首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A novel subtype of patients with mutations in the phenylalanine hydroxylase (PAH) gene that show a positive response during a tetrahydrobiopterin (BH4) loading test has recently been recognized. These studies suggest that a number of phenylketonuric (PKU) patients may benefit from BH4 substitution, eliminating the need of life-long dietary restrictions. In our unit, we performed BH4 overload tests in 50 PAH-deficient patients. Overall, 38% of the patients had a positive response, mostly MHP and mild PKU patients, all with at least one missense mutation with presumed residual activity. Seven of the patients that required dietary restrictions have received treatment with BH4 from 5 to 18 months. All the patients included in the long-term treatment protocol had a mild PKU phenotype. BH4 therapy began at 10 mg/kg/day and changes were made over time depending on Phe levels. All patients at least doubled their protein ingestion and some could follow a completely free diet. Patients with a smaller decrease in Phe levels during the BH4 overload required higher BH4 doses and/or dietary restrictions to maintain adequate Phe levels over time. The genotype and the potential mechanisms underlying BH4 responsiveness and interindividual differences in pharmacokinetics of the administered cofactor are probably the basis for the differences in prolonged treatment.  相似文献   

2.
Phenylketonuria (PKU) is a heterogeneous metabolic disorder caused by a deficiency in hepatic phenylalanine hydroxylase (PAH). On the basis of phenotype/genotype correlations, determination of phenylketonuric genotype is important for classification of the clinical phenotype and treatment of PKU, including tetrahydrobiopterin therapy. We characterized the genotypes of 203 Japanese patients with PKU and hyperphenylalaninemia using the following systems: (1) denaturing high-performance liquid chromatography with a GC-clamped primer; (2) direct sequencing; and, (3) multiplex ligation-dependent probe amplification. Of 406 mutant alleles, 390 (96%) were genotyped; 65 mutations were identified, including 22 new mutations. R413P, R241C, IVS4-1g>a, R111X and R243Q were prevalent mutations. Mutations prevalent in the Japanese cohort are also common in Korean and Northern Chinese populations, suggesting same origin. The spectrum of prevalent mutations was not significantly different among six Japanese districts, indicating that Japan comprises a relatively homogeneous ethnic group. We classified the mutations by clinical phenotypes and in vivo PAH activity and estimated the mutations with potential tetrahydrobiopterin (BH(4)) responsiveness. The frequency of BH(4) responsiveness based on the genotype was 29.1% in Japanese PKU patients. A catalog of PKU genotypes would be useful for predicting clinical phenotype, deciding on the subsequent treatment of PKU including BH(4) therapy, and genetic counseling in East Asia.  相似文献   

3.
Tetrahydrobiopterin (BH4) responsive forms of phenylketonuria (PKU) have been recognized since 1999. Subsequent studies have shown that patients with PKU, especially those with mild mutations, respond with lower blood phenylalanine (Phe) concentrations following oral administration of 6-R-L-erythro-5,6,7,8-tetrahydrobiopterin (BH4). To determine the incidence of BH4 responding PKU patients in the United States and characterize their phenylalanine hydroxylase (PAH) mutations, a study was undertaken at UTMB in Galveston and the Children's Hospital of Los Angeles on 38 patients with PKU. Patients were screened by a single oral dose of BH4, 10 mg/kg and blood Phe and tyrosine were determined at 0, 4, 8, and 24 h. Twenty-two individuals (58%) responded with marked decrease in blood Phe (>30%) at 24h. Some of the patients that responded favourably were clinically described as having Classical PKU. Blood tyrosine concentrations did not change significantly. Twenty subjects with PKU, responsive and non-responsive to BH4, were enrolled in a second study to evaluate blood Phe response to ascending single doses of BH4 with 10, 20, and 40 mg/kg and to evaluate multiple daily doses, for 7 days each, with 10 and 20 mg/kg BH4. The 7-day trial showed a sustained decrease in blood Phe in 14 of 20 patients taking 20 mg/kg BH4 (70%). Of these 14 patients, 10 (71%) responded with a significant decrease in blood Phe following 10 mg/kg BH4 daily. To understand the mechanism of response to BH4, the kinetics and stability of mutant PAH were studied. We found that mutant PAH responds with increase in the residual enzyme activity following BH4 administration. The increase in activity is multi-factorial caused by increased stability, chaperone effect, and correction of the mutant Km. These studies indicate that BH4 can be of help to patients with PKU, including some considered to have Classical PKU. The PKU population in US is heterogeneous and mutations can be varied so mutations need to be characterized and response to BH4 tested. It is more likely that mutations with residual activity should respond to BH4, therefore the clinical definition of "Classical PKU" should be reconciled with the residual activity of PAH mutations.  相似文献   

