling (ZAP-70 and PKC-θ phosphorylation and expression) in Tregs and non-Tregs. We found that in vitro stimulation with anti-CD3ε induces early and transient activation of ZAP-70 and PKC-θ in both Tregs and non-Tregs. However, the response in Tregs was more rapid and higher in magnitude than responses seen in non-Tregs. In contrast, bacterial superantigen or antigen-specific TCR stimulation did not significantly activate these signaling pathways in Tregs or non-Tregs. Additional experiments tested the kinetics of in vivo TCR signaling in Tregs and non-Tregs in mice challenged with bacterial superantigen. The results of these experiments showed that superantigen rapidly activated ZAP-70 and PKC-θ in lymph node Tregs, but not in non-Tregs. In summary, we demonstrate the versatility of using phospho-flow cytometry to measure cell signaling in CD4+ T cells. The results of these in vitro and in vivo studies demonstrate that Tregs and non-Treg CD4+ T cells show marked differences in their reactivity to TCR-dependent stimulation and contribute new insights into basic mechanisms that lead to Treg activation.  相似文献   

12.
Regulatory T cells (Tregs) play a key role in the peripheral self-tolerance and preventing autoimmunity. While classical CD4+ Foxp3+ Tregs are well established, their CD8+ counterparts are still controversial in many aspects including their phenotypic identity and their mechanisms of suppression. Because of these controversies and because of only a limited number of studies documenting the immunoregulatory function of CD8+ Tregs in vivo, the concept of CD8+ Tregs is still not unanimously accepted. We propose that any T-cell subset considered as true regulatory must be distinguishable from other cell types and must suppress in vivo immune responses via a known mechanism. In this article, we revisit the concept of CD8+ Tregs by focusing on the characterization of individual CD8+ T-cell subsets with proposed regulatory capacity separately. Therefore, we review the phenotype and function of CD8+ FOXP3+ T cells, CD8+ CD122+ T cells, CD8+ CD28low/− T cells, CD8+ CD45RClow T cells, T cells expressing CD8αα homodimer and Qa-1-restricted CD8+ T cells to show whether there is sufficient evidence to establish these subsets as bona fide Tregs. Based on the intrinsic ability of CD8+ Treg subsets to promote immune tolerance in animal models, we elaborate on their potential use in clinics.  相似文献   

13.
Gastric Helicobacter spp. induce chronic gastritis that may lead to ulceration and dysplasia. The host elicits a T helper 1 (Th1) response that is fundamental to the pathogenesis of these bacteria. We analyzed immune responses in Helicobacter-infected, normal mice depleted of CD4+ CD25+ T cells to investigate the in vivo role of regulatory T cells (Tregs) in the modulation of Helicobacter immunopathology. BALB/c and transgenic mice were depleted of CD4+ CD25+ T cells by administration of an anti-CD25 antibody either at the time of infection with Helicobacter or during chronic infection and gastritis. Depletion of CD25+ Tregs prior to and during infection of mice with Helicobacter spp. did not affect either bacterial colonization or severity of gastritis. Depletion of CD25+ Tregs was associated with increased Helicobacter-specific antibody levels and an altered isotype distribution. Paragastric lymph node cells from CD25+ Treg-depleted and control infected mice showed similar proliferation to Helicobacter antigens, but only cells from anti-CD25-treated animals secreted Th2 cytokines. CD25+ Tregs do not control the level of gastritis induced by gastric Helicobacter spp. in normal, thymus-intact BALB/c mice. However, CD25+ Tregs influence the cytokine and antibody responses induced by infection. Autoimmune gastritis is not induced in Helicobacter-infected mice depleted of CD25+ Tregs but is induced in CD25+ Treg-depleted mice, which have a higher frequency of autoreactive T cells.  相似文献   

