首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The myeloid malignancies include the myeloproliferative neoplasms (MPN) including chronic myeloid leukemia (CML), and acute myeloid leukemia (AML). A growing body of evidence documents that these diseases are caused by genetic mutations that constitutively activate tyrosine kinases. They include the BCR/ABL in CML, the V617F JAK2 in Philadelphia chromosome–negative MPN, and the Flt3 ITD and TKD mutations in AML. Trials of the ABL kinase inhibitor, imatinib, have revolutionized the treatment of CML, and there are ongoing studies with other kinase inhibitors in MPN and AML. Here we review results of recent studies with first-generation JAK2 inhibitors in the treatment of MPN and second-generation ABL and Flt3 inhibitors in CML and AML, respectively. It is becoming apparent that although these kinase mutations have similar effects in vitro, each of the diseases has unique features that alter the use of kinase inhibitors in the clinic.  相似文献   

2.
Constitutive tyrosine kinase activation by reciprocal chromosomal translocation is a common pathogenetic mechanism in chronic myeloproliferative disorders. Since centrosomal proteins have been recurrently identified as translocation partners of tyrosine kinases FGFR1, JAK2, PDGFRα and PDGFRβ in these diseases, a role for the centrosome in oncogenic transformation has been hypothesized. In this study, we addressed the functional role of centrosomally targeted tyrosine kinase activity. First, centrosomal localization was not routinely found for all chimeric fusion proteins tested. Second, targeting of tyrosine kinases to the centrosome by creating artificial chimeric fusion kinases with the centrosomal targeting domain of AKAP450 failed to enhance the oncogenic transforming potential in both Ba/F3 and U2OS cells, although phospho-tyrosine-mediated signal transduction pathways were initiated at the centrosome. We conclude that the centrosomal localization of constitutively activated tyrosine kinases does not contribute to disease pathogenesis in chronic myeloproliferative disorders.  相似文献   

3.
PURPOSE OF REVIEW: The identification and characterization of somatic disease alleles have greatly improved our understanding of the molecular pathogenesis of myeloproliferative disorders. This review focuses on recent studies investigating the role of activated tyrosine kinase signaling in the Philadelphia chromosome negative myeloproliferative disorders. RECENT FINDINGS: Previously identified tyrosine kinase mutations in chronic myeloid leukemia and other myeloproliferative disorders suggested the possibility that polycythemia vera, essential thrombocythemia and primary myelofibrosis are also caused by activated tyrosine kinases. Recent studies identified an activating mutation in the JAK2 tyrosine kinase (JAK2V617F) in most patients with polycythemia vera and in approximately half of those with essential thrombocythemia and primary myelofibrosis. More recently, activating mutations in the thrombopoietin receptor and in JAK2 exon 12 have been identified in JAK2V617F negative myeloproliferative disorders. SUMMARY: The discovery of activated tyrosine kinases in the majority of patients with polycythemia vera, essential thrombocythemia and primary myelofibrosis has diagnostic and pathogenetic implications. Subsequent studies are needed to elucidate the cause of myeloproliferative disorders without known disease alleles and to determine if inhibition of JAK2 signaling has therapeutic efficacy in the treatment of polycythemia vera, essential thrombocythemia and primary myelofibrosis.  相似文献   

4.
Chronic myeloproliferative diseases (CMPDs) are characterized by the abnormal proliferation and survival of one or more myeloid cell types. The archetype of this class of hematological diseases is chronic myeloid leukemia (CML), characterized by the presence of the Philadelphia (Ph) chromosome, the result of t(9;22)(q34;q11), and the associated BCR-ABL1 oncogene. Some of the Ph-negative myeloproliferative diseases are characterized by other chromosomal translocations involving a variety of tyrosine kinase genes, including ABL1, ABL2, PDGFRA, PDGFRB, FGFR1, and JAK2. The majority of Ph-negative CMPDs, however, such as chronic eosinophilic leukemia, polycythemia vera, essential thrombocythemia, and idiopathic myelofibrosis are not characterized by the presence of recurrent chromosomal abnormalities. Recent studies have identified the FIP1L1-PDGFRA fusion gene, generated due to a small cryptic deletion on chromosome 4q12, and the activating V617F mutation in JAK2 in a significant fraction of Ph-negative CMPDs. These results show that abnormalities in tyrosine kinase genes are central to the molecular pathogenesis of CMPDs. Genome-wide screenings to identify novel tyrosine kinase abnormalities in CMPDs may contribute to further improvement of the diagnosis and the treatment of these diseases.  相似文献   

