首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Despite the excellent survival of Wilms tumour patients treated with multimodality therapy, approximately 15% will suffer from tumour relapse, where response rates are markedly reduced. We have carried out microarray-based comparative genomic hybridisation on a series of 76 Wilms tumour samples, enriched for cases which recurred, to identify changes in DNA copy number associated with clinical outcome. Using 1Mb-spaced genome-wide BAC arrays, the most significantly different genomic changes between favourable histology tumours that did (n = 37), and did not (n = 39), subsequently relapse were gains on 1q, and novel deletions at 12q24 and 18q21. Further relapse-associated loci included losses at 1q32.1, 2q36.3-2q37.1, and gain at 13q31. 1q gains correlated strongly with loss of 1p and/or 16q. In 3 of 11 cases with concurrent 1p(-)/1q(+), a breakpoint was identified at 1p13. Multiple low-level sub-megabase gains along the length of 1q were identified using chromosome 1 tiling-path arrays. One such recurrent region at 1q22-q23.1 included candidate genes RAB25, NES, CRABP2, HDGF and NTRK1, which were screened for mRNA expression using quantitative RT-PCR. These data provide a high-resolution catalogue of genomic copy number changes in relapsing favourable histology Wilms tumours.  相似文献   

3.
In an effort to identify novel genes implicated in breast carcinogenesis, a genomewide scan for loss of heterozygosity (LOH) and copy number changes in paired-DNA samples extracted from normal and tumor tissue of frozen sections from women undergoing surgery for invasive breast cancer was conducted. The Affymetrix 10K SNP array was used to examine genomewide LOH of chromosomal regions. The number of LOH events, number of informative loci, percent heterozygosity, and percent fractional allelic loss (%FAL) were calculated. Although LOH events were detected in all samples, the proportion of LOH ranged from 0.1 to 57.2%. Elevated LOH events were detected in two samples, with a %FAL of 57.2 and 56.2. Chromosomal regions exceeding a threshold value for a P-value curve based on multiple-testing adjusted permutation methods were identified as significant regions of shared LOH across samples. Regions with significant LOH included 2p25.3; 2p21; 2p15 approximately p16.1, 2q23.3; and, 16q12.1. Chromosomal region 1q32.1 was identified as a region with significant copy number amplification. Regions of LOH and copy number changes identified from this analysis may provide insights into the underlying processes of and genes involved in breast carcinogenesis. The present study demonstrates a feasible methodological approach for the assessment of LOH and copy number changes.  相似文献   

4.
Genomic copy number changes are detectable in many malignancies, including neuroblastoma, using techniques such as comparative genomic hybridization (CGH), microsatellite analysis, conventional karyotyping, and fluorescence in situ hybridization (FISH). We report the use of 10K single nucleotide polymorphism (SNP) microarrays to detect copy number changes and allelic imbalance in six neuroblastoma cell lines (IMR32, SHEP, NBL-S, SJNB-1, LS, and SKNBE2c). SNP data were generated using the GeneChip DNA Analysis and GeneChip chromosome copy number software (Affymetrix). SNP arrays confirmed the presence of all previously reported cytogenetic abnormalities in the cell lines, including chromosome 1p deletion, MYCN amplification, gain of 17q and 11q, and 14q deletions. In addition, the SNP arrays revealed several chromosome gains and losses not detected by CGH or karyotyping; these included gain of 8q21.1 approximately 24.3 and gain of chromosome 12 in IMR-32 cells; loss at 4p15.3 approximately 16.1 and loss at 16p12.3 approximately 13.2, 11q loss with loss of heterozygosity (LOH) at 11q14.3 approximately 23.3 in SJNB-1 cells; and loss at 8p21.2 approximately 23.3 and 9p21.3 approximately 22.1 with corresponding LOH in SHEP cells. The SNP arrays refined the mapping of the 2p amplicons in LS, BE2c, and IMR-32 cell lines, the 12q amplicon in LS cells, and also identified an 11q13 amplicon in LS cells. There was good concordance among SNP arrays, CGH, and karyotyping. SNP array analysis is a powerful tool for the detection of allelic imbalance in neuroblastoma and also allows identification of LOH without changes in copy number (uniparental disomy).  相似文献   

