首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The role of extraocular muscle (EOM) afferent feedback signals in the control of eye movement is still controversial. We recorded from 106 single units in the vestibular nuclei, oculomotor nuclei and reticular formation of 80 decerebrate, paralysed pigeons. EOM afferents were stimulated by passive eye movement (PEM) during vestibular stimulation by sinusoidal oscillation in the horizontal plane. We found that EOM afferent signals profoundly modified the vestibular responses of 91 (86%) of the single units recorded. As well as using PEM to simulate eye movements similar to saccades, we moved the eye in a manner which mimicked the slow phase of the vestibulo-ocular reflex (artificial VOR, AVOR). We have found evidence that, as well as providing signals closely related to the parameters of eye movement, PEM alters the vestibular responses of cells during AVOR in a manner which suggests that EOM afferent signals may play a corrective role in the moment-to-moment control of eye movement in the vestibulo-ocular reflex.  相似文献   

2.
Summary In cats, anaesthetized with chloralose and paralysed, the responses of units in the right lateral thalamus were recorded while the extrinsic ocular muscles (EOM) of the right eye were stretched in the dark. Phasic responses were found in all layers of the dorsal lateral geniculate nucleus (LGNd) and in the perigeniculate nucleus (PGN). A given unit usually responded to stretch of more than one EOM and thus to more than one direction of rotation of the eye in the orbit. LGNd. Of a sample of 76 units in LGNd, 55 (72%) gave visual but no muscle responses and 21 (28%) responded to EOM stretch. In all, 40 units with EOM responses were examined and 25 of the 27 tested (93%) also had visual responses. Of the 40 units, 32 could be allocated to layers, thus: layer A, 8 (25%); layer A1, 20 (63%); layer B, 3 (9%); central interlaminar nucleus, 1 (3%). It is interesting that most of the EOM responses were found in layer A1 which receives the excitatory visual input from the eye whose EOM were stretched. Muscle responsive units occurred with ON- and OFF-centre visual responses of sustained and transient types. PGN. In PGN, 21 units gave EOM responses and most of them were also excited by visual input.The conclusion is that the LGNd and PGN recieve an extraretinal proprioceptive signal which should be present during at least large saccadic eye movements. The anatomical pathways which may be involved and the significance of the signal are discussed briefly.  相似文献   

3.
Summary Extracellular unit records were made from the left brain stem of decerebrate, paralysed giant toads (Bufo marinus) during passive movement of the ipsilateral eye. Units in the vestibular nuclear complex (VN) were identified by their short-latency responses to electrical stimulation of the anterior branch of the ipsilateral VIII cranial nerve.Of 58 units in the region of VN, as judged from field potentials to VIII nerve stimulation, fourteen gave phasic excitatory responses to passive movement of the eye and were also identified as vestibular nuclear units. A further twelve units which responded to eye-movement could not be assigned to VN; the remaining 32 units were in VN but did not respond to passive eye-movement. Also, of 16 units whose recording sites were identified histologically in the VN complex, 11 gave responses to vestibular nerve stimulation and to passive eye-movement and 5 responded to eye-movement only.Control experiments eliminated auditory, visual and cutaneous sources for the signal produced by passive eye-movement; thus, the signal must have arisen from intraorbital proprioceptors. Units in VN were also found which were excited by electrical stimulation of the intraorbital part of the fourth (trochlear) nerve; this provides strong evidence that proprioceptors in the extrinsic ocular muscles (EOM) are included in the receptors which provide the signal to VN during passive eye-movement.The effects of vestibular stimulation and of passive eye-movement were found to interact upon units in VN. When passive eye-movement and vestibular stimulation were paired the response to the second stimulus was significantly reduced over a range of interstimulus intervals.The conclusions are that orbital proprioceptive signals, including those from the EOM, project to the vestibular nuclei in the toad and, there, are able to influence processing of vestibular afferent signals. We suggest, therefore, that orbital proprioceptive signals may play a part in oculomotor control. The significance of the results is discussed in relation to the strategic position of the VN in the oculomotor control system.  相似文献   

4.
