首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Several studies have shown plasma fibrinogen increases following some vaccinations, but the specific triggers and the kinetics of this response are not well understood. We conducted a phase I trial of an outer membrane vesicle vaccine for Neisseria meningitidis. Plasma fibrinogen was measured on days 0, 2 and 14 following each of 3 doses. The highest dose of vaccine was associated with the greatest increase in fibrinogen at day 2, which decreased by day 14. The first vaccination caused a greater increase than either subsequent vaccination. These transient increases in fibrinogen are comparable to what occurs with upper respiratory infections and have not been demonstrated to represent an increased risk of adverse vascular events.  相似文献   

2.
A vaccine based on native outer membrane vesicles (NOMV) that has potential to provide safe, broad based protection against group B strains of Neisseria meningitidis has been developed. Three antigenically diverse group B strains of N. meningitidis were chosen and genetically modified to improve safety and expression of desirable antigens. Safety was enhanced by disabling three genes: synX, lpxL1, and lgtA. The vaccine strains were genetically configured to have three sets of antigens each with potential to induce protective antibodies against a wide range of group B strains. Preliminary immunogenicity studies with combined NOMV from the three strains confirmed the capacity of the vaccine to induce a broad based bactericidal antibody response. Analysis of the bactericidal activity indicated that antibodies to the LOS were responsible for a major portion of the bactericidal activity and that these antibodies may enhance the bactericidal activity of anti-protein antibodies.  相似文献   

3.
A trivalent native outer membrane vesicle vaccine that has potential to provide broad based protection against Neisseria meningitidis serogroup B strains has been developed. Preliminary immunogenicity studies in mice showed that the vaccine was capable of inducing an effective broad based bactericidal antibody response against N. meningitidis serogroup B strains. These findings in mice have been repeated with a cGMP trivalent NOMV vaccine and extended to show that the bactericidal antibody response induced by the vaccine in mice is effective against strains belonging to serogroups C, Y, W135, X, and NadA-expressing serogroup A strains. Taken together these results suggest that this experimental vaccine may provide protection against both serogroup B and non-serogroup B N. meningitidis strains.  相似文献   

4.
Outer membrane vesicles (OMVs) have been extensively investigated as meningococcal vaccine candidates. Among their major components are the opacity (Opa) proteins, a family of surface-exposed outer membrane proteins important for bacterial adherence and entry into host cells. Many Opa-dependent interactions are mediated through the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family of receptors. Importantly, binding of Opa to CEACAM1 has been reported to suppress human CD4 T cell proliferation in vitro in response to OMV preparations. This raises the question whether OMV vaccines should contain Opa proteins at all. Until now it has been difficult to answer this question, as the proposed immunosuppressive effect was only demonstrated with human cells in vitro, while immunization experiments in mice are not informative because the Opa interaction is specific for human CEACAM1. In the present study we have used Opa+ and Opa− OMVs for immunization experiments in a human CEACAM1 transgenic mouse model. OMVs were prepared from a meningococcal strain H44/76 variant expressing the CEACAM1-binding OpaJ protein, and from an isogenic variant in which all opa genes have been inactivated. Both the CEACAM1 expressing transgenic mice and their congenic littermates lacking it were immunized twice with the OMV preparations, and the sera were analyzed for bactericidal activity and ELISA antibody titres. Total IgG antibodies against the OMVs were similar in both mouse strains. Yet the titres for IgG antibodies specific for purified OpaJ protein were significantly lower in the mice expressing human CEACAM1 than in the nontransgenic mice. No significant differences were found in bactericidal titres among the four groups. Overall, these data indicate that expression of human CEACAM1 confers a reduced Opa-specific antibody response in vivo without affecting the overall immune response against other OMV antigens.  相似文献   