5.
Amplification of chromosomal regions leads to an increase of DNA copy numbers and expression of oncogenes in many human tumors. The identification of tumor-specific oncogene targets has potential diagnostic and therapeutic implications. To identify distinct spectra of oncogenic alterations in ovarian carcinoma, metaphase comparative genomic hybridization (mCGH), array CGH (aCGH), and ovarian tumor tissue microarrays were used in this study. Twenty-six primary ovarian carcinomas and three ovarian carcinoma cell lines were analyzed by mCGH. Frequent chromosomal overrepresentation was observed on 2q (31%), 3q (38%), 5p (38%), 8q (52%), 11q (21%), 12p (21%), 17q (21%), and 20q (52%). The role of oncogenes residing in gained chromosomal loci was determined by aCGH with 59 genetic loci commonly amplified in human tumors. DNA copy number gains were most frequently observed for PIK3CA on 3q (66%), PAK1 on 11q (59%), KRAS2 on 12p (55%), and STK15 on 20q (55%). The 11q13-q14 amplicon, represented by six oncogenes (CCND1, FGF4, FGF3, EMS1, GARP, and PAK1) revealed preferential gene copy number gains of PAK1, which is located at 11q13.5-q14. Amplification and protein expression status of both PAK1 and CCND1 were further examined by fluorescence in situ hybridization and immunohistochemistry using a tissue microarray consisting of 268 primary ovarian tumors. PAK1 copy number gains were observed in 30% of the ovarian carcinomas and PAK1 protein was expressed in 85% of the tumors. PAK1 gains were associated with high grade (P < 0.05). In contrast, CCND1 gene alterations and protein expression were less frequent (10.6% and 25%, respectively), suggesting that the critical oncogene target of amplicon 11q13-14 lies distal to CCND1. This study demonstrates that aCGH facilitates further characterization of oncogene candidates residing in amplicons defined by mCGH.  相似文献   

6.
The molecular pathogenesis of mantle cell lymphomas (MCL), a subset of B-cell non-Hodgkin's lymphomas with a poor prognosis, is still poorly understood. In addition to the characteristic primary genetic alteration t(11;14)(q13;q32), several further genetic changes are present in most cases. One of the most frequent genomic imbalances is the deletion of 1p22.1-p31.1 observed in nearly one-third of MCL cases. This might indicate the presence of tumor suppressor gene(s) in this critical region of deletion. Quantitative microsatellite analysis (QuMA) is a real-time PCR-based method to detect DNA copy number changes. Since QuMA has the resolving power to detect subtle genomic alterations, including homozygous deletions, this may help to identify candidate tumor suppressor genes from deleted regions. To gain more insight into the molecular pathogenesis of MCL, QuMA was performed on genomic DNA from 57 MCL cases. Eight microsatellite loci mapping to the chromosomal region 1p22.3 were analyzed. Losses were observed in 51 of the 57 ( approximately 89.5%) samples. Two cases showed a homozygous deletion at the locus containing the gene SH3GLB1, which plays a key role in Bax-mediated apoptosis. Two hotspots with copy number losses were detected at chromosomal localizations 85.4 and 86.6 Mb encompassing BCL10 and CLCA2. Both the genes seem to be attractive candidates to study tumor suppressor function in MCL.  相似文献   

7.
8.
The chromosomal region 11q13 is amplified in 15-20% of breast cancers; an event not only associated with estrogen receptor (ER) expression but also implicated in resistance to endocrine therapy. Coamplifications of the 11q13 and 8p12 regions are common, suggesting synergy between the amplicons. The aim was to identify candidate oncogenes in the 11q13 region based on recurrent amplification patterns and correlations to mRNA expression levels. Furthermore, the 11q13/8p12 coamplification and its prognostic value, was evaluated at the DNA and the mRNA levels. Affymetrix 250K NspI arrays were used for whole-genome screening of DNA copy number changes in 29 breast tumors. To identify amplicon cores at 11q13 and 8p12, genomic identification of significant targets in cancer (GISTIC) was applied. The mRNA expression levels of candidate oncogenes in the amplicons [RAD9A, RPS6KB2 (S6K2), CCND1, FGF19, FGF4, FGF3, PAK1, GAB2 (11q13); EIF4EBP1 (4EBP1), PPAPDC1B, and FGFR1 (8p12)] were evaluated using real-time PCR. Resulting data revealed three main amplification cores at 11q13. ER expression was associated with the central 11q13 amplification core, encompassing CCND1, whereas 8p12 amplification/gene expression correlated to S6K2 in a proximal 11q13 core. Amplification of 8p12 and high expression of 4EBP1 or FGFR1 was associated with a poor outcome in the group. In conclusion, single nucleotide polymorphism arrays have enabled mapping of the 11q13 amplicon in breast tumors with high resolution. A proximal 11q13 core including S6K2 was identified as involved in the coamplification/coexpression with 8p12, suggesting synergy between the mTOR targets S6K2 and 4EBP1 in breast cancer development and progression.  相似文献   