1. To determine the potential role of the primate accessory optic system (AOS) in optokinetic and smooth-pursuit eye movements, we recorded the activity of 110 single units in a subdivision of the AOS, the lateral terminal nucleus (LTN), in five alert rhesus macaques. All monkeys were trained to fixate a stationary target spot during visual testing and to track a small spot moving in a variety of visual environments. 2. LTN units formed a continuum of types ranging from purely visual to purely oculomotor. Visual units (50%) responded best for large-field (70 x 50 degrees), moving visual stimuli and had no response associated with smooth-pursuit eye movement; some responded during smooth pursuit in the dark, but the response disappeared if the target was briefly extinguished, indicating that their smooth-pursuit-related response reflected activation of a parafoveal receptive field. Eye movement and visual units (36%) responded both for large, moving visual stimuli and during smooth-pursuit eye movements made in the dark. Eye movement units (14%) discharged during smooth-pursuit or other eye movements but showed no evidence of visual sensitivity. 3. Essentially all (98%) LTN units were direction selective, responding preferentially during vertical background and/or smooth-pursuit movement. The vast majority (88%) preferred upward background and/or eye movement. During periodic movement of the large-field visual background while the animal fixated, their firing rates were modulated above and below rather high resting rates. Although LTN units typically responded best to movement of large-field stimuli, some also responded well to small moving stimuli (0.25 degrees diam). 4. LTN units could be separated into two populations according to their dependence on visual stimulus velocity. For periodic triangle wave stimuli, both types had velocity thresholds less than 3 degrees/s. As stimulus velocity increased above threshold, the activity of one type reached peak firing rates over a very narrow velocity range and remained nearly at peak firing for velocities from approximately 4-80 degrees/s. The firing rates of the other type exhibited velocity tuning in which the firing rate peaked at an average preferred velocity of 13 degrees/s and decreased for higher velocities. 5. A close examination of firing rates to sinusoidal background stimuli revealed that both unit types exhibited unusual behaviors at the extremes of stimulus velocity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
The responses of single units in the primary visual cortex (Area 17) of anaesthetized, paralysed cats, to passive movement of the ipsilateral eye were studied. Responses to passive eye movement were found in about one-third of the cortical units isolated. Appropriate control experiments excluded visual, auditory and cutaneous inputs as the source of the effective signal during passive eye movement. The magnitudes of the responses to a number (usually four) of radial directions of passive eye movement were estimated from sets of peristimulus time histograms "interleaved" in time. Units were defined as "radially selective" if the responses to movement along one radius (e.g. vertically upwards) exceeded that along at least one other orthogonal radius (e.g. horizontal-temporal). Of 60 units tested, 53 (88%) were "radially selective" according to this definition. Some of the "radially selective" units showed an additional type of specificity to passive eye movement: (a) Some units responded preferentially to movement along one of the arcs of passive eye movement which were tested (e.g. vertical movement above the equator of the orbit). These units we have called "arc selective". (b) Other units were sensitive to the direction of movement and preferred movement in a particular direction over more than one arc (e.g. horizontal movement towards the temporal side in both nasal and temporal halves of the orbit). These we have called "direction selective". Twenty-one "radially selective" units showed one of these additional properties, nine were arc selective and twelve were direction selective. The implications of these results for the understanding of the function of orbital proprioceptive signals in the cortex are discussed briefly. Responses to passive eye movement were found in all of layers II-VI in Area 17 and the implications of this for the understanding of the pathway by which orbital proprioceptive signals reach the primary visual cortex are discussed. The experiments have shown that many units in cat visual cortex respond to passive eye movement and that most of these units have some specificity for particular radial directions of movement while some have additional specific properties. We believe that these properties of radial, directional and arc sensitivity are likely to be important in understanding the function of the orbital proprioceptive signal which arises during eye movement and they are particularly interesting in relation to the findings of others that this proprioceptive signal appears to be concerned in the normal development of visual properties in the cortex and in the control of visually guided movement in adult cats.  相似文献   

6.
