首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In areas co-endemic for helminth parasites and HIV/AIDS, infants are often administered vaccines prior to infection with immune modulatory helminth parasites. Systemic Th2 biasing and immune suppression caused by helminth infection reduces cell-mediated responses to vaccines such as tetanus toxoid and BCG. Therefore, we asked if infection with helminthes post-vaccination, alters already established vaccine induced immune responses. In our model, mice are vaccinated against HIV-1 Gag using a Listeria vaccine vector (Lm-Gag) in a prime-boost manner, then infected with the human helminth parasite Schistosoma mansoni. This allows us to determine if established vaccine responses are maintained or altered after helminth infection. Our second objective asked if helminth infection post-vaccination alters the recipient's ability to respond to a second boost. Here we compared responses between uninfected mice, schistosome infected mice, and infected mice that were given an anthelminthic, which occurred coincident with the boost or four weeks prior, as well as comparing to un-boosted mice. We report that HIV-1 vaccine-specific responses generated by Listeria vector HIV-1 vaccines are maintained following subsequent chronic schistosome infection, providing further evidence that Listeria vector vaccines induce potent vaccine-specific responses that can withstand helminth infection. We also were able to demonstrate that administration of a second Listeria boost, which markedly enhanced the immune response, was minimally impacted by schistosome infection, or anthelminthic therapy. Surprisingly, we also observed enhanced antibody responses to HIV Gag in vaccinated mice subsequently infected with schistosomes.  相似文献   

2.
Vaccines for HIV, malaria and TB remain high priorities, especially for sub-Saharan populations. The question is: will vaccines currently in development for these diseases function in populations that have a high prevalence of helminth infection? Infection with helminth parasites causes immune suppression and a CD4+ Th2 skewing of the immune system, thereby impairing Th1-type vaccine efficacy. In this study, we conduct HIV vaccine trials in mice with and without chronic helminth infection to mimic the human vaccine recipient populations in Sub-Saharan Africa and other helminth parasite endemic regions of the world, as there is large overlap in global prevalence for HIV and helminth infection. Here, we demonstrate that Listeria monocytogenes functions as a vaccine vector to drive robust and functional HIV-specific cellular immune responses, irrespective of chronic helminth infection. This observation represents a significant advance in the field of vaccine research and underscores the concept that vaccines in the developmental pipeline should be effective in the target populations.  相似文献   

3.

Background

Helminth infections are highly prevalent in the tropics and may have an effect on immune responses to vaccines due to their immunomodulatory effect. The prevalence of helminth infections in young children, the target group for malaria and most other vaccines, is high. Therefore we assessed the influence of helminth infection on vaccine-induced immune responses in a phase I clinical trial of the malaria vaccine candidate GMZ2.

Methods

Twenty Gabonese preschool-age children were vaccinated with GMZ2, a blood stage malaria vaccine candidate. Humoral immune response against the vaccine antigens and parasitological status were assessed. Vaccine-specific antibody concentrations and memory B-cell numbers were compared in worm infected and non-infected participants.

Results

Antibody response to GMZ2 was 3.4-fold (95% confidence interval: 1.6, 7.4) higher in Trichuris trichiura negative subjects compared to positive participants, whereas immunoglobulin subclass distribution was similar. Memory B-cell response was moderately increased in T. trichiura negative individuals, although the difference was not significant.

Conclusions

Future malaria vaccine development programs need to account for worm-mediated hyporesponsiveness of immune reactions.  相似文献   

4.
Actinobacillus pleuropneumoniae is the major etiological agent of swine pleuropneumonia that causes critical economic losses in swine industry. The use of DNA vaccines encoding Apx exotoxin structural proteins is a promising novel approach for immunization against A. pleuropneumoniae. The goal of this study was to design DNA vaccines which encode the gene of ApxIA or ApxIIA, and to evaluate the elicited immune responses and protective efficacy in mice. Significant humoral immune responses were induced by these DNA vaccines through intramuscular immunization. The IgG subclass (IgG1 and IgG2a) analysis indicates that divalent DNA vaccine induces both Th1 and Th2 immune responses. The protective efficacy was evaluated by the survival against lethal challenge with A. pleuropneumoniae serotype 1. The groups of vaccination with pcDNA-apxIA or divalent (pcDNA-apxIA and pcDNA-apxIIA) DNA vaccine provided protective efficacy significantly higher than that of the negative control groups (P < 0.05). However, pcDNA-apxIIA vaccine conferred protection was limited and not significant than that of the negative control groups (P > 0.05). These results show that the divalent DNA vaccine could confer the best protection. This finding indicates that DNA immunization should facilitate the development of a ‘third-generation’ of vaccines and provide a novel strategy against A. pleuropneumoniae infection.  相似文献   