4.
Since 1999 an increasing number of patients with phenylalanine hydroxylase (PAH) deficiency are reported to be able to decrease their plasma phenylalanine (Phe) concentrations after a 6R-tetrahydrobiopterin (BH(4)) challenge. The majority of these patients have mild PKU or MHP (mild hyperphenylalaninemia) and harbour at least one missense mutation in the PAH gene associated with this phenotype. The rate of decrease and the lowest achieved Phe level vary between patients with different genotypes but appears to be similar in patients with the same genotype. A number of the mutations associated with BH(4)-responsiveness have been studied in an 'in vitro' eukaryotic cell expression system leading to biosynthesis of a mutant PAH enzyme with some residual activity. Patients bearing mutations that cause severe structural distortion in the expressed protein (loss of function mutations), leading to undetectable PAH activity, are not responsive to BH(4). These observations suggest that residual PAH activity (in vitro) is a prerequisite for BH(4)-responsiveness. However, an in vitro residual PAH activity is not a guarantee for in vivo BH(4)-responsiveness. Mechanisms behind this responsiveness could be relieve of decreased binding affinity for BH(4), BH(4)-mediated increase of PAH gene expression or stabilization of the mutant enzyme protein by BH(4). BH(4)-responsive PAH-deficient patients have only been reported since 1999. For the western countries this is explained by the fact that the manufacturer changed the diastereoisomeric purity of the BH4 preparation from 69% of the natural 6R-BH4 (31% of 6S-BH4) to 99.5% 6R-BH4. The new findings on BH(4)-responsiveness may be of clinical relevance because these patients can be treated with BH(4) with concomitant relief or withdrawal of the burdensome PKU diet. These observations warrant further clinical studies to assess efficacy, optimal dosage, and safety of BH(4) treatment in this group. The data strongly emphasize the necessity of the BH(4) loading test in patients detected in the newborn PKU screening.  相似文献   

5.
A subtype of phenylalanine hydroxylase (PAH) deficiency that responds to cofactor (tetrahydrobiopterin, BH4) supplementation has been associated with phenylketonuria (PKU) mutations. The underlying molecular mechanism of this responsiveness is as yet unknown and requires a detailed in vitro expression analysis of the associated mutations. With this aim, we optimized the analysis of the kinetic and cofactor binding properties in recombinant human PAH and in seven mild PKU mutations, i.e., c.194T>C (p.I65T), c.204A>T (p.R68S), c.731C>T (p.P244L), c.782G>A (p.R261Q), c.926C>T (p.A309V), c.1162G>A (p.V388M), and c.1162G>A (p.Y414C) expressed in E. coli. For p.I65T, p.R68S, and p.R261Q, we could in addition study the equilibrium binding of BH4 to the tetrameric forms by isothermal titration calorimetry (ITC). All the mutations resulted in catalytic defects, and p.I65T, p.R68S, p.P244L, and most probably p.A309V, showed reduced binding affinity for BH4. The possible stabilizing effect of the cofactor was explored using a cell-free in vitro synthesis assay combined with pulse-chase methodology. BH4 prevents the degradation of the proteins of folding variants p.A309V, p.V388M, and p.Y414C, acting as a chemical chaperone. In addition, for wild-type PAH and all mild PKU mutants analyzed in this study, BH4 increases the PAH activity of the synthesized protein and protects from the rapid inactivation observed in vitro. Catalase and superoxide dismutase partially mimic this protection. All together, our results indicate that the response to BH4 substitution therapy by PKU mutations may have a multifactorial basis. Both effects of BH4 on PAH, i.e., the chemical chaperone effect preventing protein misfolding and the protection from inactivation, may be relevant mechanisms of the responsive phenotype.  相似文献   