1. We recorded from single neurons in awake, trained rhesus monkeys in a lighted environment and compared responses to stimulus movement during periods of fixation with those to motion caused by saccadic or pursuit eye movements. Neurons in the inferior pulvinar (PI), lateral pulvinar (PL), and superior colliculus were tested. 2. Cells in PI and PL respond to stimulus movement over a wide range of speeds. Some of these cells do not respond to comparable stimulus motion, or discharge only weakly, when it is generated by saccadic or pursuit eye movements. Other neurons respond equivalently to both types of motion. Cells in the superficial layers of the superior colliculus have similar properties to those in PI and PL. 3. When tested in the dark to reduce visual stimulation from the background, cells in PI and PL still do not respond to motion generated by eye movements. Some of these cells have a suppression of activity after saccadic eye movements made in total darkness. These data suggest that an extraretinal signal suppresses responses to visual stimuli during eye movements. 4. The suppression of responses to stimuli during eye movements is not an absolute effect. Images brighter than 2.0 log units above background illumination evoke responses from cells in PI and PL. The suppression appears stronger in the superior colliculus than in PI and PL. 5. These experiments demonstrate that many cells in PI and PL have a suppression of their responses to stimuli that cross their receptive fields during eye movements. These cells are probably suppressed by an extraretinal signal. Comparable effects are present in the superficial layers of the superior colliculus. These properties in PI and PL may reflect the function of the ascending tectopulvinar system.  相似文献   

7.
1. To determine the possible role of the primate pretectal nucleus of the optic tract (NOT) in the generation of optokinetic and smooth-pursuit eye movements, we recorded the activity of 155 single units in four behaving rhesus macaques. The monkeys were trained to fixate a stationary target spot during visual testing and to track a small moving spot in a variety of visual environments. 2. The majority (82%) of NOT neurons responded only to visual stimuli. Most units responded vigorously for large-field (70 x 50 degrees) moving visual stimuli and responded less, if at all, during smooth-pursuit eye movements in the dark; many of these units had large receptive fields (greater than 10 x 10 degrees) that included the fovea. The remaining visual units responded more vigorously during smooth-pursuit eye movements in the dark than during movement of large-field visual stimuli; all but one had small receptive fields (less than 10 x 10 degrees) that included the fovea. For all visual units that responded during smooth pursuit, extinction of the small moving target so briefly that pursuit continued caused the firing rates to drop to resting levels, confirming that the discharge was due to visual stimulation of receptive fields with foveal and perifoveal movement sensitivity and not to smooth-pursuit eye movements per se. 3. Eighteen percent of all NOT units ceased their tonic discharge in association with all saccades including the quick phases accompanying optokinetic or vestibular nystagmus. The pause in firing began after saccade onset, was unrelated to saccade duration, and occurred even in complete darkness. 4. Most (90%) of the visual NOT units were direction selective. They exhibited an increase in firing above resting during horizontal (ipsilateral) background movement and/or during smooth pursuit of a moving spot and a decrease in firing during contralateral movement. 5. The firing rates of NOT units were highly dependent on stimulus velocity. All had velocity thresholds of less than 1 degree/s and exhibited a monotonic increase in firing rate with visual stimulus velocity over part (n = 90%) or all (n = 10%) of the tested range (i.e., 1-200 degrees/s). Most NOT units exhibited velocity tuning with an average preferred velocity of 64 degrees/s.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
The responses of single units in the vestibular nuclei, nucleus praepositus hypoglossi and in the brainstem, deep and posterior to the abducens nucleus, were studied in anaesthetized, paralysed cats. Natural vestibular stimulation was provided by horizontal, sinusoidal oscillation of the animal and extraocular muscle afferents of the ipsilateral eye were activated either by passive eye-movement or by electrical stimulation of the inferior oblique branch of the oculomotor nerve in the orbit. Unit responses to vestibular and/or orbital stimuli were examined in sets of peristimulus time histograms interleaved in time. Of 127 units exposed to both types of stimulus, 40 (32%) responded only to vestibular input; 46 (32%) were affected only by the orbital afferent signal and 19 (15%) received