首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, using four carbonates as raw materials, the cathode material LiNi0.5Co0.2Mn0.3O2 was prepared with the “ball milling-calcining” solid-phase synthesis method. The specific reaction process, which consists of the decomposition of the raw materials and the generation of target products, was investigated thoroughly using the TG-DSC technique. XRD, SEM and charge/discharge test methods were utilized to explore the influence of different sintering temperatures on the structure, morphology and electrochemical performance of the LiNi0.5Co0.2Mn0.3O2 cathode. The results show that 900~1000 °C is the appropriate synthesis temperature range. LiNi0.5Co0.2Mn0.3O2 synthesized at 1000 °C delivers optimal cycling stability at 0.5 C. Meanwhile, its initial discharge specific capacity and coulomb efficiency reached 167.2 mAh g−1 and 97.89%, respectively. In addition, the high-rate performance of the cathode sample prepared at 900 °C is particularly noteworthy. Cycling at 0.5 C, 1 C, 1.5 C and 2 C, the corresponding discharge specific capacity of the sample exhibited 148.1 mAh g−1, 143.1 mAh g−1, 140 mAh g−1 and 138.9 mAh g−1, respectively.  相似文献   

2.
Structural instability during cycling is an important factor affecting the electrochemical performance of nickel-rich ternary cathode materials for Li-ion batteries. In this work, enhanced structural stability and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials are achieved by Ga doping. Compared with the pristine electrode, Li[Ni0.6Co0.2Mn0.2]0.98Ga0.02O2 electrode exhibits remarkably improved electrochemical performance and thermal safety. At 0.5C rate, the discharge capacity increases from 169.3 mAh g−1 to 177 mAh g−1, and the capacity retention also rises from 82.8% to 89.8% after 50 cycles. In the charged state of 4.3 V, its exothermic temperature increases from 245.13 °C to more than 271.24 °C, and the total exothermic heat decreases from 561.7 to 225.6 J·g−1. Both AC impedance spectroscopy and in situ XRD analysis confirmed that Ga doping can improve the stability of the electrode/electrolyte interface structure and bulk structure during cycling, which helps to improve the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode material.  相似文献   

3.
As the explosive growth of the electric vehicle market leads to an increase in spent lithium-ion batteries (LIBs), the disposal of LIBs has also made headlines. In this study, we synthesized the cathode active materials Li[Ni1/3Mn1/3Co1/3]O2 (NMC) and Li[Ni1/3Mn1/3Co1/3Fe0.0005Al0.0005]O2 (NMCFA) via hydroxide co-precipitation and calcination processes, which simulate the resynthesis of NMC in leachate containing trace amounts of iron and aluminum from spent LIBs. The effects of iron and aluminum on the physicochemical and electrochemical properties were investigated and compared with NMC. Trace amounts of iron and aluminum do not affect the morphology, the formation of O3-type layered structures, or the redox peak. On the other hand, the rate capability of NMCFA shows high discharge capacities at 7 C (110 mAh g−1) and 10 C (74 mAh g−1), comparable to the values for NMC at 5 C (111 mAh g−1) and 7 C (79 mAh g−1), respectively, due to the widened interslab thickness of NMCFA which facilitates the movement of lithium ions in a 2D channel. Therefore, iron and aluminum, which are usually considered as impurities in the recycling of LIBs, could be used as doping elements for enhancing the electrochemical performance of resynthesized cathode active materials.  相似文献   

4.
Ni-rich cathode LiNixCoyMn1-x-yO2 (NCM, x ≥ 0.5) materials are promising cathodes for lithium-ion batteries due to their high energy density and low cost. However, several issues, such as their complex preparation and electrochemical instability have hindered their commercial application. Herein, a simple solvothermal method combined with calcination was employed to synthesize LiNi0.6Co0.2Mn0.2O2 with micron-sized monodisperse particles, and the influence of the sintering temperature on the structures, morphologies, and electrochemical properties was investigated. The material sintered at 800 °C formed micron-sized particles with monodisperse characteristics, and a well-order layered structure. When charged–discharged in the voltage range of 2.8–4.3 V, it delivered an initial discharge capacity of 175.5 mAh g−1 with a Coulombic efficiency of 80.3% at 0.1 C, and a superior discharge capacity of 135.4 mAh g−1 with a capacity retention of 84.4% after 100 cycles at 1 C. The reliable electrochemical performance is probably attributable to the micron-sized monodisperse particles, which ensured stable crystal structure and fewer side reactions. This work is expected to provide a facile approach to preparing monodisperse particles of different scales, and improve the performance of Ni-rich NCM or other cathode materials for lithium-ion batteries.  相似文献   