5.
Visceral leishmaniasis is the most severe form of leishmaniasis. To date, there is no effective vaccine against this disease. Many antigens have been examined so far as protein- or DNA-based vaccines, but none of them conferred complete long-term protection. The use of live attenuated vaccines has recently emerged as a promising vaccination strategy. In this study, we stably expressed the Leishmania donovani A2 antigen in Leishmania tarentolae, a non-pathogenic member of the genus Leishmania, and evaluated its protective efficacy as a live vaccine against L. infantum challenge. Our results show that a single intraperitoneal administration of the A2-recombinant L. tarentolae strain protects BALB/c mice against L. infantum challenge and that protective immunity is associated with high levels of IFN-γ production prior and after challenge. This is accompanied by reduced levels of IL-5 production after challenge, leading to a potent Th1 immune response. In contrast, intravenous injection elicited a Th2 type response, characterized by higher levels of IL-5 and high humoral immune response, resulting in a less efficient protection. All together, these results indicate the promise of A2-expressing L. tarentolae as a safe live vaccine against visceral leishmaniasis.  相似文献   

6.
Cao J  Chen Z  Ren Y  Luo Y  Cao M  Lu W  Zhao P  Qi Z 《Vaccine》2011,29(20):3714-3723
Hepatitis C virus (HCV) core protein has long been considered an attractive candidate for inclusion in a protective vaccine. However, this protein may hamper the development of systemic immune responses because of its immune suppressive properties. We previously reported that immune responses to HCV core protein could be efficiently induced by attenuated Salmonella carrying the HCV core protein, but not the HCV core DNA vaccine. To optimize the combination of the core protein and envelope protein 2 (E2) into a vaccine formulation to induce cellular immune responses and neutralizing antibodies, we constructed a plasmid containing two expression cassettes. One expression cassette was included to regulate the expression of HCV core protein by an inducible in vivo-activated Salmonella promoter, the other was included to regulate the expression of HCV E2 protein by the cytomegalovirus enhancer/promoter. Oral immunization of BALB/c mice with the attenuated Salmonella strain SL7207 carrying this plasmid efficiently induced HCV core and E2-specific cellular immune responses and antibodies. IgG purified from immunized mice could neutralize the infectivity of HCV pseudoparticles (HCVpp) of both the autologous Con 1 isolate and the heterologous H77 isolate, and cell culture produced HCV (HCVcc) of Con1-JFH1 chimera. These results indicated that this vaccine strategy can effectively deliver core and E2 protein to the immune system and provide a promising approach for the development of prophylactic and therapeutic vaccines against HCV infection.  相似文献   

7.
《Vaccine》2020,38(35):5582-5590
Immune responses to vaccination are heterogeneous between individuals; the same vaccine that provides protection in one circumstance may be ineffective in another. One factor that could influence the response to vaccination is concurrent or prior infection with unrelated parasites. Here, we review both the experimental and epidemiological literature on parasite-vaccine interactions, and present a meta-analysis of the published data. In total, our review returned 101 relevant articles, 50 of which met criteria for meta-analysis. Parasite factors potentially affecting vaccination include the type of parasite involved, the stage of infection, and the timing of infection relative to vaccination. Vaccine factors affecting likelihood of interference by parasites include vaccine formulation, route of administration, and the type of immune response required to provide protection against the target antigen. Our meta-analysis of these data show three key things: (1) parasite infections at the time of vaccination result in worse immunisation outcomes, (2) chronic helminth infections are more likely to negatively impact immunisation than acute helminth infections, and (3) thymus-dependent vaccines are more susceptible to parasite interference than thymus-independent vaccines. Our findings highlight the importance of considering and mitigating parasite infections: by taking parasites into account, it should be possible to more effectively immunise individuals and populations.  相似文献   