both signals; the remaining 22 units (17%) were discarded because they had polymodal (usually somaesthetic) input. Of the 93 units whose recording sites were determined histologically, 24 were in the medial vestibular nucleus, 16 in the n. praepositus hypoglossi and 45 in the magnocellular nucleus of the reticular formation posterior and deep to the abducens nucleus. In these three nuclei 19 units in total were found which carried the orbital proprioceptive afferent signal and also responded to horizontal vestibular stimulation. The input from the eye muscles proved able to modify the vestibular response by adding excitation or inhibition or both. Effects of the orbital signal were generally phasic. About half of the units which responded to passive eye-movement showed statistically significant differences between their responses to horizontal and to vertical eye-movement. We have shown previously that signals from extraocular muscle proprioceptors reach the vestibulo-oculomotor system in an amphibian and a bony fish; the present experiments show that this is the case in a mammal also. The fact that the visual and visuomotor behaviour of these three species is very different suggests that the proprioceptive signal may play some rather fundamental role in the vestibulo-ocular system. The principal interest of the present results is that they demonstrate that units in the central vestibular system of the cat, in structures which are known to be concerned in oculomotor control, and particularly in the organization of horizontal eye-movement, receive an afferent signal from the eye muscles during passive eye-movement. These brainstem nuclei are known to receive various combinations of input from the vestibular and visual systems and of signals which represent neck movement and eye position and velocity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The responses of single units in the brainstem of the decerebrate, paralysed, pigeon were studied. Natural vestibular stimulation was provided by horizontal, sinusoidal, oscillation of the bird and extraocular muscle afferents of the ipsilateral eye were activated by passive eye-movement. Unit responses to vestibular and/or orbital stimuli were examined in sets of peristimulus time histograms interleaved in time. Of 352 units in the brainstem, in the region of the vestibular nuclei, which were exposed to the effects of both vestibular stimuli and passive eye-movement, 40 (11%) responded only to the latter; the other 312 units (89%) responded to vestibular stimulation at 0.4 Hz (amplitude +/- 8 degrees). Of these 312 units, 129 (41%) were affected only by vestibular stimuli; in the other 183 units (59%) passive eye-movement produced clear modification of the vestibular responses by adding excitation or inhibition, or both. There were phasic modifications in most units; in 77 there were longer-lasting changes in the vestibular responses, often following a phasic response. In 124 units whose responses were subjected to statistical analysis, the vestibular responses of 42 (34%) were modified only by horizontal eye-movement and eight (6%) were affected only by vertical movement. A further 18% showed larger effects from horizontal than from vertical eye-movement; in 2% vertical eye-movement was preferred. Further examination of the specificity of the effects of eye-movement in planes between the vertical and horizontal was possible in 29 units which showed various degrees of "tuning" of the effect. In some units there was additional specificity for eye-movement in (a) particular directions (towards the beak rather than towards the tail, for example); (b) in particular arcs of the orbit (centre-to-temporal rather than nasal-to-centre, for example). Note that all these effects were upon the responses of the units to horizontal vestibular stimulation. Thus, the modifications of the vestibular responses depended upon specific characteristics of the passive eye-movement. The exact recording sites of 29 units were determined histologically; some were in the medial vestibular nucleus but many were in the adjacent reticular formation. The principal interest of the results is that they provide more detailed information than was available previously on the specificity of the effects of afferent signals from the extraocular muscles upon the vestibular responses of units in regions of the brainstem known to be involved in oculomotor control. The decerebrate pigeon proves to be a particularly good preparation in which to study these effects.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
The analysis of image motion by the rabbit retina   总被引:6,自引:1,他引:6  