9.
Analysis of recurrent DNA amplification can lead to the identification of cancer driver genes, but this process is often hampered by the low resolution of existing copy number analysis platforms. Fifty-one breast tumors were profiled for copy number alterations (CNAs) with the high-resolution Affymetrix 500K SNP array. These tumors were also expression-profiled and surveyed for mutations in selected genes commonly mutated in breast cancer (TP53, CDKN2A, ERBB2, KRAS, PIK3CA, PTEN). Combined analysis of common CNAs and mutations revealed putative associations between features. Analysis of both the prevalence and amplitude of CNAs defined regions of recurrent alteration. Compared with previous array comparative genomic hybridization studies, our analysis provided boundaries for frequently altered regions that were approximately one-fourth the size, greatly reducing the number of potential alteration-driving genes. Expression data from matched tumor samples were used to further interrogate the functional relevance of genes located in recurrent amplicons. Although our data support the importance of some known driver genes such as ERBB2, refined amplicon boundaries at other locations, such as 8p11-12 and 11q13.5-q14.2, greatly reduce the number of potential driver genes and indicate alternatives to commonly suggested driver genes in some cases. For example, the previously reported recurrent amplification at 17q23.2 is reduced to a 249 kb minimal region containing the putative driver RPS6KB1 as well as the putative oncogenic microRNA mir-21. High-resolution copy number analysis provides refined insight into many breast cancer amplicons and their relationships to gene expression, point mutations and breast cancer subtype classifications. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.  相似文献   

10.
Multiple endocrine neoplasia type 2 (MEN 2) is a familial cancer syndrome arising from mutation at a locus or loci in chromosome region 10p11.2-q11.2. The disease is characterized by medullary thyroid carcinoma (MTC) and pheochromocytoma (Pheo). To assess the genetic events in tumour initiation and progression in this disease, we have compiled an allelotype for MTC and Pheo tumours using polymorphic marker loci from each chromosome arm. Using a panel of 58 tumours, we found frequent allele losses on chromosome arms 1p (42%), 3p (30%), 3q (38%), 11p (11%), 13q (10%), 17p (8%), and 22q (29%). Loss of heterozygosity (LOH) for loci on chromosome 10 was detected in a single tumour where one whole chromosome copy was lost. We used a panel of polymorphic markers for each of chromosomes 1, 3, 11, and 17 to define a shortest region of overlap for these regions. The most frequent allele losses were on chromosome 1, spanning the entire short arm of the chromosome but not loci on 1q. LOH on chromosome 3 encompassed a minimal common region of 3q12-qter. The regions of allelic deletion on chromosome 11(11pter-p13), 17(17pter-p11.2), and 13 (13q) encompass known tumour suppressor loci (WTI, TP53, RBI) which must therefore be candidates for genes contributing to MTC and Pheo development. Our data suggest allele loss on chromosome 11, 13, or 17 occurs predominantly in tumours with losses on chromosome 3, potentially reflecting the accumulation of genetic change in tumour progression. These events may be associated with more advanced disease in MTC. We suggest that at least 7 genes contribute to tumour development in MEN 2, including an initiating locus on chromosome 10 and loci on chromosomes 1, 3, 11, 13, 17, and 22 which have a progressional role in these tumours. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Chromosomal translocations involving the immunoglobulin heavy chain (IGH) locus and various partner loci frequently are associated with multiple myeloma (MM). We investigated the expression profiles of the FGFR3/MMSET, CCND1, CCND3, MAF, and MAFB genes, which are involved in t(4;14)(p16.3;q32), t(11;14)(q13;q32), t(6;14)(p21;q32), t(14;16)(q32;q23), and t(14;20)(q32;q12), respectively, in purified plasma cell populations from 39 MMs and six plasma cell leukemias (PCL) by DNA microarray analysis and compared the results with the presence of translocations as assessed by dual-color FISH or RT-PCR. A t(4;14) was found in 6 MMs, t(11;14) in 9 MMs and 1 PCL, t(6;14) in 1 MM, t(14;16) in 2 MMs and 1 PCL, and t(14;20) in 1 PCL. In all cases, the translocations were associated with the spiked expression of target genes. Furthermore, gene expression profiling enabled the identification of putative translocations causing dysregulation of CCND1 (1 MM and 1 PCL) and MAFB (1 MM and 1 PCL) without any apparent involvement of immunoglobulin loci. Notably, all of the translocations were mutually exclusive. Markedly increased MMSET expression was found in 1 MM showing associated FGFR3 and MMSET signals on an unidentified chromosome. Our data suggest the importance of using combined molecular cytogenetic and gene expression approaches to detect genetic aberrations in MM.  相似文献   