6.
Patients with tetrahydrobiopterin (BH4)-responsive phenylalanine hydroxylase (PAH) deficiency may benefit from BH4 therapy instead or in addition to the low-phenylalanine diet. Different loading test protocols are currently used to detect these patients. As a consequence, data on the rate of BH4-responsiveness within patients with mild phenylketonuria (PKU) and/or more severe phenotypes show high variation and a more sensitive and standardised BH4 loading test protocol needs to be defined. We modified the current standard BH4 loading test (20 mg/kg) to a second administration of 20 mg/kg after 24 h and extended blood sampling to 48 h in 24 patients with PAH deficiency. Using this extended loading test (2 x 20 mg BH4/kg), the rate of BH4-responsiveness was calculated at 8, 24, and 48 h after BH4 administration. We defined three groups of patients: "rapid responders" in 10/24 patients (4 mild HPA, 2 mild PKU, 2 moderate PKU, and 2 classic PKU), "moderate responders" in 4/24 patients (4 classic PKU), and "slow responder" in 4/24 patients (4 mild PKU). Six out of 24 patients (1 mild HPA, 1 moderate PKU, and 4 classic PKU) were found to be "non-responder." Individual phenylalanine profiles show variations in responsiveness at different time points and sampling over 48 h was more informative than over 24h in patients with mild and moderate PKU compared to mild HPA. Analysis of BH4 loading tests in 209 patients with the standard BH4 loading test protocol confirms only minor importance of the 24 h response: the rate of responsiveness to BH4 after 24 h was shown to be equal to or even lower than after 8h among most phenotypes. However, extension of the BH4 loading test to 48 h and repeated BH4 administration seems to be useful to detect BH4-responsiveness in more severe phenotypes and allows detecting "slow responders" who may benefit from BH4 therapy.  相似文献   

7.
In about 20%–30% of phenylketonuria (PKU) patients (all phenotypes of PAH deficiency), Phe levels may be controlled through phenylalanine hydroxylase cofactor tetrahydrobiopterin therapy. These patients can be diagnosed by an oral tetrahydrobiopterin challenge and are characterized by mutations coding for proteins with substantial residual PAH activity. They can be treated with a commercially available synthetic form of tetrahydrobiopterin, either as a monotherapy or as adjunct to the diet. This review article summarizes molecular and metabolic bases of PKU and the importance of the tetrahydrobiopterin loading test used for PKU patients. On the basis of in vitro residual PAH activity, more than 1,200 genotypes from patients challenged with tetrahydrobiopterin were categorized as predictive for tetrahydrobiopterin responsiveness or non‐responsiveness and correlated with the loading test, phenotype, and residual in vitro PAH activity. The coexpression of two distinct PAH mutant alleles revealed possible dominance effects (positive or negative) by one of the mutations on residual activity as result of interallelic complementation. The treatment of the transfected cells with tetrahydrobiopterin showed an increase in residual PAH activity with several mutations coexpressed.  相似文献   

8.
Tetrahydrobiopterin (BH4) responsiveness in patients with mutations in the phenylalanine hydroxylase (PAH) gene is a recently recognized subtype of hyperphenylalaninemia characterized by a positive BH4 loading test. According to recent estimates, this phenotype may be quite common, suggesting that a large group of individuals may benefit from BH4 substitution, eliminating the need of life-long dietary restrictions. This underscores the importance of identifying BH4-responsive patients in each population, establishing the association with specific PAH mutations. In this work, we describe the results of a pilot study performed with 31 Spanish PAH-deficient patients subjected to a BH4 loading test. Overall, 11/31 (37%) showed a positive response with a 30% decrease in blood Phe levels 8 h after the BH4 challenge, and three additional patients, considered slow responders, showed this decrease only after 12-16 h. We report for the first time a patient homozygous for a splicing mutation with a slow response, suggesting an effect of BH4 supplementation on PAH gene expression. Most of the responsive patients belong to the mild hyperphenylalaninemia (MHP) or mild phenylketonuria phenotypic groups. In MHP patients we report for the first time the results of parallel single Phe doses confirming the utility of these analyses for a better evaluation of the response. Genotype analysis confirms the involvement in the response of specific mutations (D415N, S87R, R176L, E390G, and A309V) present in hemizygous patients, and provide relevant information for the discussion of the potential mechanisms underlying BH4 responsiveness.  相似文献   

