首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary Increased endogenous glucose production (EGP) and gluconeogenesis contribute to the pathogenesis of hyperglycaemia in non-insulin-dependent diabetes mellitus (NIDDM). In healthy subjects, however, EGP remains constant during administration of gluconeogenic precursors. This study was performed in order to determine whether administration of fructose increases EGP in obese NIDDM patients and obese non-diabetic subjects. Eight young healthy lean subjects, eight middle-aged obese NIDDM patients and seven middle-aged obese non-diabetic subjects were studied during hourly ingestion of 13C fructose (0.3 g · kg fat free mass–1 · h–1) for 3 h. Fructose failed to increase EGP (measured with 6,6 2H glucose) in NIDDM (17.7±1.9 mol · kg fat free mass–1 · min–1 basal vs 15.9±0.9 after fructose), in obese non-diabetic subjects (12.1±0.5 basal vs 13.1±0.5 after fructose) and in lean healthy subjects (13.3±0.5 basal vs 13.8±0.6 after fructose) although 13C glucose synthesis contributed 73.2% of EGP in lean subjects, 62.6% in obese non-diabetic subjects, and 52.8% in obese NIDDM patients. Since glucagon may play an important role in the development of hyperglycaemia in NIDDM, healthy subjects were also studied during 13C fructose ingestion + hyperglucagonaemia (232±9 ng/l) and during hyperglucagonaemia alone. EGP increased by 19.8% with ingestion of fructose + glucagon (p<0.05) but remained unchanged during administration of fructose or glucagon alone. The plasma 13C glucose enrichment was identical after fructose ingestion both with and without glucagon, indicating that the contribution of fructose gluconeogenesis to the glucose 6-phosphate pool was identical in these two conditions. We concluded that during fructose administration: 1) gluconeogenesis is increased, but EGP remains constant in NIDDM, obese non-diabetic, and lean individuals; 2) in lean individuals, both an increased glucagonaemia and an enhanced supply of gluconeogenic precursors are required to increase EGP; this increase in EGP occurs without changes in the relative proportion of glucose 6-phosphate production from fructose and from other sources (i. e. glycogenolysis + gluconeogenesis from non-fructose precursors).Abbreviations EGP Endogenous glucose production - CHO carbohydrate - APE atom percent excess - GRd glucose rate of disappearance - FFM fat-free mass  相似文献   

2.
Summary We investigated the regulation of the mRNA expression of the insulin receptor, insulin receptor substrate-1 (IRS-1) and p85α-phosphatidylinositol-3-kinase (PI-3K), three major actors of insulin action, in skeletal muscle from 10 healthy lean volunteers, 13 obese patients with Type II (non-insulin-dependent) diabetes mellitus and 7 non-diabetic obese subjects. The in vivo regulation by insulin was studied using a 3-h euglycaemic, hyperinsulinaemic clamp. There were no differences in the basal concentrations of the three mRNAs in skeletal muscle between groups. Insulin infusion produced a twofold reduction in insulin receptor substrate-1 mRNA expression in the three groups (p < 0.02). In contrast, insulin increased p85α-phosphatidylinositol-3-kinase mRNA expression in muscle from non-diabetic subjects ( + 98 ± 22 % in lean and + 127 ± 16 % in obese, p < 0.02) but this effect was totally impaired in Type II diabetic patients ( + 5 ± 12 %, NS). A similar defect in insulin action on p85α-phosphatidylinositol-3-kinase mRNA expression was observed in abdominal subcutaneous adipose tissue ( + 138 ± 25 %, p < 0.01 in lean and + 46 ± 14 %, p < 0.02 in obese and + 29 ± 11 %, NS in Type II diabetic patients). The lack of action of insulin on p85α-phosphatidylinositol-3-kinase mRNA in diabetic subjects was probably not due to a deleterious effect of hyperglycaemia since improvement of the glycaemic control for 10 days did not restore the response in muscle or in adipose tissue. This study provides evidence for a defect in the regulation by insulin of PI-3K gene expression in Type II diabetic patients, thus reinforcing the concept that alterations at the gene expression might be involved in the pathogeny of Type II diabetes. [Diabetologia (1999) 42: 358–364] Received: 26 August 1998 and in revised form: 23 October 1998  相似文献   

