首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The most abundant populations of non-neoplastic cells in the glioblastoma (GBM) microenvironment are resident microglia, macrophages and infiltrating monocytes from the blood circulation. The mechanisms by which monocytes infiltrate into GBM, their fate following infiltration, and their role in GBM growth are not known. Here we tested the hypothesis that loss of the fractalkine receptor CX3CR1 in microglia and monocytes would affect gliomagenesis. Deletion of Cx3cr1 from the microenvironment resulted in increased tumor incidence and shorter survival times in glioma-bearing mice. Loss of Cx3cr1 did not affect accumulation of microglia/macrophages in peri-tumoral areas, but instead indirectly promoted the trafficking of CD11b+CD45hiCX3CR1lowLy-6ChiLy-6GF4/80−/low circulating inflammatory monocytes into the CNS, resulting in their increased accumulation in the perivascular area. Cx3cr1-deficient microglia/macrophages and monocytes demonstrated upregulation of IL1β expression that was inversely proportional to Cx3cr1 gene dosage. The Proneural subgroup of the TCGA GBM patient dataset with high IL1β expression showed shorter survival compared to patients with low IL1β. IL1β promoted tumor growth and increased the cancer stem cell phenotype in murine and human Proneural glioma stem cells (GSCs). IL1β activated the p38 MAPK signaling pathway and expression of monocyte chemoattractant protein (MCP-1/CCL2) by tumor cells. Loss of Cx3cr1 in microglia in a monocyte-free environment had no impact on tumor growth and did not alter microglial migration. These data suggest that enhancing signaling to CX3CR1 or inhibiting IL1β signaling in intra-tumoral macrophages can be considered as potential strategies to decrease the tumor-promoting effects of monocytes in Proneural GBM.  相似文献   

2.
Here we found that levels of cathelicidin, an antimicrobial peptide, were increased in colon cancer tissues compared to noncancerous tissues. Importantly, cathelicidin was mainly expressed in immune cells. Contact with tumor cells caused macrophages to secrete cathelicidin. Neutralization of cathelicidin, in vivo, significantly reduced the engraftment of macrophages into colon tumors, as well as proliferation of tumor cells, resulting in an inhibition of tumor growth. Furthermore, treatment with cathelicidin neutralizing antibody de-activated the Wnt/β-catenin signaling pathway in tumor cells both in vivo and in vitro. Cathelicidin activated Wnt/β-catenin signaling by inducing phosphorylation of PTEN, leading to activation of PI3K/Akt signaling and subsequent phosphorylation of GSK3β, resulting in stabilization and nuclear translocation of β-catenin. These data indicate that cathelicidin, expressed by immune cells in the tumor microenvironment, promotes colon cancer growth through activation of the PTEN/PI3K/Akt and Wnt/β-catenin signaling pathways.  相似文献   

3.
4.
5.
6.
Bone metastasis is a frequent and life-threatening complication of breast cancer. The molecular mechanisms supporting the establishment of breast cancer cells in the skeleton are still not fully understood, which may be attributed to the lack of suitable models that interrogate interactions between human breast cancer cells and the bone microenvironment. Although it is well-known that integrins mediate adhesion of malignant cells to bone extracellular matrix, their role during bone colonization remains unclear. Here, the role of β1 integrins in bone colonization was investigated using tissue-engineered humanized in vitro and in vivo bone models. In vitro, bone-metastatic breast cancer cells with suppressed integrin β1 expression showed reduced attachment, spreading, and migration within human bone matrix compared to control cells. Cell proliferation in vitro was not affected by β1 integrin knockdown, yet tumor growth in vivo within humanized bone microenvironments was significantly inhibited upon β1 integrin suppression, as revealed by quantitative in/ex vivo fluorescence imaging and histological analysis. Tumor cells invaded bone marrow spaces in the humanized bone and formed osteolytic lesions; osteoclastic bone resorption was, however, not reduced by β1 integrin knockdown. Taken together, we demonstrate that β1 integrins have a pivotal role in bone colonization using unique tissue-engineered humanized bone models.  相似文献   

7.
8.
Inflammation is associated with cancer-prone microenvironment, leading to cancer. IL-32 is expressed in chronic inflammation-linked human cancers. To investigate IL-32α in inflammation-linked colorectal carcinogenesis, we generated a strain of mice, expressing IL-32 (IL-32α-Tg). In IL-32α-Tg mice, azoxymethane (AOM)-induced colon cancer incidence was decreased, whereas expression of TNFR1 and TNFR1-medicated apoptosis was increased. Also, IL-32α increased ROS production to induce prolonged JNK activation. In colon cancer patients, IL-32α and TNFR1 were increased. These findings indicate that IL-32α suppressed colon cancer development by promoting the death signaling of TNFR1.  相似文献   