9.
Sapropterin dihydrochloride, a synthetic tetrahydrobiopterin (BH4), works as a chaperone of phenylalanine hydroxylase (PAH) in phenylketonuria (PKU) to facilitate and stabilize folding of PAH into its most active conformation. No standard pharmacogenetic tests exist to identify responsive genotypes. Previous studies have failed to identify genotypes that consistently predict response; they are weakened by varied: 1) doses; 2) response definitions; 3) duration; 4) phenylalanine (PHE) test times during different protein catabolic states; 5) control of dietary PHE. START (sapropterin therapy actual response test) protocol is a double blind, placebo-controlled, 4-week clinical test that obviates the confounders aforementioned. START results were evaluated for response-genotype correlates and trends in molecular characteristics. RESULTS: Seventy-four patients completed START. Thirty-six patients (48.6%) responded, 55 patients' genotypes are known, 38 unique genotypes are present. Alleles consistently associated with response include Y414C (8/8 patients, 6 genotypes) and I65T (9/9 patients, 6 genotypes). The p.R408W mutation, in which substitution of straight chain arginine with bulky aromatic amine, tryptophan, at the crux of a strategic hinge site activating folding of PAH, amino acid sequence 408, was strongly associated with non-response (21/29 patients non-responsive, 12/17 genotypes non-responsive). Genotypes containing at least one allele with ≥25% residual activity compared to wild type, were strongly associated with response. CONCLUSIONS: The START protocol provides a rigorous pharmacogenetic test to identify sapropterin responsiveness and genotypes associated with responsiveness and non-responsiveness. Some genotypes were found to be predictive of responsiveness or non-responsiveness, and responsiveness was associated with specific alleles. The START protocol provides a reliable test for sapropterin responsiveness and will continue to improve understanding of how PKU mutations impact PAH protein-folding dynamics and enhance understanding of PKU disease and its management.  相似文献   

10.
The clinical, nutritional, and neuropsychological data of 11 mild/moderate PKU patients after one year of treatment with BH4 are evaluated. BH4 monotherapy was introduced at 5 mg/kg/day in 14 PKU patients. In 11/14 patients, Phe tolerance increased significantly from 356+/-172 to 1546+/-192 mg/day (p=0.004), and special PKU formula was gradually reduced until complete removal. In them, mean plasma Phe concentrations remained below 360 micromol/L at 5 mg BH4/kg/day (7 mg/kg/day in one patient). BH4 therapy was stopped in three patients (V388M/P362T and R243Q/IVS10-11G>A genotypes) because it was not possible to improve Phe tolerance and to remove formula intake. Serum micronutrients were not significantly different at the start of treatment and at one year follow-up, except for selenium, which increased significantly after one year of therapy (p=0.017). Anthropometric, and nutritional measurements were within the age- and sex-specific percentiles for a healthy population after one year therapy. Neuropsychological follow-up indicated that intelligence scores persisted within normal limits. In terms of patients' genotype, we confirmed that the P275S mutation combined with R408W was associated with long-term BH4 responsiveness, while the combination of P362T/V388M, and R243Q/IVS10-11G>A resulted in poor metabolic control in long-term BH4 therapy. In summary, our data confirm that BH4 is a safe, and effective therapy in a selected group of mild, and moderate PKU patients who respond to the BH4 loading test. Low doses of BH4 in monotherapy permit withdrawal of the special formula and guarantee a good clinical and nutritional outcome with no adverse side effects in PKU patients.  相似文献   