5.
The BCR-ABL kinase inhibitor imatinib mesylate is currently the standard therapy for patients with chronic myeloid leukemia (CML). However, mutations within the ABL kinase domain interfering with drug binding have been identified as the main mechanism of resistance to imatinib. Multiple distinct BCR-ABL kinase mutant isoforms conferring varying degrees of resistance to tyrosine kinase inhibitors have been reported. Nilotinib is a tyrosine kinase inhibitor 30-fold more potent than imatinib against BCR-ABL kinase. Nilotinib is active against a wide range of imatinib-resistant BCR-ABL mutant isoforms, except for T315I. Results from Phase II studies of nilotinib for patients with CML after failure or intolerance to imatinib therapy have shown a favorable toxicity profile and confirmed the high efficacy of nilotinib in this setting. Studies addressing the activity of nilotinib in newly-diagnosed patients with CML are underway. Furthermore, nilotinib is a potent inhibitor of KIT and PDGFR kinases. Here, we review the preclinical development of nilotinib and the activity of this agent in patients with CML and in tumors driven by KIT and/or PDGFR mutant kinases, such as gastrointestinal stromal tumors and some forms of clonal hypereosinophilia.  相似文献   

6.
Activating alleles of JAK3 in acute megakaryoblastic leukemia   总被引:6,自引:0,他引:6  
Tyrosine kinases are aberrantly activated in numerous malignancies, including acute myeloid leukemia (AML). To identify tyrosine kinases activated in AML, we developed a screening strategy that rapidly identifies tyrosine-phosphorylated proteins using mass spectrometry. This allowed the identification of an activating mutation (A572V) in the JAK3 pseudokinase domain in the acute megakaryoblastic leukemia (AMKL) cell line CMK. Subsequent analysis identified two additional JAK3 alleles, V722I and P132T, in AMKL patients. JAK3(A572V), JAK3(V722I), and JAK3(P132T) each transform Ba/F3 cells to factor-independent growth, and JAK3(A572V) confers features of megakaryoblastic leukemia in a murine model. These findings illustrate the biological importance of gain-of-function JAK3 mutations in leukemogenesis and demonstrate the utility of proteomic approaches to identifying clinically relevant mutations.  相似文献   

7.
JAK家族是JAK-STAT信号传导通路中的非受体型酪氨酸蛋白激酶,JAK2-STAT3作为JAK-STAT通路中的一个重要信号轴,它在肿瘤中的持续性激活可以通过影响细胞的生长、凋亡、周期等起到促进肿瘤发生发展的作用.JAK2突变,尤其是JAK2V617F突变的发现引发了JAK2抑制剂的研究热潮,为肿瘤的治疗提供了新的方向.JAK2抑制剂能削弱肿瘤细胞的恶性生物学行为,在有JAK2V617F突变的血液系统肿瘤以及JAK2-STAT3信号异常的实体肿瘤中都具有一定的治疗价值.  相似文献   