8.
Yersinia pestis is a dangerous bacterial pathogen that when inhaled can rapidly induce fatal pneumonic plague. Thus, there is a need for stable, safe, and easily administered mucosal vaccines capable of eliciting effective protection against pulmonary Y. pestis infections. Cationic liposome–nucleic acid complexes (CLDC) have been shown previously to be effective vaccine adjuvants for parenteral immunization, but have not been previously evaluated for use in oral immunization. Therefore, we investigated the ability of an orally administered CLDC adjuvanted vaccine to elicit protective immunity against lethal pneumonic plague. C57Bl/6 mice were vaccinated orally or subcutaneously using 10 μg Y. pestis F1 antigen combined with CLDC and immune responses and protection from challenge was assessed. We found that oral immunization elicited high titers of anti-F1 antibodies, equivalent to those generated by parenteral immunization. Importantly, orally immunized mice were protected from lethal pulmonary challenge with virulent Y. pestis for up to 18 weeks following vaccination. Vaccine-induced protection following oral immunization was found to be dependent primarily on CD4+ T cells, with a partial contribution from CD8+ T cells. Thus, CLDC adjuvanted vaccines represent a new type of orally administered, non-replicating vaccine capable of generating effective protection against pulmonary infection with virulent Y. pestis.  相似文献   

9.
Recombinant antigens cloned from the oncosphere life cycle stage of the cestode parasite Taenia solium (T. solium) have been proven to be effective as vaccines for protecting pigs against infections with T. solium. Previous studies have defined three different host protective oncosphere antigens, TSOL18, TSOL16 and TSOL45. In this study, we evaluated the potential for combining the antigens TSOL16 and TSOL18 as a practical vaccine. Firstly, in a laboratory trial, we compared the immunogenicity of the combined antigens (TSOL16/18) versus the immunogenicity of the antigens separately. Secondly, in a field trial, we tested the ability of the TSOL16/18 vaccine to induce detectable antibody responses in animals living under environmental stress and traditionally reared in areas where T. solium cysticercosis is endemic; and finally, we characterised the immune response of the study population. Pigs of 8–16 weeks of age were vaccinated with 200 μg each of TSOL16 and TSOL18, plus 5 mg of Quil-A. Specific total IgG, IgG1 and IgG2 antibody responses induced by TSOL16 and TSOL18 were determined with ELISA. The immunogenicity of both antigens was retained in the combined TSOL16/18 vaccine. The combined vaccine TSOL16/18 induced detectable specific anti-TSOL18 antibody responses in 100% (113/113) and specific anti-TSOL16 in 99% (112/113) of the vaccinated animals measured at 2 weeks following the booster vaccination. From the two IgG antibody subtypes analysed we found there was stronger response to IgG2.  相似文献   

10.
Leptospirosis is an important zoonotic disease worldwide. Subunit vaccines are an attractive intervention strategy against this disease, but potent, non-toxic adjuvants are necessary components to any effective vaccine. Among various adjuvant candidates, liposomes have garnered recent attention for their capacity as carriers of vaccines. In the present study we prepared novel liposomes using total polar lipids from the nonpathogenic bacterium, Mycobacterium smegmatis (designated smegmosomes). The potential for smegmosomes as a vaccine delivery/adjuvant system was evaluated with novel leptospira protective antigens (Lp0607, Lp1118, Lp1454) and compared with conventional aluminum hydroxide adjuvant (alum) in a hamster model of leptospirosis. Four-week-old hamsters were immunized subcutaneously twice at three weeks intervals and either bled at various time points to evaluate antibody responses, sacrificed to isolate splenocytes for lymphocyte proliferation and cytokine profiles in response to recall antigen, or challenged intraperitoneally with a modified lethal dose (10X MLD50) of virulent Leptospira interrogans serovar Pomona. Our results demonstrate that smegmosomes carrying antigens are better adjuvants than alum as revealed by enhanced and long term antibody response, lymphocyte proliferation and significant enhancement in both Th1 (IFN-γ) and Th2 (IL-4, IL-10) cytokine production. Additionally, smegmosomes were found to induce memory responses that are significantly higher than those of alum. Above all, smegmosomes were observed to impart a significantly higher level of protection than alum as revealed by enhanced survival, reduced histopathological lesions and bacterial load in vital organs. Taken together, the data of the present study suggests that smegmosomes will serve well as a promising delivery vehicle/adjuvant system that can induce both Th1 and Th2 type immune responses and provide a novel tool in development of improved vaccines for leptospirosis and other infectious diseases.  相似文献   