3.
Summary We investigated the response of the glucose transport system to insulin, in the presence of ambient glucose concentrations, in isolated skeletal muscle from seven patients with non-insulin-dependent diabetes mellitus (NIDDM) (age, 55±3 years, BMI 27.4±1.8 kg/m2) and seven healthy control subjects (age, 54±3 years, BMI 26.5±1.1 kg/m2). Insulin-mediated whole body glucose utilization was similar between the groups when studied in the presence of ambient glucose concentrations (approximately 10 mmol/l for the NIDDM patients and 5 mmol/l for the control subjects). Samples were obtained from the vastus lateralis muscle, by means of an open muscle biopsy procedure, before and after a 40-min insulin infusion. An increase in serum insulin levels from 54±12 to 588±42 pmol/l, induced a 1.6±0.2-fold increase in glucose transporter protein (GLUT4) in skeletal muscle plasma membranes obtained from the control subjects (p<0.05), whereas no significant increase was noted in plasma membrane fractions prepared from NIDDM muscles, despite a similar increase in serum insulin levels. At concentrations of 5 mmol/l 3-O-methylglucose in vitro, insulin (600 pmol/l) induced a 2.2-fold (p<0.05) increase in glucose transport in NIDDM muscles and a 3.4-fold (p<0.001) increase in the control muscles. Insulin-stimulated 3-O-methylglucose transport was positively correlated with whole body insulin-mediated glucose uptake in all participants (r=0.78,p<0.001) and negatively correlated with fasting plasma glucose levels in the NIDDM subjects (r=0.93,p<0.001). Muscle fibre type distribution and capillarization were similar between the groups. Our results suggest that insulin-stimulated glucose transport in skeletal muscle from patients with NIDDM is down-regulated in the presence of hyperglycaemia. The increased flux of glucose as a consequence of hyperglycaemia may result in resistance to any further insulin-induced gain of GLUT4 at the level of the plasma membrane.  相似文献   

4.
Insulin stimulates glucose uptake in muscle cells via activation of protein kinase B (PKB). The protein tyrosine phosphatase (PTP) inhibitor vanadate, is a known insulin mimetic agent but the mechanism whereby vanadate exerts its effect is not clearly understood. Vanadate also has beneficial effects in the diabetic myocardium. The aim of this study was to correlate insulin stimulation of glucose uptake and PKB activation with that induced by vanadate in adult ventricular myocytes from lean and obese Zucker fa/fa rats. In lean Zucker rats, 100 nM insulin and 5 mM vanadate stimulated myocardial 2-deoxy-D-[3H]glucose (2-DG) uptake from 27.17 ± 1.72 to 96.52 ± 10.87 and 43.86 ± 4.02 pmole/mg protein p/30 min respectively while a combination of insulin and vanadate could not improve the maximal response of insulin. In obese Zucker hearts, basal as well as insulin and vanadate stimulated glucose uptake were severely impaired (15.49 ± 1.44 vs 25.51 ± 3.11 and 20.11 ± 1.68 pmole/mg protein/30 min respectively). A combination of insulin and vanadate, resulted in a response significantly improved from the maximal response of insulin. This stimulation of 2-DG uptake was, in all instances, blocked by the PI 3-kinase inhibitors wortmannin and LY 294002.Insulin could not activate PKB, as measured by the Ser473 phosphorylated form of the enzyme, in the obese Zucker rats to the same extent as in lean controls. Similar to glucose uptake, activation of PKB by vanadate plus insulin was significantly more than that accomplished by insulin alone in obese rats. Both insulin and vanadate activation of PKB was prevented by wortmannin and LY 294002. Thus, the present study demonstrates that: (i) in cardiomyocytes from lean and obese Zucker rats, both insulin and vanadate stimulate glucose uptake and PKB activation through a PI-3-kinase sensitive pathway. (ii) In obese Zucker rats, neither insulin nor vanadate could induce glucose uptake or activation of PKB to the same extent as in lean controls. (iii) A combination of insulin with vanadate may be beneficial to increase glucose uptake in diabetic hearts, as this gives a better response than insulin alone.  相似文献   

5.
Aims/hypothesis Exercise enhances insulin-stimulated glucose transport in skeletal muscle through changes in signal transduction and gene expression. The aim of this study was to assess the impact of acute and short-term exercise training on whole-body insulin-mediated glucose disposal and signal transduction along the canonical insulin signalling cascade.Methods A euglycaemic–hyperinsulinaemic clamp, with vastus lateralis skeletal muscle biopsies, was performed at baseline and 16 h after an acute bout of exercise and short-term exercise training (7 days) in obese non-diabetic (n=7) and obese type 2 diabetic (n=8) subjects.Results Insulin-mediated glucose disposal was unchanged following acute exercise in both groups. Short-term exercise training increased insulin-mediated glucose disposal in obese type 2 diabetic (p<0.05), but not in obese non-diabetic subjects. Insulin activation of (1) IRS1, (2) IRS2, (3) phosphotyrosine-associated phosphatidylinositol-3 kinase activity and (4) the substrate of phosphorylated Akt, AS160, a functional Rab GTPase activating protein important for GLUT4 (now known as solute carrier family 2 [facilitated glucose transporter], member 4 [SLC2A4]) translocation, was unchanged after acute or chronic exercise in either group. GLUT4 protein content was increased in obese type 2 diabetic subjects (p<0.05), but not in obese non-diabetic subjects following chronic exercise.Conclusions/interpretation Exercise training increased whole-body insulin-mediated glucose disposal in obese type 2 diabetic patients. These changes were independent of functional alterations in the insulin-signalling cascade and related to increased GLUT4 protein content.  相似文献   

