首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Neutrophil trafficking to sites of inflammation is essential for the defense against bacterial and fungal infections, but also contributes to tissue damage in TH17-mediated autoimmunity. This process is regulated by chemokines, which often show an overlapping expression pattern and function in pathogen- and autoimmune-induced inflammatory reactions. Using a murine model of crescentic GN, we show that the pathogenic TH17/IL-17 immune response induces chemokine (C-X-C motif) ligand 5 (CXCL5) expression in kidney tubular cells, which recruits destructive neutrophils that contribute to renal tissue injury. By contrast, CXCL5 was dispensable for neutrophil recruitment and effective bacterial clearance in a murine model of acute bacterial pyelonephritis. In line with these findings, CXCL5 expression was highly upregulated in the kidneys of patients with ANCA-associated crescentic GN as opposed to patients with acute bacterial pyelonephritis. Our data therefore identify CXCL5 as a potential therapeutic target for the restriction of pathogenic neutrophil infiltration in TH17-mediated autoimmune diseases while leaving intact the neutrophil function in protective immunity against invading pathogens.  相似文献   

3.
Tissue injury initiates an inflammatory response through the actions of immunostimulatory molecules referred to as damage-associated molecular patterns (DAMPs). DAMPs encompass a group of heterogenous molecules, including intracellular molecules released during cell necrosis and molecules involved in extracellular matrix remodeling such as hyaluronan, biglycan, and fibronectin. Kidney-specific DAMPs include crystals and uromodulin released by renal tubular damage. DAMPs trigger innate immunity by activating Toll-like receptors, purinergic receptors, or the NLRP3 inflammasome. However, recent evidence revealed that DAMPs also trigger re-epithelialization upon kidney injury and contribute to epithelial-mesenchymal transition and, potentially, to myofibroblast differentiation and proliferation. Thus, these discoveries suggest that DAMPs drive not only immune injury but also kidney regeneration and renal scarring. Here, we review the data from these studies and discuss the increasingly complex connection between DAMPs and kidney diseases.  相似文献   

4.
IL-6 can mediate proinflammatory effects, and IL-6 receptor (IL-6R) blockade as a treatment for inflammatory diseases has entered clinical practice. However, opposing effects of IL-6 have been observed in models of GN. Although IL-6 is proinflammatory in murine lupus nephritis, protective effects have been observed for IL-6 in the nephrotoxic nephritis (NTN) model of acute crescentic GN. In light of the potential dangers of IL-6–directed treatment, we studied the mechanisms underlying the contradictory findings in GN. IL-6 can signal through the membrane-bound IL-6R, which is expressed only on hepatocytes and certain leukocytes (classic), or through the soluble IL-6R, which binds the ubiquitously expressed gp130 (alternative). Preemptive treatment of mice with anti-IL-6R or anti-IL-6 worsened NTN, whereas selective blockade of alternative IL-6 signaling by the fusion protein sgp130Fc did not. FACS analysis of mouse spleen cells revealed proinflammatory macrophages express the highest levels of IL-6Rα, and in vitro treatment with IL-6 blocked macrophage proliferation. Furthermore, proinflammatory macrophages were expanded during inflammation in IL-6−/− mice. Late application of anti-IL-6 after establishment of adaptive nephritogenic immunity was sufficient to aggravate NTN within 2.5 days, a period when macrophages are active. Finally, NTN was aggravated in mice with macrophage-specific impairment of IL-6 classic signaling, coincident with enhanced macrophage proliferation and accumulation in the kidney. Our data thus reveal a novel mechanism in which IL-6–mediated dampening of macrophage activation protects tissues from overshooting immune responses. This finding has important implications for potential IL-6–directed therapies and supports the careful choice of recipient patients and timing.  相似文献   

5.
Proliferative GN is classified as immune complex-mediated or complement-mediated (C3 glomerulopathy). Immune complex-mediated GN results from glomerular deposition of immune-complexes/Ig and C3; the C3 is derived from activation of the classical and/or lectin pathways of complement. C3 glomerulopathy results from deposition of C3 and other complement fragments with minimal or no deposition of immune complexes/Ig; the C3 is derived from activation of the alternative pathway of complement. C4d is a byproduct of activation of the classic and lectin pathways. Although widely used as a marker for antibody-mediated rejection, the significance of C4d in C3 glomerulopathy is undetermined. We studied glomerular C4d staining in 18 biopsy specimens of immune-complex GN, 30 biopsy specimens of C3 GN, and 13 biopsy specimens of postinfectious GN. All specimens of immune complex-mediated GN, except two specimens of IgA nephropathy and one specimen of sclerosing membranoproliferative GN, showed bright (2–3+) C4d staining. The staining pattern of C4d mirrored the staining patterns of Ig and C3. Conversely, C4d staining was completely negative in 24 (80%) of 30 specimens of C3 glomerulopathy, and only trace/1+ C4d staining was detected in six (20%) specimens. With regard to postinfectious GN, C4d staining was negative in six (46%) of 13 specimens, suggesting an abnormality in the alternative pathway, and it was positive in seven (54%) specimens. To summarize, C4d serves as a positive marker for immune complex-mediated GN but is absent or minimally detected in C3 glomerulopathy.  相似文献   