11.
Some individuals with phenylketonuria (PKU) respond to pharmacologic treatment with tetrahydrobiopterin (BH(4)) by a reduction in the blood phenylalanine concentration. This can result in increased dietary tolerance for phenylalanine or, in rare instances, replacement of the phenylalanine-restricted diet. BH(4) is now available as sapropterin dihydrochloride under the name KUVAN, a formulation of natural BH(4). This commentary contains recommendations for determining responsiveness to sapropterin dihydrochloride. The recommendations include challenging with an initial daily dose of 20mg/kg and blood phenylalanine determinations pre-challenge and on days 1, 7, and 14 with the option of an additional continuation to day 28 if required to clarify whether a response has occurred. An algorithm depicting this recommendation for the challenge is included. The most widely accepted standard of response is > or = 30% reduction in the blood phenylalanine concentration, but a lower degree of response might also be considered clinically meaningful in some individual circumstances. Issues include the potential treatment of those with mild hyperphenylalaninemia who are not on diet, challenging neonates who have hyperphenylalaninemia identified by newborn screening, and the use of sapropterin dihydrochloride in treatment of maternal PKU pregnancies. These recommendations are intended to provide a basis for the use of sapropterin dihydrochloride in the treatment of PKU but may be altered after close observation of treated patients and carefully performed research.  相似文献   

12.
About two-thirds of all mild phenylketonuria (PKU) patients are tetrahydrobiopterin (BH4)-responsive and thus can be potentially treated with BH4 instead of a low-phenylalanine diet. Although there has been an increase in the amount of information relating to the diagnosis and treatment of this new variant of PKU, very little is know about the mechanisms of BH4-responsiveness. This review will focus on laboratory investigations and possible molecular and structural mechanisms involved in this process.  相似文献   

13.
Mutations in the phenylalanine hydroxylase (PAH) gene result in phenylketonuria (PKU). Tetrahydrobiopterin (BH(4))-responsive hyperphenylalaninemia has been recently described as a variant of PAH deficiency caused by specific mutations in the PAH gene. It has been suggested that BH(4)-responsiveness may be predicted from the corresponding genotypes. Data from BH(4) loading tests indicated an incidence of BH(4)-responsiveness of >40% in the general PKU population and >80% in mild PKU patients. The current project entailed genotype analysis of 315 BH(4)-responsive patients tabulated in the BIOPKUdb database and comparison with the data from the PAHdb locus-specific knowledgebase, as well as with previously published PAH mutations for several European countries, Northern China, and South Korea. We identified 57 mutations, presenting with a substantial residual PAH activity (average approximately 47%), presumed to be associated with BH(4)-responsiveness. More than 89% of patients are found to be compound heterozygotes. The three most common mutations found in >5% of BH(4)-responsive patients are p.A403 V, p.R261Q, and p.Y414C. Using the Hardy-Weinberg formula the predicted average frequency of BH(4)-responsiveness in European populations was calculated to be 55% (range 17-79%, lowest in Baltic countries and Poland and highest in Spain), 57% in Northern China, and 55% for South Korea. The genotype-predicted prevalence of BH(4)-responsiveness was higher than prevalence data obtained from BH(4) loading tests. Inconsistent results were observed for mutations p.L48S, p.I65 T, p.R158Q, p.R261Q, and p.Y414C. Our data suggest that BH(4)-responsiveness may be more common than assumed and to some extent may be predicted or excluded from the patient's genotype.  相似文献   

14.
In about 20-30% of phenylketonuria (PKU) patients, phenylalanine (Phe) levels can be controlled by cofactor 6R-tetrahydrobiopterin (BH(4)) administration. The phenylalanine hydroxylase (PAH) genotype has a predictive value concerning BH(4)-response and therefore a correct assessment of the mutation molecular pathology is important. Mutations that disturb the splicing of exons (e.g. interplay between splice site strength and regulatory sequences like exon splicing enhancers (ESEs)/exon splicing silencers (ESSs)) may cause different severity of PKU. In this study, we identified PAH exon 11 as a vulnerable exon and used patient derived lymphoblast cell lines and PAH minigenes to study the molecular defect that impacted pre-mRNA processing. We showed that the c.1144T>C and c.1066-3C>T mutations cause exon 11 skipping, while the c.1139C>T mutation is neutral or slightly beneficial. The c.1144T>C mutation resides in a putative splicing enhancer motif and binding by splicing factors SF2/ASF, SRp20 and SRp40 is disturbed. Additional mutations in potential splicing factor binding sites contributed to elucidate the pathogenesis of mutations in PAH exon 11. We suggest that PAH exon 11 is vulnerable due to a weak 3' splice site and that this makes exon 11 inclusion dependent on an ESE spanning position c.1144. Importantly, this implies that other mutations in exon 11 may affect splicing, since splicing is often determined by a fine balance between several positive and negative splicing regulatory elements distributed throughout the exon. Finally, we identified a pseudoexon in intron 11, which would have pathogenic consequences if activated by mutations or improved splicing conditions. Exonic mutations that disrupt splicing are unlikely to facilitate response to BH(4) and may lead to inconsistent genotype-phenotype correlations. Therefore, recognizing such mutations enhances our ability to predict the BH(4)-response.  相似文献   