5.
Fast charging-discharging is one of the important requirements for next-generation high-energy Li-ion batteries, nevertheless, electrons transport in the active oxide materials is limited. Thus, carbon coating of active materials is a common method to supply the routes for electron transport, but it is difficult to synthesize the oxide-carbon composite for LiNiO2-based materials which need to be calcined in an oxygen-rich atmosphere. In this work, LiNi0.8Co0.1Mn0.1O2 (NCM811) coated with electronic conductor LaNiO3 (LNO) crystallites is demonstrated for the first time as fast charging-discharging and high energy cathodes for Li-ion batteries. The LaNiO3 succeeds in providing an exceptional fast charging-discharging behavior and initial coulombic efficiency in comparison with pristine NCM811. Consequently, the NCM811@3LNO electrode presents a higher capacity at 0.1 C (approximately 246 mAh g−1) and a significantly improved high rate performance (a discharge specific capacity of 130.62 mAh g−1 at 10 C), twice that of pristine NCM811. Additionally, cycling stability is also improved for the composite material. This work provides a new possibility of active oxide cathodes for high energy/power Li-ion batteries by electronic conductor LaNiO3 coating.  相似文献   

6.
Ammonium molybdate tetrahydrate ((NH4)6Mo7O24) (AMT) is commonly used as the precursor to synthesize Mo-based oxides or sulfides for lithium ion batteries (LIBs). However, the electrochemical lithium storage ability of AMT itself is unclear so far. In the present work, AMT is directly examined as a promising anode material for Li-ion batteries with good capacity and cycling stability. To further improve the electrochemical performance of AMT, AMT/polydopamine (PDA) composite was simply synthesized via recrystallization and freeze drying methods. Unlike with block shape for AMT, the as-prepared AMT/PDA composite shows flake morphology. The initial discharge capacity of AMT/PDA is reached up to 1471 mAh g−1. It delivers a reversible discharge capacity of 702 mAh g−1 at a current density of 300 mA g−1, and a stable reversible capacity of 383.6 mA h g−1 is retained at a current density of 0.5 A g−1 after 400 cycles. Moreover, the lithium storage mechanism is fully investigated. The results of this work could potentially expand the application of AMT and Mo-based anode for LIBs.  相似文献   

7.
Doping of Ru has been used to enhance the performance of LiNi0.5Mn1.5O4 cathode materials. However, the effects of Ru doping on the two types of LiNi0.5Mn1.5O4 are rarely studied. In this study, Ru4+ with a stoichiometric ratio of 0.05 is introduced into LiNi0.5Mn1.5O4 with different space groups (Fd3¯m, P4332). The influence of Ru doping on the properties of LiNi0.5Mn1.5O4 (Fd3¯m, P4332) is comprehensively studied using multiple techniques such as XRD, Raman, and SEM methods. Electrochemical tests show that Ru4+-doped LiNi0.5Mn1.5O4 (P4332) delivers the optimal electrochemical performance. Its initial specific capacity reaches 132.8 mAh g−1, and 97.7% of this is retained after 300 cycles at a 1 C rate at room temperature. Even at a rate of 10 C, the capacity of Ru4+-LiNi0.5Mn1.5O4 (P4332) is still 100.7 mAh g−1. Raman spectroscopy shows that the Ni/Mn arrangement of Ru4+-LiNi0.5Mn1.5O4 (Fd3¯m) is not significantly affected by Ru4+ doping. However, LiNi0.5Mn1.5O4 (P4332) is transformed to semi-ordered LiNi0.5Mn1.5O4 after the incorporation of Ru4+. Ru4+ doping hinders the ordering process of Ni/Mn during the heat treatment process, to an extent.  相似文献   

8.
Defect engineering is one of the effective ways to improve the electrochemical property of electrode materials for lithium-ion batteries (LIB). Herein, an organic functional molecule of p-phenylenediamine is embedded into two-dimensional (2D) layered TiO2 as the electrode for LIB. Then, the 2D carbon/TiO2 composites with the tuning defects are prepared by precise control of the polymerization and carbothermal atmospheres. Low valence titanium in metal oxide and nitrogen-doped carbon nanosheets can be obtained in the carbon/TiO2 composite under a carbonization treatment atmosphere of N2/H2 gas, which can not only increase the electronic conductivity of the material but also provide sufficient electrochemical active sites, thus producing an excellent rate capability and long-term cycle stability. The prepared composite can provide a high capacity of 396.0 mAh g−1 at a current density of 0.1 A g−1 with a high capacitive capacity ratio. Moreover, a high specific capacity of 80.0 mAh g−1 with retention rate of 85% remains after 10,000 cycles at 3.0 A g−1 as well as the Coulomb efficiency close to 100%. The good rate-capability and cycle-sustainability of the layered materials are ascribed to the increase of conductivity, the lithium-ion transport channel, and interfacial capacitance due to the multi-defect sites in the layered composite.  相似文献   