6.
Tamm-Horsfall protein (THP) is a glycoprotein uniquely expressed in the kidney. We recently showed an important role for THP in mediating tubular cross-talk in the outer medulla and in suppressing neutrophil infiltration after kidney injury. However, it remains unclear whether THP has a broader role in neutrophil homeostasis. In this study, we show that THP deficiency in mice increases the number of neutrophils, not only in the kidney but also in the circulation and in the liver, through enhanced granulopoiesis in the bone marrow. Using multiplex ELISA, we identified IL-17 as a key granulopoietic cytokine specifically upregulated in the kidneys but not in the liver of THP−/− mice. Indeed, neutralization of IL-17 in THP−/− mice completely reversed the systemic neutrophilia. Furthermore, IL-23 was also elevated in THP−/− kidneys. We performed real-time PCR on laser microdissected tubular segments and FACS-sorted renal immune cells and identified the S3 proximal segments, but not renal macrophages, as a major source of increased IL-23 synthesis. In conclusion, we show that THP deficiency stimulates proximal epithelial activation of the IL-23/IL-17 axis and systemic neutrophilia. Our findings provide evidence that the kidney epithelium in the outer medulla can regulate granulopoiesis. When this novel function is added to its known role in erythropoiesis, the kidney emerges as an important regulator of the hematopoietic system.  相似文献   

7.
Antibody-mediated rejection is a major complication in renal transplantation. The pathologic manifestations of acute antibody-mediated rejection that has progressed to functional impairment of a renal transplant have been defined in clinical biopsy specimens. However, the initial stages of the process are difficult to resolve with the unavoidable variables of clinical studies. We devised a model of renal transplantation to elucidate the initial stages of humoral rejection. Kidneys were orthotopically allografted to immunodeficient mice. After perioperative inflammation subsided, donor-specific alloantibodies were passively transferred to the recipient. Within 1 hour after a single transfer of antibodies, C4d was deposited diffusely on capillaries, and von Willebrand factor released from endothelial cells coated intravascular platelet aggregates. Platelet-transported inflammatory mediators platelet factor 4 and serotonin accumulated in the graft at 100- to 1000-fold higher concentrations compared with other platelet-transported chemokines. Activated platelets that expressed P-selectin attached to vascular endothelium and macrophages. These intragraft inflammatory changes were accompanied by evidence of acute endothelial injury. Repeated transfers of alloantibodies over 1 week sustained high levels of platelet factor 4 and serotonin. Platelet depletion decreased platelet mediators and altered the accumulation of macrophages. These data indicate that platelets augment early inflammation in response to donor-specific antibodies and that platelet-derived mediators may be markers of evolving alloantibody responses.  相似文献   

8.
9.
目的:通过大鼠体外实验探讨白蛋白与血浆胰蛋白酶损伤血管内皮的完整性的关系,初步证实白蛋白的保护作用。方法:分离并培养大鼠血管内皮细胞,将血管内皮细胞接种于96孔板中,待血管内皮细胞铺满96孔板底部,换用无血清DMEM 100μL并加入10组含不同白蛋白浓度的培养液50μL(浓度从10%~0.02%),各孔均含浓度为0.125%的胰蛋白酶,反应1 h,通过MTT法测定各组细胞的OD值。结果:MTT实验结果显示白蛋白浓度与相应血管内皮细胞OD值呈正相关。Y代表OD值,X代表板孔中白蛋白浓度,回归方程为:Y=0.021X^3-0.084X^2+0.140X+0.397。结论:白蛋白对胰蛋白酶造成的血管内皮细胞损伤有保护作用,白蛋白浓度与对血管内皮细胞的保护作用成正相关。  相似文献   