11.
Lu YC  Li MC  Chen YM  Chu CY  Lin SF  Yang WJ 《Vaccine》2011,29(44):7740-7746
Actinobacillus pleuropneumoniae is a gram-negative bacterial pathogen that causes swine pleuropneumonia, a highly contagious and often fatal disease that occurs worldwide. Our previous study showed that DNA vaccines encoding Apx exotoxin structural proteins ApxIA and/or ApxIIA, are a promising novel approach for immunization against the lethal challenge of A. pleuropneumoniae serotype 1. Vaccination against A. pleuropneumoniae is impeded by the lack of vaccines inducing reliable cross-serotype protection. Type IV fimbrial protein ApfA has been shown to be present and highly conserved in various serotypes of A. pleuropneumoniae. A novel DNA vaccine encoding ApfA (pcDNA-apfA) was constructed to evaluate the protective efficacy against infection with A. pleuropneumoniae serotype 2. A significant antibody response against pilin was generated following pcDNA-apfA immunization, suggesting that it was expressed in vivo. The IgG subclass (IgG1 and IgG2a) analysis indicates that the pcDNA-apfA vaccine induces both Th1 and Th2 immune responses. The IgA analysis shows that mucosal immunity could be enhanced by this DNA vaccine. Nevertheless, the strong antibody response induced by pcDNA-apfA vaccine only provided limited 30% protective efficacy against the serotype 2 challenge. These results in this study do not coincide with that the utility of type IV pilin is a good vaccine candidate against other infectious pathogens. It indicates that pilin should play a limited role in the development of a vaccine against A. pleuropneumoniae infection.  相似文献   

12.
Development of a protective subunit vaccine against Leishmania spp. depends on antigens and adjuvants that induce appropriate immune responses. We evaluated a second generation polyprotein antigen (Leish-110f) in different adjuvant formulations for immunogenicity and protective efficacy against Leishmania spp. challenges. Vaccine-induced protection was associated with antibody and T cell responses to Leish-110f. CD4 T cells were the source of IFN-γ, TNF, and IL-2 double- and triple-positive populations. This study establishes the immunogenicity and protective efficacy of the improved Leish-110f subunit vaccine antigen adjuvanted with natural (MPL-SE) or synthetic (EM005) Toll-like receptor 4 agonists.  相似文献   

13.
Pertussis has resurged during the last two decades in different countries. In particular in the 2010–2013 period large outbreaks were detected in US, Australia, UK and The Netherlands with significant mortality in infants. The epidemiological situation of pertussis points out the need to develop new vaccines and in this regard we previously developed a new vaccine based on outer membrane vesicles (OMVs) which have been shown to be safe and to induce protection in mice. Here we have further investigated the properties of OMVs vaccines; in particular we studied the contribution of pertussis toxin (PTx) and pertactin (Prn) in OMVs-mediated protection against pertussis. PTx-deficient OMVs and Prn-deficient OMVs were obtained from defective Bordetella pertussis mutants. The absence of PTx or Prn did compromise the protective capacity of the OMVs formulated as Tdap vaccine. Whereas the protective efficacy of the PTx-deficient OMVs in mice was comparable to Prn-deficient OMVs, the protective capacity of both of them was significantly impaired when it was compared with the wild type OMVs. Interestingly, using OMVs obtained from a B. pertussis strain which does not express any of the virulence factors but expresses the avirulent phenotype; we observed that the protective ability of such OMVs was lower than that of OMVs obtained from virulent B. pertussis phase. However, it was surprising that although the protective capacity of avirulent OMVs was lower, they were still protective in the used mice model. These results allow us to hypothesize that OMVs from avirulent phase shares protective components with all OMVs assayed. Using an immune proteomic strategy we identified some common components that could play an important role in protection against pertussis.  相似文献   

14.
Individuals living in malaria endemic areas are subject to repeated infections yet fail to develop sterilizing immunity, however, immunization of mice with attenuated sporozoites or subunit vaccines has shown the ability to protect mice against a sporozoite challenge. We recently reported that mice primed with dendritic cells coated with the dominant circumsporozoite CD8 T cell epitope from Plasmodium berghei followed by a boost with recombinant Listeria monocytogenes expressing the same epitope exhibited sterile immunity against a sporozoite challenge for more than one year. In this report we show those mice do not contain protective antibodies and that depletion of CD4 T cells in the immunized mice did not affect sterile immunity. In contrast, CD8 T cell depletion eliminated protection. Thus, protective immunity generated by this immunization approach is entirely memory CD8 T cell-dependent. We also show here that mice initially protected by circumsporozoite-specific memory CD8 T cells develop sterilizing sporozoite-specific antibodies after repeated asymptomatic challenges with physiologic numbers of viable sporozoites. Therefore, initial protection by a CD8 T cell-targeted liver stage subunit vaccine allows the generation of enhanced sterilizing immune responses from repeated exposure to Plasmodium parasites.  相似文献   