9.
Lithium-rich manganese oxide is a promising candidate for the next-generation cathode material of lithium-ion batteries because of its low cost and high specific capacity. Herein, a series of xLi2MnO3·(1 − x)LiMnO2 nanocomposites were designed via an ingenious one-step dynamic hydrothermal route. A high concentration of alkaline solution, intense hydrothermal conditions, and stirring were used to obtain nanoparticles with a large surface area and uniform dispersity. The experimental results demonstrate that 0.072Li2MnO3·0.928LiMnO2 nanoparticles exhibit a desirable electrochemical performance and deliver a high capacity of 196.4 mAh g−1 at 0.1 C. This capacity was maintained at 190.5 mAh g−1 with a retention rate of 97.0% by the 50th cycle, which demonstrates the excellent cycling stability. Furthermore, XRD characterization of the cycled electrode indicates that the Li2MnO3 phase of the composite is inert, even under a high potential (4.8 V), which is in contrast with most previous reports of lithium-rich materials. The inertness of Li2MnO3 is attributed to its high crystallinity and few structural defects, which make it difficult to activate. Hence, the final products demonstrate a favorable electrochemical performance with appropriate proportions of two phases in the composite, as high contents of inert Li2MnO3 lower the capacity, while a sufficient structural stability cannot be achieved with low contents. The findings indicate that controlling the composition through a dynamic hydrothermal route is an effective strategy for developing a Mn-based cathode material for lithium-ion batteries.  相似文献   

10.
Cr8O21 can be used as the cathode material in all-solid-state batteries with high energy density due to its high reversible specific capacity and high potential plateau. However, the strong oxidation of Cr8O21 leads to poor compatibility with polymer-based solid electrolytes. Herein, to improve the cycle performance of the battery, Al2O3 atomic layer deposition (ALD) coating is applied on Cr8O21 cathodes to modify the interface between the electrode and the electrolyte. X-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscope, and Fourier transform infrared spectroscopy, etc., are used to estimate the morphology of the ALD coating and the interface reaction mechanism. The electrochemical properties of the Cr8O21 cathodes are investigated. The results show that the uniform and dense Al2O3 layer not only prevents the polyethylene oxide from oxidization but also enhances the lithium-ion transport. The 12-ALD-cycle-coated electrode with approximately 4 nm Al2O3 layer displays the optimal cycling performance, which delivers a high capacity of 260 mAh g−1 for the 125th cycle at 0.1C with a discharge-specific energy of 630 Wh kg−1.  相似文献   

11.
Li6.3La3Zr1.65W0.35O12 (LLZO)-Li6PS5Cl (LPSC) composite electrolytes and all-solid-state cells containing LLZO-LPSC were fabricated by cold pressing at room temperature. The LPSC:LLZO ratio was varied, and the microstructure, ionic conductivity, and electrochemical performance of the corresponding composite electrolytes were investigated; the ionic conductivity of the composite electrolytes was three or four orders of magnitude higher than that of LLZO. The high conductivity of the composite electrolytes was attributed to the enhanced relative density and the rule of mixture for soft LPSC particles with high lithium-ion conductivity (~10−4 S·cm−1). The specific capacities of all-solid-state cells (ASSCs) consisting of a LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode and the composite electrolytes of LLZO:LPSC = 7:3 and 6:4 were 163 and 167 mAh·g−1, respectively, at 0.1 C and room temperature. Moreover, the charge–discharge curves of the ASSCs with the composite electrolytes revealed that a good interfacial contact was successfully formed between the NCM811 cathode and the LLZO-LPSC composite electrolyte.  相似文献   