10.
The initial contact point between a recipient’s immune system and a transplanted graft is the vascular endothelium. Clinical studies suggest a pathogenic role for non-HLA antiendothelial cell antibodies (AECAs) in allograft rejection; however, evidence linking AECAs of known specificity to in vivo vascular injury is lacking. Here, we used high-density protein arrays to identify target antigens for AECAs isolated from the sera of recipients of kidney transplants experiencing antibody-mediated rejection in the absence of donor-specific HLA antibodies. Four antigenic targets expressed on endothelial cells were identified: endoglin, Fms-like tyrosine kinase-3 ligand, EGF-like repeats and discoidin I-like domains 3, and intercellular adhesion molecule 4; the first three have been implicated in endothelial cell activation and leukocyte extravasation. To validate these findings, ELISAs were constructed, and sera from an additional 150 renal recipients were tested. All four AECAs were detected in 24% of pretransplant sera, and they were associated with post-transplant donor-specific HLA antibodies, antibody-mediated rejection, and early transplant glomerulopathy. AECA stimulation of endothelial cell cultures increased adhesion molecule expression and production of inflammatory cytokines: regulated on activation, normal T cell expressed and secreted PDGF and RESISTIN. These correlations between in vitro experiments and in vivo histopathology suggest that AECAs activate the vascular endothelium, amplifying the alloimmune response and increasing microvascular damage. Given the growing number of transplant candidates, a better understanding of the antigenic targets, beyond HLA, and mechanisms of immune injury will be essential for improving long-term allograft survival.  相似文献   

11.
Monocytes and kidney-resident macrophages are considered to be involved in the pathogenesis of renal ischemia-reperfusion injury (IRI). Several subsets of monocytes and macrophages are localized in the injured tissue, but the pathologic roles of these cells are not fully understood. Here, we show that CD169+ monocytes and macrophages have a critical role in preventing excessive inflammation in IRI by downregulating intercellular adhesion molecule-1 (ICAM-1) expression on vascular endothelial cells. Mice depleted of CD169+ cells showed enhanced endothelial ICAM-1 expression and developed irreversible renal damage associated with infiltration of a large number of neutrophils. The perivascular localization of CD169+ monocytes and macrophages indicated direct interaction with blood vessels, and coculture experiments showed that the direct interaction of CD169+ cell-depleted peripheral blood leukocytes augments the expression levels of ICAM-1 on endothelial cells. Notably, the transfer of Ly6Clo monocytes into CD169+ cell-depleted mice rescued the mice from lethal renal injury and normalized renal ICAM-1 expression levels, indicating that the Ly6Clo subset of CD169+ monocytes has a major role in the regulation of inflammation. Our findings highlight the previously unknown role of CD169+ monocytes and macrophages in the maintenance of vascular homeostasis and provide new approaches to the treatment of renal IRI.  相似文献   

12.
13.
14.
Blood vessels and their endothelial lining are uniquely adapted to the needs of the underlying tissue. The structure and function of the vasculature varies both between and within different organs. In the kidney, the vascular architecture is designed to function both in oxygen/nutrient delivery and filtration of blood according to the homeostatic needs of the body. Here, we review spatial and temporal differences in renal vascular phenotypes in both health and disease.  相似文献   

15.
16.
BackgroundMembranous nephropathy (MN) results from deposition of antigen-antibody complexes along the glomerular basement membrane (GBM). PLA2R, THSD7A, NELL1, and SEMA3B account for 80%–90% of target antigens in MN.MethodsWe performed laser microdissection and mass spectrometry (MS/MS) in kidney biopsies from 135 individuals with PLA2R-negative MN, and used immunohistochemistry/immunofluorescence and confocal microscopy to confirm the MS/MS finding, detect additional cases, and localize the novel protein. We also performed MS/MS and immunohistochemistry on 116 controls and used immunofluorescence microscopy to screen biopsy samples from two validation cohorts. Western blot and elution studies were performed to detect antibodies in serum and biopsy tissue.ResultsMS/MS studies detected a unique protein, protocadherin 7 (PCDH7), in glomeruli of ten (5.7%) PLA2R-negative MN cases, which also were negative for PLA2R, THSD7A, EXT1/EXT2, NELL1, and SEMA3B. Spectral counts ranged from six to 24 (average 13.2 [SD 6.6]). MS/MS did not detect PCDH7 in controls (which included 28 PLA2R-positive cases). In all ten PCDH7-positive cases, immunohistochemistry showed bright granular staining along the GBM, which was absent in the remaining cases of PLA2R-negative MN and control cases. Four of 69 (5.8%) cases in the validation cohorts (all of which were negative for PLA2R, THSD7A, EXT1, NELL1, and SEMA3B) were PCDH7-positive MN. Kidney biopsy showed minimal complement deposition in 12 of the 14 PCDH7-associated cases. Confocal microscopy showed colocalization of PCDH7 and IgG along the GBM. Western blot analysis using sera from six patients showed antibodies to nonreduced PCDH7. Elution of IgG from frozen tissue of PCDH7-associated MN showed reactivity against PCDH7.ConclusionsMN associated with the protocadherin PCDH7 appears to be a distinct, previously unidentified type of MN.  相似文献   