12.
We investigated relationships between DNA copy number aberrations and chromosomal structural rearrangements in 11 different cell lines derived from oral squamous cell carcinoma (OSCC) by comparative genomic hybridization (CGH), spectral karyotyping (SKY), and fluorescence in situ hybridization (FISH). CGH frequently showed recurrent chromosomal gains of 5p, 20q12, 8q23 approximately qter, 20p11 approximately p12, 7p15, 11p13 approximately p14, and 14q21, as well as losses of 4q, 18q, 4p11 approximately p15, 19p13, 8p21 approximately pter, and 16p11 approximately p12. SKY identified the following recurrent chromosomal abnormalities: i(5)(p10), i(5)(q10), i(8)(q10), der(X;1)(q10;p10), der(3;5)(p10;p10), and der(3;18)(q10;p10). In addition, breakpoints detected by SKY were clustered in 11q13 and around centromeric regions, including 5p10/q10, 3p10/q10, 8p10/q10 14q10, 1p10/1q10, and 16p10/16q10. Cell lines with i(5)(p10) and i(8)(q10) showed gains of the entire chromosome arms of 5p and 8q by CGH. Moreover, breakages near the centromeres of chromosomes 5 and 8 may be associated with 5p gain, 8q gain, and 8p loss in OSCC. FISH with a DNA probe from a BAC clone mapping to 5p15 showed a significant correlation between the average numbers of i(5)(p10) and 5p15 (R(2) = 0.8693, P< 0.01) in these cell lines, indicating that DNA copy number of 5p depends upon isochromosome formation in OSCC.  相似文献   

13.
Chromosomes, genes, and development of testicular germ cell tumors   总被引:6,自引:0,他引:6  
A literature review found 265 articles on testicular germ cell tumors (TGCTs) detailing the copy number of chromosomal regions and expression of 245 genes. An initial precursor stage, intratubular germ cell neoplasia (IGCN), is characterized by triploidization and an upregulation of KIT, ALPP, CCDN2, and ZNF354A, and a downregulation of CDKN2D. TGCT regularly have a series of chromosomal aberrations: a decrease in copy number at 4q21 approximately qter and 5q14 approximately qter; an increase at 7p21 approximately pter, 7q21 approximately q33, and 8q12 approximately q23 (especially high increase in seminoma); a decrease at 11p11 approximately p15 and 11q14 approximately q24; an increase at 12p11 approximately pter; a decrease at 13q14 approximately q31; an increase of 17q11 approximately q21 (only for nonseminoma); a decrease of 18q12 approximately qter; and an increase at 21q21 approximately qter, 22q11 approximately qter (only for seminoma), and Xq. Macroscopically overt TGCT is associated with a characteristic series of abnormalities in the retinoblastoma pathway including upregulation of cyclin D2 and p27 and downregulation of RB1 and the cyclin-dependent kinase inhibitors p16, p18, p19, and p21. TGCT thus has a synergistic pattern in gene expressions of the retinoblastoma pathway that is rare in other malignancies.  相似文献   