12.
Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.  相似文献   

13.
LiFePO4/N-doped C composites with core–shell structures were synthesized by a convenient solvothermal method. Cetyltrimethylammonium bromide (CTAB) and glucose were used as nitrogen and carbon sources, respectively. The growth of LiFePO4 nanocrystals was regulated by CTAB, resulting in an average particle size of 143 nm for the LiFePO4/N-doped C. The N atoms existed in the carbon of LiFePO4/N-doped C in the form of pyridinic N and graphitic N. The LiFePO4/N-doped C composites delivered discharge specific capacities of 160.7 mAh·g−1 (0.1 C), 128.4 mAh·g−1 (5 C), and 115.8 mAh·g−1 (10 C). Meanwhile, no capacity attenuation was found after 100 electrochemical cycles at 1 C. N-doping enhanced the capacity performance of the LiFePO4/C cathode, while the core–shell structure enhanced the cycle performance of the cathode. The electrochemical test data showed a synergistic effect between N-doping and core–shell structure on the enhancement of the electrochemical performance of the LiFePO4/C cathode.  相似文献   

14.
High-capacity and high-voltage cathode materials are required to meet the increasing demand for energy density in Li ion batteries. Lithium iron silicate (Li2FeSiO4) is a cathode material with a high theoretical capacity of 331 mAh·g−1. However, its poor conductivity and low Li ion diffusion coefficient result in poor capability, hindering practical applications. Morphology has an important influence on the properties of materials, and nanomaterials with hollow structures are widely used in electrochemical devices. Herein, we report a novel hollow hemispherical Li2FeSiO4 synthesized by a template-free hydrothermal method with the addition of ascorbic acid. The hollow hemispherical Li2FeSiO4 consisted of finer particles with a shell thickness of about 80 nm. After carbon coating, the composite was applied as the cathode in Li ion batteries. As a result, the hollow hemispherical Li2FeSiO4/C exhibited a discharge capacity as high as 192 mAh·g−1 at 0.2 C, and the average capacities were 134.5, 115.5 and 93.4 mAh·g−1 at 0.5, 1 and 2 C, respectively. In addition, the capacity increased in the first few cycles and then decayed with further cycling, showing a warm-up like behavior, and after 160 cycles the capacities maintained 114.2, 101.6 and 79.3 mAh·g−1 at 0.5, 1 and 2 C, respectively. Such a method of adding ascorbic acid in the hydrothermal reaction can effectively synthesize hollow hemispherical Li2FeSiO4 with the enhanced electrochemical performance.  相似文献   

15.
Lithium cobalt oxide (LiCoO2), which has been successfully applied in commercial lithium-ion batteries for portable devices, possesses a theoretical specific capacity of 274 mAh g−1. However, its actual capacity is only half of the theoretical specific capacity, because the charging voltage is restricted below 4.2 V. If a higher charging voltage is applied, an irreversible phase transition of LiCoO2 during delithiation would occur, resulting in severe capacity fading. Therefore, it is essential to investigate the electrochemically driven phase transition of LiCoO2 cathode material to approach its theoretical capacity. In this work, it was observed that LiCoO2 partially degraded to Co3O4 after 150 charging-discharging cycles. From the perspective of crystallography, the conventional cell of LiCoO2 was rebuilt to an orthonormal coordinate, and the transition path from layered LiCoO2 to cubic Co3O4 proposed. The theoretical analysis indicated that the electrochemically driven phase transition from LiCoO2 to Co3O4 underwent several stages. Based on this, an experimental verification was made by doping LiCoO2 with Al, In, Mg, and Zr, respectively. The doped samples theoretically predicted behavior. The findings in this study provide insights into the electrochemically driven phase transition in LiCoO2, and the phase transition can be eliminated to improve the capacity of LiCoO2 to its theoretical value.  相似文献   

16.
In this work, a facile, wet chemical synthesis was utilized to achieve a series of lithium manganese oxide (LiMn2O4, (LMO) with 1–5%wt. graphene oxide (GO) composites. The average crystallite sizes estimated by the Rietveld method of LMO/GO nanocomposites were in the range of 18–27 nm. The electrochemical performance was studied using CR2013 coin-type cell batteries prepared from pristine LMO material and LMO modified with 5%wt. GO. Synthesized materials were tested as positive electrodes for Li-ion batteries in the voltage range between 3.0 and 4.3 V at room temperature. The specific discharge capacity after 100 cycles for LMO and LMO/5%wt. GO were 84 and 83 mAh g−1, respectively. The LMO material modified with 5%wt. of graphene oxide flakes retained more than 91% of its initial specific capacity, as compared with the 86% of pristine LMO material.  相似文献   