6.
Summary We investigated the influence of altered glucose levels on insulin-stimulated 3-0-methylglucose transport in isolated skeletal muscle obtained from NIDDM patients (n=13) and non-diabetic subjects (n=23). Whole body insulin sensitivity was 71% lower in the NIDDM patients compared to the non-diabetic subjects (p <0.05), whereas, insulin-mediated peripheral glucose utilization in the NIDDM patients under hyperglycaemic conditions was comparable to that of the non-diabetic subjects at euglycaemia. Following a 30-min in vitro exposure to 4 mmol/l glucose, insulin-stimulated 3-0-methylglucose transport (600 pmol/l insulin) was 40% lower in isolated skeletal muscle strips from the NIDDM patients when compared to muscle strips from the non-diabetic subjects. The impaired capacity for insulin-stimulated 3-0-methylglucose transport in the NIDDM skeletal muscle was normalized following prolonged (2 h) exposure to 4 mmol/l, but not to 8 mmol/l glucose. Insulin-stimulated 3-0-methylglucose transport in the NIDDM skeletal muscle exposed to 8 mmol/l glucose was similar to that of the non-diabetic muscle exposed to 5 mmol/l glucose, but was decreased by 43% (p <0.01) when compared to non-diabetic muscle exposed to 8 mmol/l glucose. Despite the impaired insulin-stimulated 3-0-methylglucose transport capacity demonstrated by skeletal muscle from the NIDDM patients, skeletal muscle glycogen content was similar to that of the non-diabetic subjects. Kinetic studies revel a Km for 3-0-methylglucose transport of 9.7 and 8.8 mmol/l glucose for basal and insulin-stimulated conditions, respectively. In conclusion, the impaired capacity for insulinstimulated glucose transport in skeletal muscle from patients with NIDDM appears to protect the cell from excessive glucose uptake under hyperglycaemic conditions. Furthermore, the in vitro normalization of the decreased insulin-stimulated glucose transport in NIDDM skeletal muscle following exposure to 4 mmol/l glucose suggests that glycaemia per se has a profound effect on the regulation of muscular glucose transport.Abbreviations NIDDM Non-insulin-dependent diabetes mellitus - KHB Krebs-Henseleit bicarbonate buffer - BSA bovine serum albumin - ANOVA analysis of variance - GLUT 4 insulin regulated glucose transporter  相似文献   

7.
Summary Insulin resistance of the skeletal muscle is a key feature of Type 2 (non-insulin-dependent) diabetes mellitus. To determine whether a decrease of glucose carrier proteins or an altered subcellular distribution of glucose transporters might contribute to the pathogenesis of the insulin resistant state, we measured glucose transporter numbers in membrane fractions of gastrocnemius muscle of 14 Type 2 diabetic patients and 16 non-diabetic control subjects under basal conditions. Cytochalasin-B binding and immunoblotting with antibodies against transporter-subtypes GLUT 1 and GLUT 4 were applied. The cytochalasin-B binding values (pmol binding sites/g muscle) found in a plasma membrane enriched fraction, high and low density membranes of both groups (diabetic patients and non-diabetic control subjects) suggested a reduced number of glucose transporters in the plasma membranes of the diabetic patients compared to the control subjects (diabetic patients: 1.47 ± 1.01, control subjects: 3.61 ± 2.29,p ≤ 0.003). There was no clear difference in cytochalasin-B binding sites in high and low density membranes of both groups (diabetic patients: high density membranes 3.76 ± 1.82, low density membranes: 1.67 ± 0.81; control subjects: high density membranes 5.09 ± 1.68, low density membranes 1.45 ± 0.90). By Western blotting analysis we determined the distribution of the glucose transporter sub-types GLUT 1 and GLUT 4 in the plasma membrane enriched fraction and low density membranes of seven patients of each group. In agreement with the cytochalasin-B binding data and despite a high variance within one group, the results show a clear decrease of GLUT 4 in the plasma membrane enriched fraction of diabetic patients compared to control subjects. In contrast, we found no difference in the distribution of GLUT 1 in diabetic patients and control subjects. In conclusion, despite a high variance of glucose transporter numbers in the skeletal muscle of different individuals fractionation of muscle samples clearly suggests that the number of GLUT 4 is reduced in the plasma membrane fraction of skeletal muscle of lean diabetic patients in the basal state.  相似文献   

8.
Summary We studied the expression of the glucose transporter GLUT 4 in the soleus and red gastrocnemius muscles from obese, diabetic (fa/fa) Zucker rats compared to their lean littermates (Fa/-), with and without treatment with the antidiabetic drug metformin. In the untreated groups of rats, the GLUT 4 content in a crude membrane fraction of both the soleus and the red gastrocnemius muscles were significantly lower in the obese (fa/fa) rats (3.46±0.28 vs. 6.04±0.41,p<0.001 and 6.0±0.24 vs. 9.1±0.48,p<0.0001, respectively). Differences in GLUT 4 expression in soleus muscle from the same rats were confirmed by quantitative immunofluorescence microscopy, and the results were significantly correlated with the results obtained from quantitative immunoblotting (rho=0.70,p<0.0005). The decreased expression of GLUT 4 in fa/fa rats could contribute to the well-established insulin resistance in skeletal muscle of these animals. After 4 weeks of treatment with metformin, weight gain was not affected in either the diabetic (fa/fa) rats or the lean (Fa/-) rats. Improvement of glucose homeostasis by metformin was not associated with normalization of the GLUT 4 expression in the skeletal muscles studied, indicating (1) that the decreased GLUT 4 expression is not directly related to hyperinsulinaemia and diabetes mellitus and (2) that metformin does not normalize the expression of GLUT 4 in skeletal muscle of the diabetic (fa/fa) Zucker rats.  相似文献   