14.
Neurofibromatosis Type I (NF1) is an autosomal dominant disorder characterized by the development of both benign and malignant tumors. The lifetime risk for developing a malignant peripheral nerve sheath tumor (MPNST) in NF1 patients is ~10% with poor survival rates. To date, the molecular basis of MPNST development remains unclear. Here, we report the first genome‐wide and high‐resolution analysis of DNA copy number alterations in MPNST using the 32K bacterial artificial chromosome microarray on a series of 24 MPNSTs and three neurofibroma samples. In the benign neurofibromas, apart from loss of one copy of the NF1 gene and copy number polymorphisms, no other changes were found. The profiles of malignant samples, however, revealed specific loss of chromosomal regions including 1p35‐33, 1p21, 9p21.3, 10q25, 11q22‐23, 17q11, and 20p12.2 as well as gain of 1q25, 3p26, 3q13, 5p12, 5q11.2‐q14, 5q21‐23, 5q31‐33, 6p23‐p21, 6p12, 6q15, 6q23‐q24, 7p22, 7p14‐p13, 7q21, 7q36, 8q22‐q24, 14q22, and 17q21‐q25. Copy number gains were more frequent than deletions in the MPNST samples (62% vs. 38%). The genes resident within common regions of gain were NEDL1 (7p14), AP3B1 (5q14.1), and CUL1 (7q36.1) and these were identified in >63% MPNSTs. The most frequently deleted locus encompassed CDKN2A, CDKN2B, and MTAP genes on 9p21.3 (33% cases). These genes have previously been implicated in other cancer conditions and therefore, should be considered for their therapeutic, prognostic, and diagnostic relevance in NF1 tumorigenesis. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Chronic myelogenous leukemia (CML) evolves from an indolent chronic phase (CP) characterized by the Philadelphia chromosome. Without effective therapy, it progresses to an accelerated phase (AP) and eventually to a fatal blast crisis (BC). To identify the genes involved in stage progression in CML, we performed a genomewide screening of DNA copy number changes in a total of 55 CML patients in different stages with the use of the high-resolution array-based comparative genomic hybridization (array CGH) technique. We constructed Human 1M arrays that contained 3,151 bacterial artificial chromosome (BAC) DNAs, allowing for an average resolution of 1.0 Mb across the entire genome. In addition to common chromosomal abnormalities, array CGH analysis unveiled a number of novel copy number changes. These alterations included losses in 2q26.2-q37.3, 5q23.1-q23.3, 5q31.2-q32, 7p21.3-p11.2, 7q31.1-q31.33, 8pter-p12(p11.2), 9p, and 22q13.1-q13.31 and gains in 3q26.2-q29, 6p22.3, 7p15.2-p14.3, 8p12, 8p21.3, 8p23.2, 8q24.13-q24.21, 9q, 19p13.2-p12, and 22q13.1-q13.32 and occurred at a higher frequency in AP and BC. Minimal copy number changes affecting even a single BAC locus were also identified. Our data suggests that at least a proportion of CML patients carry still-unknown cryptic genomic alterations that could affect a gene or genes of importance in the disease progression of CML. This article contains Supplementary Material available at http://www.interscience.wiley.com/jpages/1045-2257/suppmat.  相似文献   

16.
A human lung adenocarcinoma cell line, designated KU-T1, was established from a Japanese man in Kochi Medical School. Conventional banding and multicolor fluorescence in situ hybridization (M-FISH) analyses of KU-T1 cells revealed a hyperdiploid chromosomal constitution and complex karyotypes. Comparative genomic hybridization showed several chromosomal copy number changes, and five regions that were highly amplified. Two of the five highly amplified regions, 1q and 3q, were identified from distributions of DNA sequences on a metaphase cell by FISH using chromosome microdissection-generated probes hybridized to 1q32 approximately q34 and 3q26 approximately q28, respectively. The 3q probe depicted a homogeneously staining region (hsr) in a derivative chromosome 3 of KU-T1. An hsr probe was regenerated by chromosome microdissection and was hybridized back to KU-T1 and normal metaphases. This hybridization experiment confirmed the probe derived from an hsr and indicated original locations of DNA sequences of hsr on normal chromosome 3. Intense hybridized signals shown at three loci (3p12, 3q26.3, and 3q28) suggests that oncogenes may be involved in the hsr formation. The present study provides a comprehensive analysis of the chromosomal abnormalities, including hsr formation and related oncogenes, in the KU-T1 cell line.  相似文献   