17.
18.
目的探讨体外诱导人毛囊干细胞成血管内皮细胞的可行性。方法采用中性蛋白酶(Dispase)分离人毛囊干细胞,用含10 ng/mL VEGF、2 ng/mL bFGF及10%血清的EGM-2诱导液对其诱导,以无诱导因子的基础培养液为对照组,对每代细胞形态进行观察。诱导4代后,检测vWF(von Willebrand factor)与CD31的表达。结果在诱导液的作用下,细胞形态逐步向内皮细胞的铺路石样形态转变,对照组细胞形态改变不明显。至第4代,实验组已明显表达vWF与CD31,对照组表达不明显;流式细胞仪检测显示,实验组阳性表达率近80%,对照组则低于5%;RT-PCR显示,实验组表达vWF,对照组未见明显表达。结论使用含10 ng/mL VEGF、2 ng/mL bFGF及10%血清的EGM-2诱导液,可在体外诱导人毛囊干细胞分化成血管内皮细胞。  相似文献   

19.
The impact of antiphospholipid antibodies (APA) on clinical outcome and graft histology following renal transplantation remains poorly known and controversial. We retrospectively explored the functional and histological significance of APA, primarily lupus anticoagulant (LA), in kidney transplant recipients using a systematic evaluation of 3‐ and 12‐month posttransplant screening biopsies and glomerular filtration rate measurements (mGFR). During the study period, 37 patients had APA (2.7%), primarily LA, and 12 fulfiled antiphospholipid syndrome (APS) diagnostic criteria (0.8%) at the time of transplantation. Early after transplantion, 4 of the 12 APS patients died. Early thrombosis of graft vessels and deep venous thrombosis occurred more frequently in APA+ patients than in controls (27% vs. 7%, p < 0.05 and 35% vs. 14%, p < 0.05, respectively). The survival rate was significantly lower in patients with APS. Strikingly, the hallmark lesions of APS‐associated nephropathy (APSN) were found in most of screening graft biopsies in APA+ patients but not in the controls. Accordingly, APA+ patients had a dramatic increase in chronic vascular scores and a faster decline in mGFR at 1 year. In conclusion, renal transplantation may be life‐threatening in APS patients, and the presence of LA at the time of transplantation is associated with a high rate of allograft APSN and poor transplantation outcomes.  相似文献   

20.
BACKGROUND: Recently, we identified specific N- and 6-O-sulphated heparan sulphate (HS) domains on activated glomerular endothelial cells. In this study, we evaluated in lupus nephritis the expression of different HS domains on glomerular endothelium and in the glomerular basement membrane (GBM). METHODS: The expression of specific glomerular HS domains and the presence of immunoglobulins (Ig) were determined by immunofluorescence staining of kidney sections of patients with nephritis due to systemic lupus erythematosus (SLE) and MRL/lpr lupus mice. The expression/presence of glomerular HS domains and Ig was also evaluated after eluting Ig from renal sections of lupus mice using two elution methods, and in renal sections of lupus mice treated with heparinoids. RESULTS: Both MRL/lpr mice and patients with lupus nephritis showed a decreased expression of HS in the GBM. The expression of N- and 6-O-sulphated HS domains on glomerular endothelium was decreased in MRL/lpr mice, but increased in SLE patients. MRL/lpr mice had more extensive glomerular Ig deposits than SLE patients. After elution of Ig, the glomerular endothelial expression of N- and 6-O-sulphated HS domains in MRL/lpr mice was recovered and even increased above normal levels, while the expression of HS in the GBM was restored to normal levels. Treatment with heparinoids prevented Ig deposition and preserved the expression of glomerular HS domains at normal levels in lupus mice. CONCLUSION: The expression of specific HS domains on glomerular endothelium and in the GBM is changed during lupus nephritis due to masking by Ig deposits and induction of inflammatory N- and 6-O-sulphated HS domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号