1. Micro-electrode recordings were made from rabbit retinal ganglion cells or their axons. Of particular interest were direction-selective units; the common on-off type represented 20.6% of the total sample (762 units), and the on-type comprised 5% of the total.2. From the large sample of direction-selective units, it was found that on-off units were maximally sensitive to only four directions of movement; these directions, in the visual field, were, roughly, anterior, superior, posterior and inferior. The on-type units were maximally sensitive to only three directions: anterior, superior and inferior.3. The direction-selective unit's responses vary with stimulus velocity; both unit types are more sensitive to velocity change than to absolute speed. On-off units respond to movement at speeds from 6'/sec to 10 degrees /sec; the on-type units responded as slowly as 30'/sec up to about 2 degrees /sec. On-type units are clearly slow-movement detectors.4. The distribution of direction-selective units depends on the retinal locality. On-off units are more common outside the ;visual streak' (area centralis) than within it, while the reverse is true for the on-type units.5. A stimulus configuration was found which would elicit responses from on-type units when the stimulus was moved in the null direction. This ;paradoxical response' was shown to be associated with the silent receptive field surround.6. The four preferred directions of the on-off units were shown to correspond to the directions of retinal image motion produced by contractions of the four rectus eye muscles. This fact, combined with data on velocity sensitivity and retinal distribution of on-off units, suggests that the on-off units are involved in control of reflex eye movements.7. The on-off direction-selective units may provide error signals to a visual servo system which minimizes retinal image motion. This hypothesis agrees with the known characteristics of the rabbit's visual following reflexes, specifically, the slow phase of optokinetic nystagmus.  相似文献   

11.
Summary 1. A total of 43 neurons that showed a close correlation with vertical eye movement with a burst-tonic or tonic type response during spontaneous saccades, were recorded within, and in the close vicinity of, the interstitial nucleus of Cajal (INC) in alert cats. Neuronal responses to sinusoidal vertical linear acceleration (0.2–0.85 Hz, amplitude 10.5 cm) and optokinetic stimuli (0.1–1.0 Hz, amplitude 10.5 cm), were examined. 2. All 43 eye movement-related neurons responded to sinusoidal vertical linear acceleration in the presence of a stationary visual pattern in correlation to robust eye movement responses with compensatory phase. Phase and gain values (re stimulus position) of response of individual cells were independent of the stimulus frequencies tested. Of these, 33 cells were examined during linear acceleration without visual input. Most cells (27/33) did not respond even when a weak linear vestibulo-ocular reflex was present (6/27). The remaining 6 cells (6/33) responded to linear acceleration. Their mean phase values advanced by 80 ° and gain dropped by 55% compared to the responses with visual inputs. 3. Twenty eight of the 43 cells were examined during vertical optokinetic stimuli. The activity of all 28 cells was modulated in correlation to eye movement responses. Response phase showed more lag, and gain decreased as stimulus frequencies increased, similar to optokinetic eye movement responses. 4. The close correlation between the activity of eye movement-related neurons in the INC region and robust eye movements during linear acceleration with visual inputs and optokinetic stimuli suggest that these neurons are involved in some aspect of vertical eye position generation during such stimuli.  相似文献   

12.
Summary Visual responses were recorded from single cells in the parafoveal striate (A17) and prelunate (A19) cortex of awake rhesus monkeys while they were fixating a stationary or moving spot of light in the presence of a moving or stationary stimulus. Retinotopy and stimulus requirements were found to be less strict in A19 as compared to A17. Striate cells preferred slow stimulus movements and displayed a large amount of binocular interaction. Many prelunate cells responded well to fast stimulus movements, all were binocular but only a few showed binocular interaction. In both areas an overall deficit of visual responses during saccadic eye movements was observed which was mostly due to the cells' inability to respond to stimuli moving at saccadic velocities. Only in A19 were there cells which seemed to receive non-sensory signals reducing visual responses during rapid eye movements. We concluded that the prelunate cortex has access to input which does not use the geniculate-striate pathway. The additional observation of presaccadic activation of some cells supports the idea that activity in the prelunate cortex may be associated with events related to visually guided changes of the direction of gaze and/or attention.Supported by the DFG, Sonderforschungsbereich Hirnforschung und Sinnesphysiologie (SFB 70, Tp B7)  相似文献   

13.