15.
Tetrahydrobiopterin (BH4) responsive hyperphenylalaninemia (HPA) with a mutant phenylalanine hydroxylase (PAH) gene was found during neonatal screening for PKU. This study determined blood BH4 and phenylalanine in two patients with hyperphenylalaninemia following oral load with BH4 10 mg/kg. Our patients underwent neonatal screening for PKU, had normal biopterin metabolism and their PAH mutations were determined. Peak plasma biopterin levels in Case 1, which were reached at between 2 and 4h after loading, were 612, 297, and 178 nmol/L at age 30 days, 55 days, and 19 months, respectively, and the maximum phenylalanine decreasing rates, which were found at 24h, were 54, 16, and 4%, respectively. In Case 2, peak plasma biopterin levels were 747 and 327 nmol/L at age 20 and 55 days, respectively, and the maximum phenylalanine decreasing rates were 39 and 32%, respectively. In the BH4 loading test, the peaks of BH4 in both patients lowered ( approximately 50%), on the same dose schedule of BH4, as patients got older.  相似文献   

16.
BackgroundPhenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism. Besides dietary treatment, some patients are responsive to and treated with tetrahydrobiopterin (BH4). Our primary objective was to examine whether the 48-hour BH4 loading test misses BH4-responsive PKU patients. Secondary, we assessed if it would be beneficial to 1) use a cut-off value of 20% Phe reduction instead of commonly used 30%, and 2) extend the loading test to 7 days.Methods24 patients with a 20–30% decrease of blood Phe levels during their initial 48-hour BH4 loading test or at least one mutation associated with long-term BH4 responsiveness, were invited to participate. 22 of them underwent the 7-day BH4 loading test. During the BH4 loading test, BH4 was administered orally once daily for 7 days (20 mg/kg/day). Blood samples on filter paper were collected at 13 time points. Potential BH4 responders (≥20% decrease in blood Phe concentrations at ≥1 moment within the first 48 h or ≥30% at ≥1 moment during the entire test) underwent a treatment trial to assess true long-term responsiveness (≥30% decrease of Phe levels compared to baseline and/or ≥50% increase in natural protein tolerance in accordance with the Dutch guidelines before 2017). The duration of the treatment trial varied from 2 to 18 months.ResultsOf the 22 patients who completed the 7-day BH4 loading test, 2 were excluded, 8 had negative tests and 12 were considered to be potential BH4 responders. Of these 12 potential BH4-responsive PKU patients, 5 turned out to be false positive, 6 true-responder and 1 was withdrawn.ConclusionEven though the 48-hour BH4 loading test has proven its efficacy in the past, a full week may be necessary to detect all responders. So, if blood Phe concentrations during the 48-hour BH4 test shows a clear tendency, but not sufficient decrease, a full week (with only measurements each 24 h) could be offered. A threshold of ≥20% decrease within 48 h is not useful for predicting true BH4 responsiveness.  相似文献   

17.
Recently, BH(4)-responsive phenylalanine hydroxylase (PAH) deficiency was reported in patients with specific mutations in the PAH gene, and it was suggested that BH(4) responsiveness may be determined by the respective genotypes. We now report on three patients with PAH deficiency and the same genotype but different responses to standardized BH(4) loading. Our results suggest that BH(4) responsiveness in PAH deficiency is at least partly independent from PAH genotype.  相似文献   