8.
9.
Activating tyrosine kinase (TK) mutations disrupt cellular proliferation and survival pathways and are increasingly recognized as a fundamental cause of human cancers. Until very recently, the only TK mutations widely observed in myeloid neoplasia were the BCR/ABL1 fusions characteristic of chronic myeloid leukemia and some acute leukemias, and FLT3 activating mutations in a minority of acute myeloid leukemias. Several rare TK mutations are found in various atypical myeloproliferative disorders, but big pieces of the pathobiological puzzle were glaringly missing. In the first half of 2005, one gap was filled in: 7 studies identified the same acquired amino acid substitution (V617F) in the Janus kinase 2 (JAK2) TK in large numbers of patients with diverse clonal myeloid disorders. Most affected patients suffer from the classic BCR/ABL1-negative myeloproliferative disorders (MPD), especially polycythemia vera (74% of n = 506), but a subset of people with essential thrombocythemia (36% of n = 339) or myelofibrosis with myeloid metaplasia (44% of n = 127) bear the identical mutation, as do a few individuals with myelodysplastic syndromes or an atypical myeloid disorder (7% of n = 556). This long-sought common mutation in BCR/ABL1-negative MPD raises many provocative biological and clinical questions, and demands re-evaluation of prevailing diagnostic algorithms for erythrocytosis and thrombocytosis. JAK2 V617F may provide novel molecular targets for drug therapy, and suggests other places to seek cooperating mutations or mutations associated with similar phenotypes. The story of this exciting finding will unfold rapidly in the years ahead, and ongoing developments will be important for all hematologists to understand.  相似文献   

10.
Critical role for Gab2 in transformation by BCR/ABL   总被引:18,自引:0,他引:18  
The BCR/ABL oncogene causes chronic myelogenous leukemia (CML) in humans and a CML-like disease, as well as lymphoid leukemia, in mice. p210 BCR/ABL is an activated tyrosine kinase that phosphorylates itself and several cellular signaling proteins. The autophosphorylation site tyrosine 177 binds the adaptor Grb2 and helps determine the lineage and severity of BCR/ABL disease: Tyr177 mutation (BCR/ABL-Y177F) dramatically impairs myeloid leukemogenesis, while diminishing lymphoid leukemogenesis. The critical signal(s) from Tyr177 has remained unclear. We report that Tyr177 recruits the scaffolding adaptor Gab2 via a Grb2/Gab2 complex. Compared to BCR/ABL-expressing Ba/F3 cells, BCR/ABL-Y177F cells exhibit markedly reduced Gab2 tyrosine phosphorylation and association of phosphatidylinositol-3 kinase (PI3K) and Shp2 with Gab2 and BCR/ABL, and decreased PI3K/Akt and Ras/Erk activation, cell proliferation, and spontaneous migration. Remarkably, bone marrow myeloid progenitors from Gab2 (-/-) mice are resistant to transformation by BCR/ABL, whereas lymphoid transformation is diminished as a consequence of markedly increased apoptosis. BCR/ABL-evoked PI3K/Akt and Ras/Erk activation also are impaired in Gab2 (-/-) primary myeloid and lymphoid cells. Our results identify Gab2 and its associated proteins as key determinants of the lineage and severity of BCR/ABL transformation.  相似文献   

11.
Protein tyrosine kinases (PTKs) catalyse the phosphorylation of tyrosine residues by transfer of a phosphate group from ATP. They form a family of over 100 enzymes that all participate in signal transduction pathwaysregulating cellular growth, activation and differentiation. PTKs fall into two groups: receptor (or transmembrane) PTKs and non-receptor (or intracellular) PTKs. Receptor PTKs provide transmembrane signals in response to ligand binding, often consequent to ligand-induced di…  相似文献   

12.
Janus kinases: components of multiple signaling pathways   总被引:8,自引:0,他引:8  
Rane SG  Reddy EP 《Oncogene》2000,19(49):5662-5679
Cytoplasmic Janus protein tyrosine kinases (JAKs) are crucial components of diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Evidence to date, indicates that JAK kinase function may integrate components of diverse signaling cascades. While it is likely that activation of STAT proteins may be an important function attributed to the JAK kinases, it is certainly not the only function performed by this key family of cytoplasmic tyrosine kinases. Emerging evidence indicates that phosphorylation of cytokine and growth factor receptors may be the primary functional attribute of JAK kinases. The JAK-triggered receptor phosphorylation can potentially be a rate-limiting event for a successful culmination of downstream signaling events. In support of this hypothesis, it has been found that JAK kinase function is required for optimal activation of the Src-kinase cascade, the Ras-MAP kinase pathway, the PI3K-AKT pathway and STAT signaling following the interaction of cytokine/interferon receptors with their ligands. Aberrations in JAK kinase activity, that may lead to derailment of one or more of the above mentioned pathways could disrupt normal cellular responses and result in disease states. Thus, over-activation of JAK kinases has been implicated in tumorigenesis. In contrast, loss of JAK kinase function has been found to result in disease states such as severe-combined immunodeficiency. In summary, optimal JAK kinase activity is a critical determinant of normal transmission of cytokine and growth factor signals.  相似文献   