1. The nature and time window of interaction between passive phasic eye movement signals and visual stimuli were studied for dorsal lateral geniculate nucleus (LGNd) neurons in the cat. Extracellular recordings were made from single neurons in layer A of the left LGNd of anesthetized paralyzed cats in response to a normalized visual stimulus presented to the right eye at each of several times of movement of the left eye. The left eye was moved passively at a fixed amplitude and velocity while varying the movement onset time with respect to the visual stimulus onset in a randomized and interleaved fashion. Visual stimuli consisted of square-wave modulated circular spots of appropriate contrast, sign, and size to elicit an optimal excitatory response when placed in the neurons' receptive-field (RF) center. 2. Interactions were analyzed for 78 neurons (33 X-neurons, 43 Y-neurons, and 2 physiologically unclassified neurons) on 25-65 trials of identical visual stimuli for each of eight times of eye movement. 3. Sixty percent (47/78) of the neurons tested had a significant eye movement effect (ANOVA, P less than 0.05) on some aspect of their visual response. Of these 47 neurons, 42 (89%) had a significant (P less than 0.05) effect of an appropriately timed eye movement on the number of action potentials, 36 (77%) had a significant effect on the mean peak firing rate, and 31 (66%) were significantly affected as evaluated by both criteria. 4. The eye movement effect on the neurons' visual responses was primarily facilitatory. Facilitation was observed for 37 (79%) of the affected neurons. For 25 of these 37 neurons (68%), the facilitation was significant (P less than 0.05) as evaluated by both criteria (number of action potentials and mean peak firing rate). Ten (21%) of the affected neurons had their visual response significantly inhibited (P less than 0.05). 5. Sixty percent (46/78) of the neurons were tested for the effect of eye movement on both visually elicited activity (visual stimulus contrast = 2 times threshold) and spontaneous activity (contrast = 0). Eye movement significantly affected the visual response of 23 (50%) of these neurons. However, spontaneous activity was significantly affected for only nine (20%) of these neurons. The interaction of the eye movement and visual signals was nonlinear. 6. Nine of 12 neurons (75%) tested had a directionally selective effect of eye movement on the visual response, with most (8/9) preferring the temporal ward direction.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
1. The anatomical connections of the dorsolateral pontine nucleus (DLPN) implicate it in the production of smooth-pursuit eye movements. It receives inputs from cortical structures believed to be involved in visual motion processing (middle temporal cortex) or motion execution (posterior parietal cortex) and projects to the flocculus of the cerebellum, which is involved in smooth pursuit. To determine the role of the DLPN in smooth pursuit, we have studied the discharge patterns of 191 DLPN neurons in five monkeys trained to make smooth-pursuit eye movements of a spot moving either across a patterned background or in darkness. 2. Four unit types could be distinguished. Visual units (15%) discharged in response to movement of a large textured pattern, often in a direction-selective fashion but not during smooth pursuit of a spot in the dark. Eye movement neurons (31%) discharged during sinusoidal smooth pursuit in the dark with peak discharge rate either at peak eye position or peak eye velocity, but they showed no response during background movement or during other visual stimulation. These units continued to discharge when the target was extinguished (blanked) briefly, and the monkey continued to make smooth eye movements in the dark. The majority (54%) of our DLPN units discharged during both smooth pursuit in the dark and background movement while the monkey fixated. Blanking the target during smooth pursuit revealed that these units fell into two distinct classes. Visual pursuit units ceased discharging during a blank, suggesting that they had only a visual sensitivity. Pursuit and visual units continued to discharge during the blank, indicating that they had a combined oculomotor and visual sensitivity. 3. Ninety-five percent of the units that discharged during smooth pursuit were direction selective. These units had rather broad directional tuning curves with widths at half height ranging from 65 to 180 degrees. Many preferred directions for DLPN units were observed, although the vertical and near-vertical directions predominated. 4. Most units that responded to large-field background movement were direction selective. During sinusoidal movement of a large-field background, half of them also discharged in relation to stimulus velocity, whereas others did not.  相似文献   

15.