15.
Despite high vaccination coverage rates, pertussis continues to be a global concern, with increased incidence widely noted. The current pertussis epidemiologic situation has been mainly attributed to waning immunity and pathogen adaptation. To improve the disease control, a new generation of vaccines capable to overcome those weaknesses associated to the current vaccines need to be developed. Previously we have demonstrated that the outer membrane vesicles obtained from the recombinant Bordetella pertussis strain expressing PagL enzyme (OMVsBpPagL) are good vaccine candidates to protect against pertussis. In this work the OMVsBpPagL formulated with diphtheria and tetanus toxoids (TdapOMVsBpPagL) was used to evaluate its capacity to offer protection against Argentinean clinical isolates and to induce long-term immunity. To these aims BALB/c mice were immunized with TdapOMVsBpPagL and challenged with sublethal doses of the clinical isolate Bp106 selected as a representative circulating isolate. Comparisons with a current commercial Tdap vaccine used at a dose in which pertussis toxin level was equivalent to that of TdapOMVsBpPagL were performed. With the normalized doses of both vaccines we observed that TdapOMVsBpPagL protected against the clinical isolate infection, whereas current commercial Tdap vaccine showed little protection against such pathogen. Regarding long-term immunity we observed that the TdapOMVsBpPagL protective capacity against the recommended WHO reference strain persisted at least 9 months. In agreement with these results TdapOMVsBpPagL induced Th1 and Th2 immune response. In contrast, commercial Tdap induced Th2 but weak Th1 responses. All results presented here showed that TdapOMVsBpPagL is an interesting formulation to be considered for the development of novel acellular multi-antigen vaccine.  相似文献   

16.
Chen N  Yuan ZG  Xu MJ  Zhou DH  Zhang XX  Zhang YZ  Wang XW  Yan C  Lin RQ  Zhu XQ 《Vaccine》2012,30(23):3478-3482
Ascariasis caused by Ascaris is the most common parasite problem in humans and pigs worldwide. No vaccines are available for the prevention of Ascaris infections. In the present study, the gene encoding Ascaris suum enolase (As-enol-1) was amplified, cloned and sequenced. Amino acid sequence alignment indicated that As-enol-1 was highly conserved between different nematodes and shared the highest identity (87%) with enolase from Anisakis simplex s.l. The recombinant pVAX-Enol was successfully expressed in Marc-145 cells. The ability of the pVAX-Enol for inducing immune protective responses against challenge infection with A. suum L3 was evaluated in Kunming mice. The immune response was evaluated by lymphoproliferative assay, cytokine and antibody measurements, and the reduction rate of recovery larvae. The results showed that the mice immunized with pVAX-Enol developed a high level of specific antibody responses against A. suum, a strong lymphoproliferative response, and significant levels of IFN-γ, IL-2, IL-4 and IL-10 production, compared with the other groups immunized with empty plasmid or blank controls, respectively. There was a 61.13% reduction (P<0.05) in larvae recovery compared with that in the blank control group. Our data indicated that A. suum enolase is a potential vaccine candidate against A. suum infection.  相似文献   