18.
Phenylketonuria (PKU) is caused by mutations in the phenylalanine hydroxylase gene (PAH), while mutations in genes encoding the two enzymes (dihydropteridine reductase, DHPR, and pterin-4-alpha-carbinolamine dehydratase, PCD) required for recycling of its cofactor, tetrahydrobiopterin (BH(4)), cause other rarer disease forms of hyperphenylalaninemia. We have applied a yeast two-hybrid method, in which protein--protein interactions are measured by four reporter gene constructs, to the analysis of six PKU-associated PAH missense mutations (F39L, K42I, L48S, I65T, A104D, and R157N). By studying homomeric interactions between mutant PAH subunits, we show that this system is capable of detecting quite subtle aberrations in PAH oligomerization caused by missense mutations and that the observed results generally correlate with the severity of the mutation as determined by other expression systems. The mutant PAH subunits are also shown in this system to be able to interact with wild-type PAH subunits, pointing to an explanation for apparent dominant negative effects previously observed in obligate heterozygotes for PKU mutations. Based on our findings, the applications and limitations of two-hybrid approaches in understanding mechanisms by which PAH missense mutations exert their pathogenic effects are discussed. We have also used this technique to demonstrate homomeric interactions between wild-type DHPR subunits and between wild-type PCD subunits. These data provide a basis for functional studies on HPA-associated mutations affecting these enzymes.  相似文献   

19.
Until today, the mainstay of phenylketonuria (PKU) treatment is a phenylalanine (Phe)-restricted diet. Strict dietary treatment decreases flexibility and autonomy and still has a major impact on patients and their families. Compliance is often poor, particularly in adolescence. The aim of this study was to investigate the effect of the intake of fruits and vegetables containing Phe less than 100 mg/100g ('simplified diet'), as recommended by WHO for all individuals, instead of classical totally restricted diet on the course and treatment control of the disease in a well-characterized PKU cohort (n=80). All individual blood Phe measurements of each patient (1992-2009) were statistically analyzed before and after diet switch. Epidemiological data, age at diagnosis, PAH mutations, BH(4) responsiveness, as well as Phe control measurements and detailed diet information were tabulated in a local database. 62.5% had BH4 loading test and 40% had PAH analysis; 50/80 switched from classical to simplified diet, including 26 classical PKU, 13 moderate PKU, 7 mild PKU and 4 mild hyperphenylalaninemia (HPA). Median Phe levels on a simplified diet did not differ significantly to the median Phe levels on classical diet in all disease groups. Our results indicate that a simplified diet has no negative effect on blood Phe control in patients with hyperphenylalaninemia, independent of severity of the phenotype or the age at diet switch, over the period of 3 years. Thus, a simpler approach to dietary treatment of PKU available to all HPA patients is more likely to be accepted and adhered by patients and might also increase quality of life.  相似文献   

20.
The activity of phenylalanine hydroxylase (PAH) is regulated by the levels of both the substrate (L-Phe) and the natural cofactor (6R)-tetrahydrobiopterin (BH4). It has recently been observed that many PAH mutants associated with BH4-responsive phenylketonuria display abnormal kinetic and regulatory properties as shown by standard kinetic analyses. In this work, we have developed a high-sensitive and high-throughput activity assay based on isothermal titration calorimetry (ITC) in order to study the kinetic properties of wild-type PAH (wt-PAH) and the BH4-responsive c.204A>T (p.R68S) mutant at physiological and superphysiological concentrations of L-Phe and BH4. Compared to wt-PAH, the p.R68S mutant showed reduced apparent and equilibrium binding affinity for the natural cofactor and increased affinity and non-cooperative response for L-Phe, together with a strong substrate inhibition that is alleviated at high BH4 concentrations. For both wt-PAH and mutant, the apparent affinity for BH4 decreases at increasing L-Phe concentrations, and the affinity for the substrate also depends on the cofactor concentration. Our results indicate that the activity landscape for wt and mutant enzymes is more complex than expected from standard kinetic analyses and highlight the applicability of this ITC-based assay to characterize the activity and regulation of PAH at a wide range of substrate and cofactor concentrations. Moreover, the results aid to understand the activity dynamics of wild-type and mutant PAH under physiological and pathological conditions, as well as BH4-responsiveness in certain PKU mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号