14.
Progressive loss of dopaminergic neurons in the substantia nigra pars compacta and their terminal connections in the striatum are central features in Parkinson's disease (PD). Emerging evidence supports the notion that microglia neuroinflammatory responses speed neurodegenerative events. We demonstrated previously that this can be slowed by adoptive transfer of T cells from Copolymer-1-immunized mice administered to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) recipients. The cellular basis for this neuroprotective response was the CD4+ T cell population, suggesting involvement of CD4+CD25+ regulatory T cells (Tregs), cells known to suppress immune activation and maintain immune homeostasis and tolerance. We show for the first time that adoptive transfer of CD3-activated Tregs to MPTP-intoxicated mice provides greater than 90% protection of the nigrostriatal system. The response was dose-dependent and paralleled modulation of microglial responses and up-regulation of glial cell-derived neurotrophic factor (CDNF) and TGF-beta. Interestingly, that adoptive transfer of effector T cells showed no significant neuroprotective activities. Tregs were found to mediate neuroprotection through suppression of microglial responses to stimuli, including aggregated, nitrated alpha-synuclein. Moreover, Treg-mediated suppression was also operative following removal of Tregs from culture prior to stimulation. This neuroprotection was achieved through modulation of microglial oxidative stress and inflammation. As Tregs can be modulated in vivo, these data strongly support the use of such immunomodulatory strategies to treat PD.  相似文献   

15.
CD25(+)CD4(+) regulatory T cells have major roles in controlling immune responses, and use heterogeneous regulatory mechanisms. It is possible that these different activities are mediated by different subsets. Here we show that CD103(+)CD25(+)CD4(+) T cells (that control inflammatory bowel disease) are highly enriched in gut-associated lymphoid tissue and have unique functional properties. In vivo, only this subpopulation is able to control wasting disease and peripheral T cell homeostasis. In vitro, only this subpopulation is able to regulate IL-10 secretion, and it might also mediate infectious suppression. These results demonstrate that regulatory T cells can be divided into discrete subpopulations with defined functional properties and regulatory mechanisms.  相似文献   

16.
Complications arising from abnormal immune responses are the major causes of mortality and morbidity in diabetic patients. CD4+CD25+T regulatory cells (Tregs) play pivotal roles in controlling immune homeostasis, immunity and tolerance. The effect of hyperglycemia on CD4+CD25+Tregs has not yet been addressed. Here we used streptozotocin (STZ)-induced diabetic mice to study the effects of long-term hyperglycemia on CD4+CD25+Tregs in vivo. Four months after the onset of diabetes, the frequency of CD4+CD25+Foxp3+ T regulatory cells was significantly elevated in the spleen, peripheral blood lymphocytes (PBLs), peripheral lymph nodes (pLNs) and mesenteric LNs (mLNs). CD4+CD25+Tregs obtained from mice with diabetes displayed defective immunosuppressive functions and an activated/memory phenotype. Insulin administration rescued these changes in the CD4+CD25+ Tregs of diabetic mice. The percentage of thymic CD4+CD25+ naturally occurring Tregs (nTregs) and peripheral CD4+Helios+Foxp3+ nTregs were markedly enhanced in diabetic mice, indicating that thymic output contributed to the increased frequency of peripheral CD4+CD25+Tregs in diabetic mice. In an in vitro assay in which Tregs were induced from CD4+CD25- T cells by transforming growth factor (TGF)-β, high glucose enhanced the efficiency of CD4+CD25+Foxp3+ inducible Tregs (iTregs) induction. In addition, CD4+CD25- T cells from diabetic mice were more susceptible to CD4+CD25+Foxp3+ iTreg differentiation than those cells from control mice. These data, together with the enhanced frequency of CD4+Helios-Foxp3+ iTregs in the periphery of mice with diabetes, indicate that enhanced CD4+CD25+Foxp3+ iTreg induction also contributes to a peripheral increase iCD4+CD25+Tregs in diabetic mice. Our data show that hyperglycemia may alter the frequency of CD4+CD25+Foxp3+ Tregs in mice, which may result in late-state immune dysfunction in patients with diabetes.  相似文献   