9.
Studies have revealed that β-asarone exerts a powerful inhibitory effect on the proliferation of human cancer cells. The authors'' previous study demonstrated that β-asarone could induce LoVo colon cancer cell apoptosis in vitro and in vivo, indicating its anticancer properties. The present study aimed to determine the antineoplastic effect of β-asarone in HCT116 colon cancer cells. An in vitro proliferation assay using a real time cell analyzer demonstrated that β-asarone effectively decreased HCT116 cell proliferation in a dose-dependent manner. Bioinformatics analysis revealed that differentially expressed genes following β-asarone inhibition were involved in the ‘cell cycle’, ‘cell division’, ‘cell proliferation’ and ‘apoptosis’. Subsequently, a xenograft assay evidenced the inhibitory effect of β-asarone on the growth of HCT116 tumors in vivo. Further detection of immune-associated cytokines and cells suggested that β-asarone might be involved in the antitumor immune response by stimulating granulocyte-colony stimulating factor and increasing the number of macrophage cells in the spleen. Additionally, a murine model of splenic-transplantation verified the strong suppressive role of β-asarone in colon cancer liver metastasis in vivo. Taken together, the results of the current study revealed that β-asarone decreased HCT116 colon cancer cell proliferation and liver metastasis potentially by activating the innate immune system, supporting the multi-system regulation theory and providing a basis for further mechanistic studies on colon cancer.  相似文献   

10.
Previous studies suggested that bisphosphonate zoledronic acid exerts an anti-tumor effect by interacting with the microenvironment. In this study, we aimed to elucidate the mechanism behind the anti-breast cancer effect of zoledronic acid.Here we showed that zoledronic acid did not influence in vitro human breast cancer cell survival, but did affect human stromal cell survival. Breast cancer cell death in co-culture with stromal cells was analyzed in vitro by fluorescent microscopy and flowcytometry analysis. In co-culture, the addition of stromal cells to breast cancer cells induced tumor cell death by zoledronic acid, which was abolished by transforming growth factor (TGF)-β. In the in vivo chicken chorioallantoic membrane model, zoledronic acid reduced the breast cancer cells fraction per tumor only in the presence of human stromal cells. Zoledronic acid decreased TGF-β excretion by stromal cells and co-cultures. Moreover, supernatant of zoledronic acid treated stromal cells reduced phospho-Smad2 protein levels in breast cancer cells. Thus, zoledronic acid exerts an anti-breast cancer effect via stromal cells, accompanied by decreased stromal TGF-β excretion and reduced TGF-β signaling in cancer cells.  相似文献   

11.
12.
13.
ER (estrogen receptor)-α36, a variant of human ERα, activates non-genomic cell signaling pathways. ER-α36 on the cell membrane plays a role in breast cancer growth and development, and contributes to tamoxifen resistance. However, it is not understood how cell membrane expression of ER-α36 is regulated. In this study, we investigated the role of cell membrane glycoprotein 96 (mgp96) in the regulation of ER-α36 expression and signaling. We found that the C-terminal domain of mgp96 directly interacts with ER-α36 on the cell membrane of breast tumor cells. This interaction stabilizes the ER-α36 protein, thereby increasing its signaling, which, in turn, increases tumor cell growth and invasion. Moreover, targeting mgp96 with siRNA or monoclonal antibody (mAb) blocks the mgp96-ER-α36 interaction and inhibits breast cancer growth and invasion both in vitro and in vivo. These results provide insights into the modulation of cell membrane ER-α36 expression and suggest that mgp96 could be a potential therapeutic target for ER-α36-overexpressing breast cancer.  相似文献   

14.
Stress has an emerging role in cancer and targeting stress-related β-adrenergic receptors (AR) has been proposed as a potential therapeutic approach in melanoma. Here we report that β3-AR expression correlates with melanoma aggressiveness. In addition, we highlight that β3-AR expression is not only restricted to cancer cells, but it is also expressed in vivo in stromal, inflammatory and vascular cells of the melanoma microenvironment. Particularly, we demonstrated that β3-AR can (i) instruct melanoma cells to respond to environmental stimuli, (ii) enhance melanoma cells response to stromal fibroblasts and macrophages, (iii) increase melanoma cell motility and (iv) induce stem-like traits. Noteworthy, β3-AR activation in melanoma accessory cells drives stromal reactivity by inducing pro-inflammatory cytokines secretion and de novo angiogenesis, sustaining tumor growth and melanoma aggressiveness. β3-ARs also play a mandatory role in the recruitment to tumor sites of circulating stromal cells precursors, in the differentiation of these cells towards different lineages, further favoring tumor inflammation, angiogenesis and ultimately melanoma malignancy. Our findings validate selective β3-AR antagonists as potential promising anti-metastatic agents. These could be used to complement current therapeutic approaches for melanoma patients (e.g. propranolol) by targeting non-neoplastic stromal cells, hence reducing therapy resistance of melanoma.  相似文献   