17.
Loss of heterozygosity (LOH) for polymorphic markers is a frequently occurring event in some tumors, reflecting the role of allele loss in the development of these tumors. We have determined LOH in 38 cases of Wilms tumor for the 2 known loci on chromosome arm 11p and for a newly detected locus on chromosome arm 16q. Only 7 of the 38 tumors studied showed reduction to homozygosity of 11p13 markers. In 4 of these tumors, reduced expression of WT1 and WIT1, genes located at 11p13 and implicated in Wilms tumorigenesis, was noted. However, this was also found in 2 of 7 tumors showing LOH exclusively of 11p15 markers and in 15 of the remaining 24 tumors in which there was no LOH for 11p markers. This suggests that events not involving mitotic recombination or chromosome nondisjunction are the most common mechanisms for mutations at the 11p Wilms tumor locus. We also noted that mitotic recombination involving 11p15 loci occurred in addition to reduced expression of the 11p13 locus genes in 2 tumors, suggesting a possible interaction between these 2 loci. In addition, LOH for 16q markers was observed in 6 tumors. In one case this was coincident with reduction of WT1 and WIT1 gene expression, and in 3 other cases it occurred in addition to 11p LOH. This indicates that an additional locus on 16q is likely to be involved in Wilms tumorigenesis.  相似文献   

18.
Chromosomal aberrations in 22 Koreans with ovarian carcinomas were investigated by degenerate oligonucleotide primed-polymerase chain reaction comparative genomic hybridization. The common sites of copy number increases were 20q (90%), 17q23 approximately qter (86%), 8q22 approximately qter (68%), 3q25 approximately qter (59%), 6p21 (59%), 11q13 (54%), 16p (40%), 2q31 approximately qter (36%), 7q (36%), 14q31 (36%), 15q24 approximately qter (36%), and 1q32 approximately qter (31%). DNA amplification was identified in 18 carcinomas (82%). The frequent sites of amplification were 20q13.2 approximately qter, 8q24.1, 17q23 approximately qter, 3q25 approximately qter, and 6p21. The most frequent sites of copy number decreases were 4q21 approximately q31 (54%), 5q13 approximately q21 (50%), and 13q14 approximately q21 (45%). The recurrent gains and losses of chromosomal regions identified in this study provide candidate regions that may contain oncogenes or tumor suppressor genes, respectively.  相似文献   

19.
20.
Gene copy number aberrations are involved in oral squamous cell carcinoma (OSCC) development. To delineate candidate genes inside critical chromosomal regions, array‐CGH was applied to 40 OSCC specimens using a microarray covering the whole human genome with an average resolution of 1 Mb. Gene copy number gains were predominantly found at 1q23 (9 cases), 3q26 (11), 5p15 (13), 7p11 (7), 8q24 (17), 11q13 (15), 14q32 (8), 19p13 (8), 19q12 (7), 19q13 (8), and 20q13 (9), whereas gene copy number losses were detected at 3p21‐3p12 (15), 8p32 (11), 10p12 (8), and 18q21‐q23 (10). Subsequent mRNA expression analyses by quantitative real time polymerase chain reaction found high mRNA expression of candidate genes SOX2 in 3q26.33, FSLT3 in 19p13.3, and CCNE1 in 19q12. Tissue microarray (TMA) analyses in a representative OSCC collection found gene copy number gain for SOX2 in 52% (115/223) and for CCNE1 in 31% (72/233) of the tumors. Immunohistochemical analyses on TMA sections of the corresponding proteins detected high expression of SOX2 in 18.1% (49/271) and of CyclinE1 in 23.3% (64/275) of tumors analyzed. These findings indicate that SOX2 and CCNE1 might be activated via gene copy number gain and participate in oral carcinogenesis. The combination of array‐CGH with TMA analyses allows rapid pinpointing of novel promising candidate genes, which might be used as therapeutic stratification markers or target molecules for therapeutic interference. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号