17.
《Vaccine》2020,38(6):1494-1504
The development of a blood-stage malaria vaccine has largely focused on the subunit approach. However, the limited success of this strategy, mainly due to antigenic polymorphism and the failure to maintain potent parasite-specific immune responses, indicates that other approaches must be considered. Whole parasite (WP) vaccines offer many advantages over sub-units; they represent every antigen on the organism, thus limiting the effects of antigenic polymorphism, and similarly they compensate for individual Immune-Response (Ir) gene-regulated non-responsiveness to any particular antigen. From a development perspective, they negate the need to identify and compare the relative efficacies of individual candidate antigens. WP vaccines induce protective immunity that is largely cell-mediated.However, WP blood-stage vaccines present a number of challenges for the development pathway. Key issues are cryopreservation and storage and the possible induction of antibodies against red blood cell surface antigens, even if the parasites are grown in blood group O, Rh negative blood. Here, we used a novel adaptation of an immunomagnetic method from STEMCELL™ Technologies to remove the red cell membranes from human red blood cells parasitized with P. falciparum. We then used these antigens to construct liposomes which were modified to present mannose on their membrane to target the liposome to antigen presenting cells. We then compared the immunogenicity of freshly prepared and lyophilized liposome vaccines. Following vaccination of mice, liposomes induced significantly lower antibody responses to human red cells but potent strain- and species-transcending cell-mediated immune responses to parasite antigens. These data support transitioning the P. falciparum liposomal vaccine into clinical studies.  相似文献   

18.
Kumari S  Singh S  Saha B  Paliwal PK 《Vaccine》2011,29(48):8783-8787
Leishmania, a protozoan parasite that resides and replicates obligatorily within macrophages, inflicts a complex of severe diseases known as leishmaniasis. The diseases have significant socio-economic impact through gross disfiguration, morbidity and mortality worldwide. Despite these problems, an effective anti-leishmanial vaccine remains elusive. Herein, we have analyzed the immunogenicity and protective efficacy of L. major MAP kinase 10 (LmjMAPK10) against the challenge infection with the parasite. We observe significant protection against the infection by LmjMAPK10 priming of BALB/c mouse strain, a susceptible host. The resistance to the infection is generally associated with mixed Th1/Th2 responses to the infection following immunization with LmjMAPK10 DNA or protein or a combination of both DNA and protein. Therefore, LmjMAPK10 is a probable vaccine candidate against the infection.  相似文献   

19.
《Vaccine》2022,40(40):5769-5780
Vaccines are very effective in providing protection against many infectious diseases. However, it has proven difficult to develop highly efficacious vaccines against some pathogens and so there is a continuing need to improve vaccine technologies. The first successful and widely used vaccines were based on attenuated pathogens (e.g., laboratory passaged Pasteurella multocida to vaccinate against fowl cholera) or closely related non-pathogenic organisms (e.g., cowpox to vaccinate against smallpox). Subsequently, live vaccines, either attenuated pathogens or non-pathogenic microorganisms modified to deliver heterologous antigens, have been successfully used to induce protective immune responses against many pathogens. Unlike conventional killed and subunit vaccines, live vaccines can deliver antigens to mucosal surfaces in a similar manner and context as the natural infection and hence can often produce a more appropriate and protective immune response. Despite these advantages, there is still a need to improve the immunogenicity of some live vaccines. The efficacy of injectable killed and subunit vaccines is usually enhanced using adjuvants such mineral salts, oils, and saponin, but such adjuvants cannot be used with live vaccines. Instead, live vaccines can be engineered to produce immunomodulatory molecules that can stimulate the immune system to induce more robust and long-lasting adaptive immune responses. This review focuses on research that has been undertaken to engineer live vaccines to produce immunomodulatory molecules that act as adjuvants to increase immunogenicity. Adjuvant strategies with varying mechanisms of action (inflammatory, antibody-mediated, cell-mediated) and delivery modes (oral, intramuscular, intranasal) have been investigated, with varying degrees of success. The goal of such research is to define adjuvant strategies that can be adapted to enhance live vaccine efficacy by triggering strong innate and adaptive immune responses and produce vaccines against a wider range of pathogens.  相似文献   

20.
Toxoplasma gondii is an obligate intracellular parasite that can infect a variety of mammals and birds, causing toxoplasmosis. Several types of vaccines against T. gondii have been developed, but these have limitations in terms of their safety and inadequate efficacy. T. gondii profilin (TgPF) is a potential immunodominant antigen for a candidate vaccine. In this study, we encapsulated TgPF in oligomannose-coated liposomes (OMLs) to evaluate the immune response induced by this vaccine. C57BL/6 mice were immunized with TgPF-OML three times at 14-day intervals and challenged with T. gondii. TgPF-OML increased the survival of the mice and reduced the parasite burden in their brains after T. gondii infection. Immunization with TgPF-OML also induced TgPF-specific interferon-γ production and IgG antibodies in mice. Our results demonstrate that OML-encapsulated TgPF triggers strong humoral and cellular responses against T. gondii, and that TgPF-OML is a candidate vaccine that warrants further development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号