9.
In order to study the plasminogen activator inhibitor activity (PAI-1) in subjects at different risk of non-insulin-dependent diabetes and ischaemic heart disease we examined 89 subjects with diet controlled NIDDM (49 Caucasian, 40 Asian), 29 with impaired glucose tolerance (IGT) (13 Caucasian, 16 Asian), and 149 with normal glucose tolerance (67 Caucasian, 82 Asian). Diabetes was diagnosed by WHO criteria and highly specific, monoclonal antibody-based assays were used to measure insulin, intact proinsulin, and des 31,32 proinsulin. Subjects with NIDDM were significantly more obese, had more central distribution of obesity, higher fasting plasma specific insulin concentrations (NIDDM median 74 pmol l−1 vs IGT 41 pmol l−1, p < 0.01 and vs normals 34 pmol l−1, p < 0.001) and higher PAI-1 activity than normals and those with IGT (NIDDM 23.0 ± 6.9 vs IGT 16.8 ± 5.0, p < 0.001 and vs normals 17.1 ± 6.9 AU ml−1, p < 0.001). However, PAI-1 activity was not significantly different between Asian and Caucasian normals (17.5 ± 7.3 vs 16.5 ± 6.4 AU ml−1, p = ns) and diabetic (22.8 ± 7.3 vs 23.1 ± 6.6 AU ml−1, p = ns) subjects. In addition to relationships with obesity and plasma triglyceride, PAI-1 activity, after controlling for age, sex, body mass index, and waist–hip ratio, was related to fasting insulin (partial r = 0.22, p < 0.001), intact proinsulin (partial r = 0.36, p < 0.001), and des 31,32 proinsulin concentrations (partial r = 0.33, p < 0.001) as measured by highly specific assays. The association of PAI-1 with diabetes was weakened but remained statistically significant (p = 0.042) after controlling for age, sex, ethnicity, obesity, plasma triglyceride, and all insulin-like molecules. We conclude that, although PAI-1 activity is raised in subjects with diet-treated NIDDM, it is normal in subjects with IGT and non-diabetic Asians, populations at high risk of NIDDM and ischaemic heart disease. Raised PAI-1 activity may play an important role in the pathogenesis of macrovascular disease in subjects with NIDDM, but is unlikely to explain excess risk of ischaemic heart disease in Asians and those with impaired glucose tolerance.  相似文献   

10.
Summary In man, total glucose uptake is the sum of insulin mediated glucose uptake and non-insulin mediated glucose uptake. The latter pathway has not been examined in Type 1 (insulin-dependent) diabetes mellitus. In order to assess non-insulin mediated glucose uptake in Type 1 diabetes, we measured steady-state rates of glucose uptake during glucose clamps at 5.27, 9.71 and 12.5 mmol/l using low (0.25 mU· kg–1·min–1), intermediate (0.75 mU·kg–1·min–1) and high (1.50 mU·kg–1·min–1) insulin infusion rates in 10 subjects with Type 1 diabetes. For insulin infusion rates of 0.25, 0.75 and 1.50 mU·kg–1·min–1 as plasma glucose rose from 5.27 to 9.71 mmol/l, total glucose uptake increased by 35, 43 and 52 percent respectively (p<0.05 for each insulin infusion rate). For all three insulin infusion rates, there was no significant increase in total glucose uptake as plasma glucose increased from 9.71 to 12.5 mmol/l. At each glycaemic level, glucose uptake correlated significantly with plasma free insulin (r=0.81, p<0.01 at 5.71 mmol/l; r=0.84, p<0.01 at 9.71 mmol/l; r=0.73, p<0.02 at 12.5 mmol/l). Linear regression analysis to a point corresponding to plasma free insulin equalling zero, yielded values for non-insulin mediated glucose uptake (mmol·kg–1·min–1) of 0.11,0.14,0.18 at plasma glucose of 5.27, 9.7 and 12.5 mmol/l respectively. Thus, increasing plasma glucose concentrations were associated with increasing rates of non-insulin mediated glucose uptake. For each insulin infusion rate used, the percent of total glucose uptake accounted for by non-insulin mediated glucose uptake remained independent of plasma glucose concentration, but decreased as insulin infusion rate increased. During the insulin infusion at 0.25 mU·kg–1·min–1, this percentage ranged from 83.7 to 91.4%. Analysis of glucose uptake data derived for theoretical plasma insulin levels of 0, 40, 80 and 160 U/ml yielded linear Eadie-Hofstee plots (r=– 0.83 to – 0.99), suggesting that insulin increased Vmax but did not alter Km. Hence, in these subjects with Type 1 diabetes, glucose uptake, both insulin mediated and non-insulin mediated can be described by Michaelis-Menten kinetics. Comparison of values obtained for Vmax and Km in the present studies of Type 1 diabetes with those obtained from non-diabetic subjects indicates that non-insulin dependent glucose uptake in Type 1 diabetes is quantitatively similar to that of non-diabetic subjects.  相似文献   