13.
The cytoplasmic serine/threonine kinase BRAF and receptor tyrosine kinases of the platelet-derived growth factor receptor (PDGFR) family are frequently activated in cancer by mutations of an equivalent amino acid. Structural studies have provided important insights into why these very different kinases share similar oncogenic hot spots and why the PDGFR juxtamembrane region is also a frequent oncogenic target. This research has implications for other kinases that are mutated in human tumours and for the treatment of cancer using kinase inhibitors.  相似文献   

14.
Progression on first-line therapy with imatinib in gastrointestinal stromal tumors (GIST) is caused by either initial resistance or more often a secondary mutation in tyrosine kinases KIT or PDGFR. Therapies in development for imatinib-resistant GIST include agents that target KIT/PDGFR with greater potency or possess broader kinase inhibition profiles including VEGFR. To circumvent secondary mutations in KIT/PDGFR, inhibition of the downstream signaling in PI3K/Akt/mTOR pathway and enhanced degradation of KIT/PDGFR are also under investigation.  相似文献   

15.
The JAK2 V617F mutation in de novo acute myelogenous leukemias   总被引:5,自引:0,他引:5  
Lee JW  Kim YG  Soung YH  Han KJ  Kim SY  Rhim HS  Min WS  Nam SW  Park WS  Lee JY  Yoo NJ  Lee SH 《Oncogene》2006,25(9):1434-1436
A missense somatic mutation in JAK2 gene (JAK2 V617F) has recently been reported in chronic myeloproliferative disorders, including polycythemia vera, essential thrombocythemia and myelofibrosis with myeloid metaplasia, strongly suggesting its role in the pathogenesis of myeloid disorders. As activation of JAK2 signaling is occurred in other malignancies as well, we have analysed 558 tissues from common human cancers, including colon, breast and lung carcinomas, and 143 acute adulthood leukemias by polymerase chain reaction -- single strand conformation polymorphism analysis. We found three JAK2 mutations in the 113 acute myelogenous leukemias (AMLs) (2.7%), but none in other cancers. The mutations consisted of two V617F mutations and one K607N mutation. None of the AML patients with the JAK2 V617F mutation had a history of previous hematologic disorders. This is the first report on the JAK2 gene mutation in AML, and the data indicated that the JAK2 gene mutation may not only contribute to the development of chronic myeloid disorders, but also to some AMLs.  相似文献   

16.
Chien JH  Tang JL  Chen RL  Li CC  Lee CP 《Leukemia research》2008,32(11):1724-1734
The ABL-BCR fusion protein is a constitutively activated tyrosine kinase thought to play a central role in chronic myeloid leukemia (CML) and Philadelphia (Ph) chromosome acute lymphoid leukemia (ALL). Targeting the tyrosine kinase activity of ABL-BCR has been shown to be a promising therapeutic strategy in treating this disorder. Among the tyrosine kinase inhibitors, STI571 is a very effective therapeutic agent when administered to CML patients in the stable chronic phase. However, it has been reported that many CML patients with blast cell crisis treated with STI571 relapsed and became resistant to STI571. In order to understand the possible molecular mechanisms underlying STI571 resistance caused by ABL gene mutations, we investigated 19 patients (18 CML patients and 1 Ph (+) ALL patient) who either relapsed after initial response or had no response to STI571 treatment. We used polymerase chain reaction followed by restriction fragment length polymorphism (PCR-RFLP) analysis, dHPLC, and direct DNA sequencing to analyze any possible mutations in exons 5 to 9 of the ABL gene. Our results showed that 5 out of 19 patients had various mutations between exons 5 and 7 of the ABL gene. The Ph (+) ALL patient had a Glu255Lys mutation in exon 5 and a Thr315Ile mutation in exon 7. The Glu255Lys substitution has a G to A change, and the Thr315Ile substitution has a C to T change in the ABL gene. The other unique mutations found in this study include: Tyr253His, Met351Thr, GAA tri-nucleotides insertion, and Leu213Pro.  相似文献   