The sudden onset of a novel stimulus usually triggers orienting responses of the eyes, head and external ears (pinnae). These responses facilitate the reception of additional signals originating from the source of the stimulus and assist in the sensory guidance of appropriate limb and body movements. A midbrain structure, the superior colliculus, plays a critical role in triggering and organizing orienting movements and is a particularly interesting structure for studying the neural computations involved in the translation of sensory signals into motor commands. Auditory, somatosensory and visual signals converge in its deep layers, where neurons are found that generate motor commands for eye, head and pinna movements. This article focuses on the role of the superior colliculus in the control of saccadic (quick, high-velocity) eye movements with particular regard to three issues related to the functional properties of collicular neurons. First, how do neurons with large movement fields specify accurately the direction and amplitude of an eye movement? Second, how are signals converted from different sensory modalities into commands in a common motor frame of reference? Last, how are the motor command signals found in the superior colliculus transformed into those needed by the motor neuron pools innervating the extraocular muscles?  相似文献   

16.
Stationary periodic visual patterns (row of equally spaced dots or black-white stripes) of the period Ps illuminated stroboscopically with a flash frequency fs induce an apparent movement perception (sigma-movement) when slow eye movements are performed across the periodic pattern. The movement appears in the direction of the eye movements when the angular speed VE of the eyes corresponds to the following condition: Ve = k . Ps . fs [deg . s-1] (1) k is a constant and equals 1 (or exceptionally 2 or 3). The sigma-movement induces a sigma-OKN with an average angular speed of its slow phases corresponding to Eq.(1). sigma-OKN can be elicited when identical foveal or identical extrafoveal stimulus patterns are applied from flash to flash. A considerable random variability of the flash sequence does not interrupt the sigma-movement and the sigma-OKN. Both phenomena can also be elicited by a stimulus pattern with its periodicity hidden in spatial noise and this periodic pattern only becomes visible during the eye movements. It is argued that the sigma-phenomena are caused by efference copy signals of the gaze control system, which interact with the afferent signals (displacement of visual stimuli on the retina) at different levels of the afferent visual system. One interaction is supposed at a cortical level where the extrapersonal visual space is represented.  相似文献   

17.
The heterogeneous signal content of floccular Purkinje cell responses to optokinetic stimuli was analyzed in alert rabbits by means of selective lesions to brainstem pathways. Extracellular spike activities of Purkinje cells were recorded from rostral areas of the flocculus where local electrical stimulation elicited abduction of the ipsilateral eye. Chronic unilateral destruction of the nucleus reticularis tegmenti pontis, interrupting the visual mossy fiber afferent pathway to the flocculus, reduced the gain of the optokinetic eye movement (OKR) to one-third of the control. Concomitantly, simple spike responses of Purkinje cells to optokinetic stimuli were reduced to less than one-third of the control values. Severance of the visual climbing fiber afferent pathway by rostral inferior olivary lesions reduced the OKR gain little, and decreased the simple spike responses of the Purkinje cells only slightly. Bilateral lesions of the rostral half of the medial vestibular nucleus and rostro-ventral part of the lateral vestibular nucleus, which reduced the eye velocity in the OKR to less than one-third of the control value, did not induce any appreciable change in the simple spike responses of the Purkinje cells. It is concluded that visual mossy fiber signals are the most dominant factor which determines Purkinje cell responses to optokinetic stimuli, while visual climbing fiber signals and eye velocity mossy fiber signals make only subsidiary contributions.  相似文献   

18.