11.
We evaluated the effect of insulin on platelet function, blood viscosity, and filterability in healthy subjects and in patients with Type 2 (non-insulin-dependent) diabetes mellitus. Fifteen diabetic patients were free from cardiovascular complications (group A), while the other 15 patients had both clinical and measured evidence of coronary or peripheral vascular disease (group B); 15 non-diabetic subjects served as controls. On blood samples taken without stasis, maximal platelet aggregation to 1.25 μmol l−1 ADP, blood and plasma viscosity, and blood filterability were measured in basal conditions, and after incubation of blood, plasma or platelet-rich plasma with insulin at two physiological concentrations (120 and 480 pmol l−1). Compared with healthy subjects, the diabetic patients of group B had higher values of blood (p < 0.01) and plasma (p < 0.05) viscosity, and platelet aggregation response to ADP (p < 0.01), as well as lower values of blood filterability (p < 0.01). The diabetic patients of group A had values intermediate between normal subjects and the patients of group B. In non-diabetic subjects, insulin significantly decreased platelet aggregation and blood viscosity at low shear rates (22.5 s−1) (p < 0.01 for both), and had no significant effects on other parameters. In the diabetic patients of group A, insulin decreased blood viscosity at high (225 s−1) rates of shear (p < 0.01) and increased blood filterability (p < 0.01). The effects of insulin were not dose-related. In the diabetic patients of group B, none of the parameters evaluated was significantly influenced by insulin. Type 2 diabetic patients present many abnormalities of the rheologic properties of blood. The beneficial effects of insulin on platelet aggregation and blood viscosity are not evident in Type 2 diabetic patients, especially those with vascular complications and this may be relevant to the development of those complications. © 1997 John Wiley & Sons, Ltd.  相似文献   

12.
Summary The ability of hyperglycaemia to enhance glucose uptake was evaluated in 9 non-insulin-dependent (NIDDM), 7 insulin-dependent (IDDM) diabetic subjects, and in 6 young and 9 older normal volunteers. Following overnight insulin-induced euglycaemia, a sequential three-step hyperglycaemic clamp (+ 2.8 + 5.6, and + 11.2 mmol/l above baseline) was performed with somatostatin plus replacing doses of basal insulin and glucagon, 3-3H-glucose infusion and indirect calorimetry. In the control subjects as a whole, glucose disposal increased at each hyperglycaemic step (13.1 ± 0.6, 15.7 ± 0.7, and 26.3 ± 1.1 μmol/kg · min). In NIDDM (10.5 ± 0.2, 12.1 ± 1.0, and 17.5 ± 1.1 μmol/kg · min), and IDDM (11.2 ± 0.8, 12.9 ± 1.0, and 15.6 ± 1.1 μmol/kg · min) glucose disposal was lower during all three steps (p < 0.05–0.005). Hepatic glucose production declined proportionally to plasma glucose concentration to a similar extent in all four groups of patients. In control subjects, hyperglycaemia stimulated glucose oxidation (+ 4.4 ± 0.7 μmol/kg · min) only at + 11.2 mmol/l (p < 0.05), while non-oxidative glucose metabolism increased at each hyperglycaemic step (+ 3.1 ± 0.7; + 3.5 ± 0.9, and + 10.8 ± 1.7 μmol/kg · min; all p < 0.05). In diabetic patients, no increment in glucose oxidation was elicited even at the highest hyperglycaemic plateau (IDDM = + 0.5 ± 1.5; NIDDM = + 0.2 ± 0.6 μmol/kg · min) and non-oxidative glucose metabolism was hampered (IDDM = + 1.8 ± 1.5, + 3.1 ± 1.7, and + 4.3 ± 1.8; NIDDM = + 0.7 ± 0.6, 2.1 ± 0.9, and + 7.0 ± 0.8 μmol/kg · min; p < 0.05–0.005). Blood lactate concentration increased and plasma non-esterified fatty acid (NEFA) fell in control (p < 0.05) but not in diabetic subjects. The increments in blood lactate were correlated with the increase in non-oxidative glucose disposal and with the decrease in plasma NEFA. In conclusion: 1) the ability of hyperglycaemia to promote glucose disposal is impaired in NIDDM and IDDM; 2) stimulation of glucose oxidation and non-oxidative glucose metabolism accounts for glucose disposal; 3) both pathways of glucose metabolism are impaired in diabetic patients; 4) impaired ability of hyperglycaemia to suppress plasma NEFA is present in these patients. These results suggest that glucose resistance, that is the ability of glucose itself to promote glucose utilization, is impaired in both IDDM and NIDDM patients. [Diabetologia (1997) 40: 687–697] Received: 20 August 1996 and in revised form: 5 March 1997  相似文献   