5.
Cardoso CW  Pinto LL  Reis MG  Flannery B  Reis JN 《Vaccine》2012,30(37):5541-5546
To combat rising incidence of serogroup C meningococcal disease in the city of Salvador, Brazil, the Bahia state immunization program initiated routine childhood immunization with meningococcal C conjugate vaccine (MenC) in February 2010, followed by mass MenC vaccination of city residents 10-24 years of age from May through August 2010. We analyzed trends in incidence of reported cases of meningococcal disease and serogroup distribution among meningococcal isolates identified in hospital-based surveillance in Salvador from January 2000 to December 2011 and estimated vaccine effectiveness using the screening method. Annual incidence of serogroup C meningococcal disease increased from 0.1 cases per 100,000 population during 2000-2006 to 2.3 in 2009 and 4.1 in 2010, before falling to 2.0 per 100,000 in 2011. Estimated coverage of mass vaccination reached 80%, 67% and 41% among 10-14, 15-19 and 20-24 year olds, respectively. Incidence in 2011 was significantly lower than average rates in 2008-2009 among children <5 years, but reductions among 10-24 year olds were not significant. Among 10-24 year olds, a single dose of MenC vaccine was 100% effective (95% confidence interval, 79-100%) against serogroup C meningococcal disease. Low coverage in the population targeted for mass vaccination may have limited impact on ongoing transmission of serogroup C meningococcal disease despite high vaccine effectiveness.  相似文献   

6.
Human volunteers were vaccinated with experimental Neisseria meningitidis serogroup B vaccines based on strain H44/76 detoxified L3 lipooligosaccharide (LOS)-derived outer membrane vesicles (OMV) or the licensed Cuban vaccine, VA-MENGOC-BC. Some volunteers were able to elicit cross-bactericidal antibodies against heterologous L2-LOS strain (760676). An immuno-proteomic approach was used to identify potential targets of these cross-bactericidal antibodies using an L2-LOS derived OMV preparation. A total of nine immuno-reactive spots were detected in this proteome: individuals vaccinated with the detoxified OMVs showed an increase in post-vaccination serum reactivity with Spots 2–8, but not with Spots 1 and 9. Vaccination with VA-MENGOC-BC induced sera that showed increased reactivity with all of the protein spots. Vaccinees showed increases in serum bactericidal activity (SBA) against the heterologous L2-LOS expressing strain 760676, which correlated, in general, with immunoblot reactivity. The identities of proteins within the immuno-reactive spots were determined. These included not only well-studied antigens such as Rmp, Opa, PorB and FbpA (NMB0634), but also identified novel antigens such as exopolyphosphatase (NMB1467) and γ-glutamyltranspeptidase (NMB1057) enzymes and a putative cell binding factor (NMB0345) protein. Investigating the biological properties of such novel antigens may provide candidates for the development of second generation meningococcal vaccines.  相似文献   

7.
In the recent decade, epidemic meningitis in the African meningitis belt has mostly been caused by Neisseria meningitidis of serogroups A, W and X (MenA, MenW and MenX, respectively). There is at present no licensed vaccine available to prevent MenX meningococcal disease. To explore a trivalent MenAWX vaccine concept, we have studied the immunogenicity in mice of MenX outer membrane vesicles (X-OMV) or MenX polysaccharide (X-PS) when combined with a bivalent A-OMV and W-OMV (AW-OMV) vaccine previously shown to be highly immunogenic in mice. The vaccine antigens were produced from three representative wild type strains of MenA (ST-7), MenW (ST-11) and MenX (ST-751) isolated from patients in the African meningitis belt. Groups of mice were immunized with two doses of X-OMV or X-PS combined with the AW-OMV vaccine or as individual components. All vaccine preparations were adsorbed to Al(OH)3. Sera from immunized mice were tested by ELISA and immunoblotting. Functional antibody responses were measured as serum bactericidal activity (SBA) and opsonophagocytic activity (OPA). Immunization of mice with X-OMV, alone or in combination with AW-OMV induced high levels of anti-X OMV IgG. Moreover, X-OMV alone or in combination with the AW-OMV vaccine induced high SBA and OPA titers against the MenX target strain. X-PS alone was not immunogenic in mice; however, addition of the AW-OMV vaccine to X-PS increased the immunogenicity of X-PS. Both AWX vaccine formulations induced high levels of IgG against A- and W-OMV and high SBA titers against the MenA and MenW vaccine strains. These results suggest that a trivalent AWX vaccine, either as a combination of OMV or OMV with X-PS, could potentially prevent the majority of meningococcal disease in the meningitis belt.  相似文献   