17.
Growth, survival and differentiation of hematopoietic cells are regulated by the interactions between hematopoietic growth factors and their receptors. The defect in these interactions results in a failure of hematopoiesis, while aberrantly elevated and/or sustained activation of these signals cause hematologic malignancies. Among them, constitutively activating mutations of the receptor tyrosine kinases (RTKs), such as c-Kit, platelet-derived growth factor receptor (PDGFR) and FLT3, are often involved in the pathogenesis of various types of hematologic malignancies. Constitutive activation of RTKs is provoked by several mechanisms including chromosomal translocations and various mutations involving their regulatory regions. Chromosomal translocations commonly generate chimeric proteins consisting of the cytoplasmic domain of RTKs and the dimerization or multimerization motif of the fusion partner, resulting in the constitutive dimerization of RTKs. On the other hand, missense, insertion or deletion mutations in the regulatory regions, such as juxtamembrane domain, activation loop, and extracellular domain, also cause constitutive activation of RTKs mainly by preventing the auto-inhibitory regulation. Oncogenic RTKs activate downstream signaling molecules such as Ras/MAPK, PI3-K/Akt/mTOR, and STATs as well as ligand-activated wild type RTKs. However, their signals are quantitatively and qualitatively different from wild type RTKs. Based on these findings, several agents that target oncogenic RTKs or their downstream molecules have been developed: imatinib and FLT3 inhibitors for RTKs themselves, farnesyltransferase inhibitors, mTOR inhibitors and MEK inhibitors for the downstream signaling molecules. As promising results have been obtained in several clinical trials using these agents, the establishment of these molecular targeted agents is expected. ( Cancer Sci 2008; 99: 479–485)  相似文献   

18.
19.
JAK2 mutation has not been described in patients with chronic lymphocytic leukemia (CLL). We found JAK2 mutation in a patient with CLL and coexisting myeloproliferative neoplasm (MPN). In this patient, we demonstrated the presence of the JAK2 mutation in CD34+ progenitor cells, myeloid lineage cells, megakaryocytes, B lymphocytes but not in T lymphocytes. This case represents the first case report of JAK2 mutation in CLL and may also suggest that, JAK2 mutation most likely represents a secondary event from primary gene mutations involving the primitive stem cells which give rise to MPN and CLL. Furthermore, in this case, we believe that we are the first to demonstrate that JAK2 mutation in myeloid and B lymphoid cells but not T lymphocytes in a case of coexisting CLL and MPN.  相似文献   

20.
KIT gain of function mutations play an important role in the pathogenesis of gastrointestinal stromal tumors (GISTs). Imatinib is a selective tyrosine kinase inhibitor of ABL, platelet-derived growth factor receptor (PDGFR), and KIT and represents a new paradigm of targeted therapy against GISTs. Here we report for the first time that, after imatinib treatment, an additional specific and novel KIT mutation occurs in GISTs as they develop resistance to the drug. We studied 12 GIST patients with initial near-complete response to imatinib. Seven harbored mutations in KIT exon 11, and 5 harbored mutations in exon 9. Within 31 months, six imatinib-resistant rapidly progressive peritoneal implants (metastatic foci) developed in five patients. Quiescent residual GISTs persisted in seven patients. All six rapidly progressive imatinib-resistant implants from five patients show an identical novel KIT missense mutation, 1982T-->C, that resulted in Val654Ala in KIT tyrosine kinase domain 1. This novel mutation has never been reported before, is not present in pre-imatinib or post-imatinib residual quiescent GISTs, and is strongly correlated with imatinib resistance. Allelic-specific sequencing data show that this new mutation occurs in the allele that harbors original activation mutation of KIT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号