13.
A. Mari 《Diabetologia》1998,41(9):1029-1039
Summary A new modelling analysis was developed to assess insulin sensitivity with a tracer-modified intravenous glucose tolerance test (IVGTT). IVGTTs were performed in 5 normal (NGT) and 7 non-insulin-dependent diabetic (NIDDM) subjects. A 300 mg/kg glucose bolus containing [6,6-2H2]glucose was given at time 0. After 20 min, insulin was infused for 5 min (NGT, 0.03; NIDDM, 0.05 U/kg). Concentrations of tracer, glucose, insulin and C-peptide were measured for 240 min. A circulatory model for glucose kinetics was used. Glucose clearance was assumed to depend linearly on plasma insulin concentration delayed. Model parameters were: basal glucose clearance (Clb), glucose clearance at 600 pmol/l insulin concentration (Cl600), basal glucose production (Pb), basal insulin sensitivity index (BSI = Clb/basal insulin concentration); incremental insulin sensitivity index (ISI = slope of the relationship between insulin concentration and glucose clearance). Insulin secretion was calculated by deconvolution of C-peptide data. Indices of basal pancreatic sensitivity (PSIb) and first (PSI1) and second-phase (PSI2) sensitivity were calculated by normalizing insulin secretion to the prevailing glucose levels. Diabetic subjects were found to be insulin resistant (BSI: 2.3 ± 0.6 vs 0.76 ± 0.18 ml · min–1· m–2· pmol/l–1, p < 0.02; ISI: 0.40 ± 0.06 vs 0.13 ± 0.05 ml · min–1· m–2· pmol/l–1, p < 0.02; Cl600: 333 ± 47 vs 137 ± 26 ml · min–1· m–2, p < 0.01; NGT vs NIDDM). Pb was not elevated in NIDDM (588 ± 169 vs 606 ± 123 μmol · min–1· m–2, NGT vs NIDDM). Hepatic insulin resistance was however present as basal glucose and insulin were higher. PSI1 was impaired in NIDDM (67 ± 15 vs 12 ± 7 pmol · min–1· m–2· mmol/l–1, p < 0.02; NGT vs NIDDM). In NGT and in a subset of NIDDM subjects (n = 4), PSIb was inversely correlated with BSI (r = 0.95, p < 0.0001, log transformation). This suggests the existence of a compensatory mechanism that increases pancreatic sensitivity in the presence of insulin resistance, which is normal in some NIDDM subjects and impaired in others. In conclusion, using a simple test the present analysis provides a rich set of parameters characterizing glucose metabolism and insulin secretion, agrees with the literature, and provides some new information on the relationship between insulin sensitivity and secretion. [Diabetologia (1998) 41: 1029–1039] Received: 17 September 1997 and in final revised form: 28 April 1998  相似文献   

14.
Intracellular glucose and lipid metabolism was studied in 12 identical twin pairs discordant for non-insulin-dependent (Type 2) diabetes mellitus (NIDDM) and 13 control subjects without family history of diabetes during low (baseline) and high plasma insulin concentrations, using the hyperinsulinaemic clamp technique combined with indirect calorimetry, tritiated water glycolytic flux rates and biopsy skeletal muscle glycogen synthase activity determinations. Baseline and insulin stimulated rates of lipid oxidation were elevated—and glucose oxidation decreased—in the NIDDM twins compared with the non-diabetic co-twins and controls (all p < 0.05). Baseline and insulin stimulated rates of glucose and lipid oxidation were similar in non-diabetic twins and controls. Exogenous glycolytic flux was decreased in NIDDM twins compared with both their non-diabetic co-twins and controls during clamp insulin measurements (p < 0.02), but similar in all study groups during baseline measurements. Insulin stimulated glucose disposal, exogenous glucose storage (glucose disposal–exogenous glycolytic flux) and skeletal muscle glycogen synthase activity were all significantly decreased in NIDDM twins compared with both their non-diabetic co-twins and controls. Furthermore, glucose disposal and glucose storage were decreased in the non-diabetic twins (n = 12) compared with controls (p < 0.05 both). However, insulin stimulated fractional skeletal muscle glycogen synthase activity was not significantly decreased in non-diabetic twins compared with controls. In conclusion: (1) the glucose fatty acid cycle plays a major role in the secondary—but not the primary—abnormalities of glucose metabolism in NIDDM; (2) insulin resistance in non-diabetic identical co-twins of NIDDM patients is restricted exclusively to the pathway of exogenous glucose storage; (3) however, the decreased glucose storage is not explained solely by an impairment of insulin stimulated skeletal muscle glycogen synthase activity; and finally (4) the impairment of skeletal muscle glycogen synthase activity in NIDDM has an apparent non-genetic component and can be escaped (or postponed) in individuals (twins) with a 100 % genetic predisposition to NIDDM.  相似文献   

15.
Summary In order to evaluate the importance of a defect in insulin mediated non-oxidative glucose metabolism and glycogen synthase activity in skeletal muscles in obese subjects with and without Type 2 (non-insulin-dependent) diabetes mellitus we studied: 10 lean and 10 obese control subjects and 12 obese diabetic patients using the euglycaemic hyperinsulinaemic clamp technique (basal, 20 mU · (m2)–1 · min–1, 80mU·(m2)–1·min–1) in combination with indirect calorimetry. Muscle biopsies were taken from m. vastus lateralis at each insulin level. We found that non-oxidative glucose metabolism could be stimulated by insulin in all three groups (p<0.01). The values obtained at the highest insulin levels (around 140 U/ml) were lower in both obese groups compared to the lean control subjects (118±21, 185±31, 249±14 mg·(m2)–1·min–1 (p< 0.01)). Insulin stimulation of the glycogen synthase activity at a glucose-6-phosphate concentration of 0.1 mmol/l was absent in both obese groups, while activities increased significantly in the lean control subjects (19.6±4.2% to 45.6±6.8%, p< 0.01). Glycogen synthase activities at the highest insulin concentrations only differed significantly between lean control subjects and obese diabetic patients (45±7% and 31±5%, p< 0.05). We conclude that insulin resistance in peripheral tissues in obese subjects with and without Type 2 diabetes may be partly explained by a reduced insulin mediated non-oxidative glucose metabolism and that this abnormality might be due to an absent insulin stimulation of glycogen synthase in skeletal muscles. This enzyme defect is correlated to obesity itself.  相似文献   