1. The responses to visual stimuli of single units in the cortex of cats anaesthetized with pentobarbitone were recorded extracellularly with glass micropipettes. All had receptive field centres more than 5 degrees and most lay between 5 and 20 degrees from the area centralis. Most units were in Area 18 but some were in the corresponding field representation in Area 17. 2. A quantitative method is described in which the visual stimuli (slits or light bars) were presented repetitively by mechanical means in each of four orientations of the stimulus and in two directions of movement for each orientation. The responses were analysed quantitatively and criteria are described for classification of units according to their preference for particular orientations or directions of movement of the stimulus. 3. Some units were studied continuously for up to 2 hr using the quantitative technique. In Area 18, of nineteen units, eighteen showed changes in their preference for direction of stimulus movement and, in seven of eleven units, the orientation preference changed. In Area 17 direction preference changed in eight of nine units and orientation preference in six of seven. In some cases both orientation and direction preference altered. 4. The relationship of these changes to alterations in the 'spontaneous activity' of the cortical units and to variations in the depth of anaesthesia are considered. Neither would appear to be the sole cause of the phenomenon.  相似文献   

19.
Gamma-band (25-140 Hz) oscillations of the local field potential (LFP) are evoked by sensory stimuli in the mammalian forebrain and may be strongly modulated in amplitude when animals attend to these stimuli. The optic tectum (OT) is a midbrain structure known to contribute to multimodal sensory processing, gaze control, and attention. We found that presentation of spatially localized stimuli, either visual or auditory, evoked robust gamma oscillations with distinctive properties in the superficial (visual) layers and in the deep (multimodal) layers of the owl's OT. Across layers, gamma power was tuned sharply for stimulus location and represented space topographically. In the superficial layers, induced LFP power peaked strongly in the low-gamma band (25-90 Hz) and increased gradually with visual contrast across a wide range of contrasts. Spikes recorded in these layers included presumptive axonal (input) spikes that encoded stimulus properties nearly identically with gamma oscillations and were tightly phase locked with the oscillations, suggesting that they contribute to the LFP oscillations. In the deep layers, induced LFP power was distributed across the low and high (90-140 Hz) gamma-bands and tended to reach its maximum value at relatively low visual contrasts. In these layers, gamma power was more sharply tuned for stimulus location, on average, than were somatic spike rates, and somatic spikes synchronized with gamma oscillations. Such gamma synchronized discharges of deep-layer neurons could provide a high-resolution temporal code for signaling the location of salient sensory stimuli.  相似文献   

20.
Summary 1. Eye movement responses were examined in alert cats during sinusoidal vertical linear acceleration. Stimulus frequencies of 0.20–0.85 Hz with a constant amplitude of 10.5 cm (corresponding to 0.02–0.31 g) were used. A random visual pattern was presented to give sinusoidal vertical optokinetic stimuli of similar amplitude and frequency to the up-down motion of the cat. 2. Sinusoidal linear acceleration in the presence of a stationary visual pattern produced robust eye movement responses with near compensatory phase at all stimulus frequencies tested. With both eyes covered, a vertical linear vestibulo-ocular reflex (LVOR) was frequently produced at a stimulus strength corresponding to 0.04–0.31 g. The evoked LVOR was always small, and the overall mean response phase values advanced by as much as 70 ° at frequencies below 0.56 Hz, indicating that the otolith signals activated by sinusoidal linear acceleration were not, by themselves, converted into compensatory eye position signals under these experimental conditions. 3. Optokinetic stimulation alone produced more lag of response phase as stimulus frequency increased, and the gain of evoked eye movement responses was smaller at higher stimulus frequencies compared to the gain during linear acceleration in the light. Bilateral labyrinthectomies resulted in a significant change of the eye movement responses during linear acceleration when visual inputs were allowed: there was more phase lag at higher stimulus frequencies and a decreased gain at all frequencies tested. These results indicate that the interaction of otolith and visual inputs produces robust eye movement responses with near compensatory phase during sinusoidal linear acceleration in the light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号