17.
A bio-inspired nanofibrous MnO2-TiO2-carbon composite was prepared by utilizing natural cellulosic substances (e.g., ordinary quantitative ashless filter paper) as both the carbon source and structural matrix. Mesoporous MnO2 nanosheets were densely immobilized on an ultrathin titania film precoated with cellulose-derived carbon nanofibers, which gave a hierarchical MnO2-TiO2-carbon nanoarchitecture and exhibited excellent electrochemical performances when used as an anodic material for lithium-ion batteries. The MnO2-TiO2-carbon composite with a MnO2 content of 47.28 wt % exhibited a specific discharge capacity of 677 mAh g−1 after 130 repeated charge/discharge cycles at a current rate of 100 mA g−1. The contribution percentage of MnO2 in the composite material is equivalent to 95.1% of the theoretical capacity of MnO2 (1230 mAh g−1). The ultrathin TiO2 precoating layer with a thickness ca. 2 nm acts as a crucial interlayer that facilitates the growth of well-organized MnO2 nanosheets onto the surface of the titania-carbon nanofibers. Due to the interweaved network structures of the carbon nanofibers and the increased content of the immobilized MnO2, the exfoliation and aggregation, as well as the large volume change of the MnO2 nanosheets, are significantly inhibited; thus, the MnO2-TiO2-carbon electrodes displayed outstanding cycling performance and a reversible rate capability during the Li+ insertion/extraction processes.  相似文献   

18.
This study reports an integrated device in which a lithium-ion battery (LIB) and Si solar cells are interconnected. The LIB is fabricated using the Li(Ni0.65Co0.15Mn0.20)O2 (NCM622) cathode and the Li4Ti5O12 (LTO) anode. The surface and shape morphologies of the NCM and LTO powders were investigated by field emission scanning electron microscopy (FE-SEM). In addition, the structural properties were thoroughly examined by X-ray diffraction (XRD). Further, their electrochemical characterization was carried out on a potentiostat. The specific discharge capacity of the NCM cathode (half-cell) was 188.09 mAh/g at 0.1 C current density. In further experiments, the NCM-LTO full-cell has also shown an excellent specific capacity of 160 mAh/g at a high current density of 1 C. Additionally, the capacity retention was outstanding, with 99.63% at 1 C after 50 cycles. Moreover, to meet the charging voltage requirements of the NCM-LTO full-cell, six Si solar cells were connected in series. The open-circuit voltage (VOC) and the short-circuit photocurrent density (JSC) for the Si solar cells were 3.37 V and 5.42 mA/cm2. The calculated fill factor (FF) and efficiency for the Si solar cells were 0.796 and 14.54%, respectively. Lastly, the integrated device has delivered a very high-power conversion-storage efficiency of 7.95%.  相似文献   

19.
Perovskite oxides using solid oxide fuel cells (SOFCs) anodes should possess high chemical stability, adequate electronic conductivity and excellent catalytic oxidation for fuel gas. In this work, the medium-entropy SrV1/3Fe1/3Mo1/3O3 (SVFMO) with Fe, V and Mo co-existing in the B site of a perovskite structure was fabricated in reducing 5% H2/Ar mixed gas: (1) SVFMO demonstrates more stable physicochemical properties when using SOFCs anodes in a reducing environment; (2) the co-existence of Fe, V and Mo in SVFMO forms more small-polaron couples, demonstrating greatly enhanced electronic conductivity. With SVFMO in a porous structure (simulating the porous anode layer), its electronic conductivity can also reach 70 S cm−1 when testing at 800 °C in an H2 atmosphere; (3) SVFMO with more oxygen vacancies achieves higher catalytic ability for fuel gas, as an SOFCs anode layer demonstrates 720 mW cm−2 at 850 °C.  相似文献   

20.
Rechargeable lithium-ion batteries (LIBs) are known to be practical and cost-effective devices for storing electric energy. LIBs have a low energy density, which calls for the development of new anode materials. The Prussian blue analog (PBA) is identified as being a candidate electrode material due to its facile synthesis, open framework structures, high specific surface areas, tunable composition, designable topologies and rich redox couples. However, its poor electrical conductivity and mechanical properties are the main factors limiting its use. The present study loaded PBA (Co3[Fe(CN)6]·10H2O) on graphene oxide (Co-Fe-PBA@rGO) and then conducted calcination at 300 °C under the protection of nitrogen, which reduced the crystal water and provided more ion diffusion pathways. As a result, Co-Fe-PBA@rGO showed excellent performance when utilized as an anode in LIBs, and its specific capacities were 546.3 and 333.2 mAh g−1 at 0.1 and 1.0 A g−1, respectively. In addition, the electrode also showed excellent performance in the long-term cycle, and its capacity reached up to 909.7 mAh g−1 at 0.1 A g−1 following 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号