16.
Aims/hypothesis Circulating levels of adiponectin are negatively associated with multiple indices of insulin resistance, and the concentration is reduced in humans with insulin resistance and type 2 diabetes. However, the mechanisms by which adiponectin improves insulin sensitivity remain unclear.Subjects and methods Combining euglycaemic–hyperinsulinaemic clamp studies with indirect calorimetry and skeletal muscle biopsies, we examined the relationship between plasma adiponectin and parameters of whole-body glucose and lipid metabolism, and muscle glycogen synthase (GS) activity in 51 Caucasians (ten lean, 21 obese and 20 with type 2 diabetes).Results Plasma adiponectin was significantly reduced in type 2 diabetic compared with obese and lean subjects. In lean and obese subjects, insulin significantly reduced plasma adiponectin, but this response was blunted in patients with type 2 diabetes. Plasma adiponectin was positively associated with insulin-stimulated glucose disposal (r=0.48), glucose oxidation (r=0.54), respiratory quotient (r=0.58) and non-oxidative glucose metabolism (r=0.38), and negatively associated with lipid oxidation during insulin stimulation (r=−0.60) after adjustment for body fat (all p<0.01). Most notably, we found a positive association between plasma adiponectin and insulin stimulation of GS activity in skeletal muscle (r=0.44, p<0.01).Conclusions/interpretation Our results indicate that plasma adiponectin may enhance insulin sensitivity by improving the capacity to switch from lipid to glucose oxidation and to store glucose as glycogen in response to insulin, and that low adiponectin may contribute to impaired insulin activation of GS in skeletal muscle of patients with type 2 diabetes.  相似文献   

17.
Summary Hepatic glucose production (3H-glucose technique) and insulin-mediated glucose uptake (insulin clamp technique) were measured in 38 Type 2 (non-insulin-dependent) and 11 Type 1 (insulin-dependent) diabetic patients. Fasting plasma glucose concentration was 8.3 ± 0.5 mmol/l in the former, and 9.6 ± 1.3 mmol/1 in the latter group; the respective fasting plasma insulin levels were 19 ± 2 mU/l (p < 0.005 versus 13 ± 1 mU/l in 33 age-matched control subjects), and 9 ± 1 mU/l (p < 0.01 versus 14 ± 1 mU/l in 36 younger control subjects). In the fasting state, hepatic glucose production was slightly increased (15%, 0.1 > p > 0.05) in the Type 2 diabetic patients and markedly elevated (65%, p < 0.001) in the Type 1 patients compared with their respective control groups. In both groups of diabetic subjects, the rates of hepatic glucose production were inappropriately high for the prevailing plasma glucose and insulin levels, indicating the presence of hepatic resistance to insulin. Basal plasma glucose clearance was also significantly reduced in both the Type 2 (34%) and the Type 1 (14%) diabetic subjects. The fasting plasma glucose concentration correlated directly with hepatic glucose production, and inversely with plasma glucose clearance. During the insulin clamp, plasma insulin was maintained at approximately 100 mU/l in all groups, while plasma glucose was maintained constant at the respective fasting levels. Total glucose uptake was reduced in both the Type 2 (4.57 ± 0.31 versus 6.39 ± 0.25 mg · min–1 · kg–1 in the control subjects, p < 0.01) and the Type 1 (4.77 ± 0.48 versus 7.03 ± 0.22 mg · min–1 · kg–1, p < 0.01) diabetic patients. Insulin-stimulated glucose clearance was reduced to a similar extent in Type 2 (54%) and Type 1 (61%) diabetic subjects, and correlated directly with fasting glucose clearance. These results show that insulin resistance is a common feature of both types of diabetes and can be demonstrated in the basal as well as the insulin-stimlated state. Both hepatic and peripheral resistance to the action of insulin contribute to diabetic hyperglycaemia.  相似文献   