17.
Recently, considerable attention has been focused on thymus-derived CD4+ regulatory T cells that constitutively express CD25 and have a contact-dependent, cytokine-independent mechanism in vitro. However, peripheral CD4+ and CD8+ T cells can also be induced to become regulatory T cells. Here we review our studies using the combination of IL-2 and transforming growth factor beta (TGF-beta) to generate regulatory T cell subsets ex vivo, and the work of others using IL-10 to induce suppressive activity. Under certain conditions, the autocrine effects of TGF-beta and IL-10 induce peripheral T cells to produce immunosuppressive levels of each of these cytokines. This effect of TGF-beta is IL-2 dependent. Under other conditions IL-2 and TGF-beta can induce CD4+ cells to develop potent contact-dependent, cytokine-independent regulatory activity. At present, there is considerable confusion concerning the mechanism of action of CD4+ CD25+ cells because cytokine-producing regulatory T cells generated in the periphery can express CD25 and other markers displayed by naturally occurring, thymus-derived regulatory T cells. We, therefore, propose a nomenclature that identifies thymus-derived and peripheral regulatory cells, and that also differentiates T regulatory cells from T helper cells. Because T regulatory cells broadly control T helper cell reactivity, the mechanisms that control regulatory cell function are also reviewed. Finally, the potential use of regulatory T cells generated ex vivo as an adoptive immunotherapy for certain autoimmune diseases, to prevent organ graft rejection, or to prevent pathologic host responses to infectious agents is discussed.  相似文献   

18.
D. Ahern  C. M. Lloyd  D. S. Robinson 《Allergy》2009,64(8):1121-1129
Background:  Allergic inflammation is associated with Th2-type T cells, which can be suppressed by CD4+ CD25+ regulatory T cells (Tregs). Both express chemokine receptors (CCR) 4 and CCR8, but the dynamics of expression and effect of atopic status are unknown.
Objective:  To examine the expression of chemokine receptors by CD4+ CD25+ and CD4+ CD25− T cells from atopic and nonatopic donors, and document response to allergen stimulation in vitro .
Methods:  Chemokine receptor expression was examined by flow cytometry and quantitative PCR of CD4+ CD25hi and CD4+ CD25− T cells from atopics and nonatopics. Responsiveness to chemokines was by actin polymerization. Dynamics of chemokine receptor expression in 6-day allergen-stimulated cultures was analysed by carboxyfluoroscein succinimidyl ester labelling.
Results:  CD4+ CD25hi Tregs preferentially expressed CCR3, CCR4, CCR5, CCR6 and CCR8. CD4+ CD25hi Tregs responded to the chemokine ligands for CCR4, CCR6 and CCR8 (CCL17, 22, 20 and 1 respectively), with no differences between atopic and nonatopic donors. Over 6-day allergen stimulation, CD4+ CD25+ T-cells downregulated CCR4 and upregulated CCR7, in contrast to CD4+ CD25− effector cells, which downregulated CCR7 and upregulated CCR4.
Conclusions:  CCR4, CCR6 and CCR8 have potential roles in localization of both CD4+ CD25+ regulatory and CD4+ CD25− effector T cells to sites of allergic inflammation. Upregulation of CCR7 and downregulation of CCR4 upon allergen stimulation of Tregs may allow their recirculation from sites of inflammation, in contrast to retention of effector T cells.  相似文献   

19.
20.
CD3+CD4-CD8- alphabeta-TCR+ T cell as immune regulatory cell   总被引:4,自引:0,他引:4  
Down-regulation of immune responses by regulatory T cells is one of the major mechanisms involved in the induction of tolerance to self- and alloantigens as demonstrated in a number of models of transplantation and autoimmunity. It is clear that regulatory T cells consist of different subsets. Recently a novel subset of antigen-specific alphabeta-TCR+ CD4-CD8- (double negative, DN) regulatory T cells has been found to be able to inhibit the function of the CD8+ T cells carrying the same T cell receptor specificity and prevent the rejection of skin allografts. Identification of the DN regulatory T cells and their novel mechanism of suppression can help us to understand how donor-specific transplantation tolerance can be achieved and to explain how tolerance to self-antigens can be maintained in the periphery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号