15.
16.
Regulatory mechanisms underlying constitutive and inducible NFκB activation in cancer remain largely unknown. Here we investigated whether a novel NIK- and IKK2-binding protein (NIBP) is required for maintaining malignancy of cancer cells in an NFκB-dependent manner. Real-time polymerase chain reaction analysis of a human cancer survey tissue-scan cDNA array, immunostaining of a human frozen tumor tissue array and immunoblotting of a high-density reverse-phase cancer protein lysate array showed that NIBP is extensively expressed in most tumor tissues, particularly in breast and colon cancer. Lentivirus-mediated NIBP shRNA knockdown significantly inhibited the growth/proliferation, invasion/migration, colony formation and xenograft tumorigenesis of breast (MDA-MB-231) or colon (HCT116) cancer cells. NIBP overexpression in HCT116 cells promoted cell proliferation, migration and colony formation. Mechanistically, NIBP knockdown in cancer cells inhibited cytokine-induced activation of NFκB luciferase reporter, thus sensitizing the cells to TNFα-induced apoptosis. Endogenous NIBP bound specifically to the phosphorylated IKK2 in a TNFα-dependent manner. NIBP knockdown transiently attenuated TNFα-stimulated phosphorylation of IKK2/p65 and degradation of IκBα. In contrast, NIBP overexpression enhanced TNFα-induced NFκB activation, thus inhibiting constitutive and TNFα-induced apoptosis. Collectively, our data identified important roles of NIBP in promoting tumorigenesis via NFκΒ signaling, spotlighting NIBP as a promising target in cancer therapeutic intervention.  相似文献   

17.
Tumor‐associated macrophages (TAMs), one of the most common cell components in the tumor microenvironment, have been reported as key contributors to cancer‐related inflammation and enhanced metastatic progression of tumors. To explore the underlying mechanism of TAM‐induced tumor progression, TAMs were isolated from colorectal cancer patients, and the functional interaction with colorectal cancer cells was analyzed. Our study found that coculture of TAMs contributed to a glycolytic state in colorectal cancer, which promoted the stem‐like phenotypes and invasion of tumor cells. TAMs produced the cytokine transforming growth factor‐β to support hypoxia‐inducible factor 1α (HIF1α) expression, thereby upregulating Tribbles pseudokinase 3 (TRIB3) in tumor cells. Elevated expression of TRIB3 resulted in activation of the β‐catenin/Wnt signaling pathway, which eventually enhanced the stem‐like phenotypes and cell invasion in colorectal cancer. Our findings provided evidence that TAMs promoted colorectal cancer progression in a HIF1α/TRIB3‐dependent manner, and blockade of HIF1α signals efficiently improved the outcome of chemotherapy, describing an innovative approach for colorectal cancer treatment.  相似文献   

18.
Abnormal architecture of the tumor blood network, as well as heterogeneous erythrocyte flow, leads to temporal fluctuations in tissue oxygen tension exposing tumor and stromal cells to cycling hypoxia. Inflammation is another feature of tumor microenvironment and is considered as a new enabling characteristic of tumor progression. As cycling hypoxia is known to participate in tumor aggressiveness, the purpose of this study was to evaluate its role in tumor-promoting inflammation. Firstly, we assessed the impact of cycling hypoxia in vitro on endothelial inflammatory response induced by tumor necrosis factor α. Results showed that endothelial cells exposed to cycling hypoxia displayed an amplified proinflammatory phenotype, characterized by an increased expression of inflammatory cytokines, namely, interleukin (IL)-6 and IL-8; by an increased expression of adhesion molecules, in particular intercellular adhesion molecule–1 (ICAM-1); and consequently by an increase in THP-1 monocyte adhesion. This exacerbation of endothelial inflammatory phenotype occurs through nuclear factor–κB overactivation. Secondly, the role of cycling hypoxia was studied on overall tumor inflammation in vivo in tumor-bearing mice. Results showed that cycling hypoxia led to an enhanced inflammation in tumors as prostaglandin-endoperoxide synthase 2 (PTGS2), IL-6, CXCL1 (C-X-C motif ligand 1), and macrophage inflammatory protein 2 (murine IL-8 functional homologs) mRNA expression was increased and as a higher leukocyte infiltration was evidenced. Furthermore, cycling hypoxia–specific inflammatory phenotype, characterized by a simultaneous (baculoviral inhibitor of apoptosis repeat-containing 5)low/PTGS2high/ICAM-1high/IL-6high/IL-8high expression, is associated with a poor prognosis in human colon cancer. This new phenotype could thus be used in clinic to more precisely define prognosis for colon cancer patients. In conclusion, our findings evidenced for the first time the involvement of cycling hypoxia in tumor-promoting inflammation amplification.  相似文献   

19.
Increasing evidence indicates that Liver X Receptors (LXRs) have some anticancer properties. We recently demonstrated that LXR ligands induce colon cancer cell pyroptosis through an LXRβ-dependent pathway. In the present study, we showed that human colon cancer cell lines presented differential cytoplasmic localizations of LXRβ. This localization correlated with caspase-1 activation and cell death induction under treatment with LXR ligand. The association of LXRβ with the truncated form of RXRα (t-RXRα) was responsible for the sequestration of LXRβ in the cytoplasm in colon cancer cells. Moreover t-RXRα was not expressed in normal colon epithelial cells. These cells presented a predominantly nuclear localization of LXRβ and were resistant to LXR ligand cytotoxicity.Our results showed that predominant cytoplasmic localization of LXRβ, which occurs in colon cancer cells but not in normal colon epithelial cells, allowed LXR ligand-induced pyroptosis. This study strengthens the hypothesis that LXRβ could be a promising target in cancer therapy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号