18.
Summary Insulin-receptor internalization and processing are defective in insulin-resistant subjects. To assess the reversibility of these defects, we cultured Epstein-Barr virus-transformed-lymphoblasts from six normal, six obese, and six non-insulin-dependent diabetic (NIDDM) subjects in media containing low (5 mmol/l) or high (25 mmol/l) glucose concentrations, and studied the insulin-receptor internalization and processing in vitro. In cells from normal, obese, and NIDDM subjects cultured in low glucose concentrations, exposure to 100 nmol/l insulin for 30 min at 37C reduced cell-surface 125I-insulin binding to a similar extent (82±2, 77±5, and 82±5 % of initial values, respectively). The same results were obtained with cells cultured in high glucose concentrations. In cells cultured under both glucose conditions, and exposed to 100 nmol/l insulin for 30 min at 37C, a complete recovery of the initial 125I-insulin binding was observed in normal but not in obese and NIDDM subjects. Release of intracellular insulin and its degradation in vitro was determined by incubating cells with 600 pmol/l of 125I-insulin for 60 min at 37C, acid washing cells, and re-incubating in insulin-free buffer at 37C. The radioactivity released by cells was characterized by trichloroacetic acid precipitability, Sephadex G-50 column Chromatograph, and rebinding to fresh cells. Rates of release of internalized radioactivity were reduced in obese and NIDDM subjects (t1/2=61±9 min, p<0.02; 58±10 min, p<0.05; and 38±4 min in obese, NIDDM, and normal subjects, respectively). The percentage of intact insulin released from cells was significantly higher in obese and NIDDM subjects than in the normal subjects. The t1/2 of intracellular dissociation of insulin-receptor complexes measured by a polyethylene glycol assay was lower in normal (6±1 min) than in obese (12±2 min, p<0.03) and NIDDM subjects (14±3 min, p<0.02). The results suggest that in insulin-resistant subjects a primary defect in intracellular dissociation of insulin is responsible for alterations of receptor recycling and insulin processing.Abbreviations NIDDM Non-insulin-dependent diabetes mellitus - EBV Epstein-Barr virus - RPMI - FCS fetal calf serum - PEG polyethylene glycol - ANOVA analysis of variance  相似文献   

19.
The relationship between insulin resistance (IR) and essential hypertension (HTN) is controversial. The aim of this study was to determine the association of IR estimated by homeostasis model assessment of insulin resistance (HOMA-IR) and HTN in a large sample of Iranian diabetic and non-diabetic population. A total of 2047 diabetic and non-diabetic individuals with or without HTN, aged 30–75 yrs, who were referred to a university general hospital between November 2004 and April 2007 were included in this study. Demographic data and anthropometric characteristics of participants were recorded. Fasting blood samples were collected, and fasting plasma glucose (FPG), serum creatinine, lipids, insulin, C-peptide and HbA1c were measured. HOMA-IR and HOMA derived Beta-cell function (HOMA-B) were also calculated. Age, sex and waist girth adjusted HOMA-IR values were compared between hypertensive and normotensive subjects. Hypertensive patients had significantly higher HOMA-IR than age-, sex-, and waist girth-adjusted normotensive individuals in both non-diabetic (2.163 ± 0.08 and 1.75 ± 0.03, p < 0.001) and diabetic (3.40 ± 0.10 and 3.07 ± 0.09, p < 0.05) groups. Multivariate logistic regression analysis showed that after adjustment for age, sex, waist girth, BMI, triglyceride, total cholesterol, FPG, and C-peptide, HOMA-IR was a significant independent predictor of HTN in all subjects (odds ratio = 1.117, CI 95% = 1.026–1.216, p < 0.05) and in diabetic and non-diabetic subjects separately (odds ratio?=?1.102, CI 95% = 1.009–1.203, p < 0.05 and odds ratio = 1.328, CI 95% = 1.116–1.580, p < 0.01, respectively). In conclusion, this study showed that IR is associated with HTN in Iranian diabetic and non-diabetic subjects.  相似文献   

20.
Summary Microalbuminuria has recently been associated with insulin resistance in both insulin-dependent and non-insulin-dependent (NIDDM) diabetes mellitus. To establish whether microalbuminuria in non-diabetic subjects as well is associated with insulin resistance and associated abnormalities in glucose and lipid metabolism, oral glucose tolerance tests were performed with measurement of urinary albumin excretion rate, lipids and lipoproteins in 582 male non-diabetic first-degree relatives of patients with NIDDM. In addition, insulin sensitivity was assessed in 20 of these subjects with the euglycaemic hyperinsulinaemic clamp technique. Abnormal albumin excretion rate (AER), defined as AER 15–200 g/min, was associated with higher systolic blood pressure (p<0.05), higher fasting glucose values (p<0.05), lower HDL-cholesterol (p<0.05) and lower apolipoprotein A-I (p<0.05) concentrations than observed in subjects with normal AER. The rate of glucose metabolism was lower in subjects with abnormal compared to subjects with normal albumin excretion rate (38.0±2.8 vs 47.3±2.4 mol·kg lean body mass–1. min–1; p=0.028). This difference was almost completely accounted for by a reduction in non-oxidative glucose metabolism (17.7±1.9 vs 27.4±2.7 mol·kg lean body mass–1. min–1; p = 0.010), which correlated inversely with the AER (r=–0.543; p=0.013). These results suggest that in non-diabetic individuals genetically predisposed to NIDDM, abnormal AER is associated with insulin resistance and abnormalities in glucose and lipid metabolism.Abbreviations LBM lean body mass - IDDM Insulin-dependent diabetes mellitus - HDL high-density lipoprotein - NIDDM non-insulin-dependent diabetes mellitus - VLDL very low density lipoprotein - AER albumin excretion rate - OGTT oral glucose tolerance test  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号