8.
A meningococcal B:14:P1.7,16 outbreak in Normandy (France) was recently controlled using MenBvac, an outer membrane vesicle vaccine previously designed against the B:15:P1.7,16 strain. The further emergence of a new B:14:P1.7,16 outbreak in another district in Normandy led us to explore immunity against B:14:P1.7,16 before and after the MenBvac campaign using a 2+1 (day 0, week 6, month 8) schedule. Children (1-5 years) were sampled before, during and up to one year after vaccination. Serum bactericidal activity against B:14:P1.7,16 was titrated using human complement (hSBA) and immune response was defined by hSBA titer ≥4 as a surrogate for protection. The percentage of hSBA titer ≥4 was 10.8% before vaccination, raised to 84.1% 6 weeks after the completion of the schedule, but declined to 39.7% one year later. This level is lower than the targeted 60% level and suggests only short-term persistence of response against B:14:P1.7,16 using this schedule.  相似文献   

9.
This phase I clinical trial assessed the safety and immunogenicity of a native outer membrane vesicle (NOMV) vaccine prepared from an lpxL1(−) synX(−) mutant of strain 8570(B:4:P1.19,15:L8-5) of Neisseria meningitidis. Additional mutations enhance the expression of factor H binding protein variant 1 (fHbp v.1), stabilize expression of OpcA and introduce a second PorA (P1.22,14). Thirty-six volunteers were assigned to one of four dose groups (10, 25, 50 and 75 mcg, based on protein content) to receive three intramuscular injections at six week intervals with aluminum hydroxide adjuvant. Specific local and systemic adverse events were solicited by diary and at visits on days 2, 7, and 14 after each vaccination. Blood chemistries, complete blood count, and coagulation studies were measured on each vaccination day and again 2 and 14 days later. Blood for ELISA and serum bactericidal assays was drawn two and six weeks after each vaccination.The proportion of volunteers who developed a fourfold or greater increase in bactericidal activity to the wild type parent of the vaccine strain at two weeks after the third dose was 27 out of 34 (0.79, 95% C.I. 0.65-0.93). Against four other group B strains the response rate ranged from 41% to 82% indicating a good cross reactive antibody response. Depletion assays show contributions to bactericidal activity from antibodies to lipooligosaccharide (LOS), fHbp v.1 and OpcA.  相似文献   

10.

Background

An improved nonavalent PorA native outer membrane vesicle vaccine was developed with intrinsic adjuvating activity due to presence of less-toxic (lpxL1) LPS. In the present study, the safety and immunogenicity of this next-generation NonaMen vaccine were evaluated following repeated vaccination in rabbits and mice.

Methods

A repeated–dose toxicology study was performed in rabbits. Immunogenicity of next-generation NonaMen was evaluated by determining the serum bactericidal antibody (SBA) titers against meningococcal serogroup B strains containing several PorA subtypes. Release of the pro-inflammatory cytokine, interleukin-6 (IL-6), by the human monocytic cell line (MM6) was measured to estimate pyrogenic activity.

Results

No toxicologically relevant findings were noted in vaccinated rabbits receiving plain next-generation NonaMen. In agreement, next-generation NonaMen induced reduced amounts of the pro-inflammatory cytokine, IL-6, released by human monocyte cell line. In both rabbits and mice, next-generation NonaMen induced high SBA titers against all tested MenB strains regardless of whether or not aluminium phosphate adjuvant is used.

Conclusions

The data suggest that next-generation NonaMen is a safe vaccine with the potential to develop a broadly protective immune response and encourage the start of the first clinical studies.  相似文献   

11.
Haghi F  Peerayeh SN  Siadat SD  Zeighami H 《Vaccine》2012,30(9):1710-1714
Secretin PilQ is an antigenically conserved outer membrane protein which is present on most meningococci. This protein naturally expressed at high levels and is essential for meningococcal pilus expression at the cell surface. A 1095 bp fragment of C-terminal of secretin pilQ from serogroup B Neisseria meningitidis was cloned into prokaryotic expression vector pET-28a. Recombinant protein was overexpressed with IPTG and affinity-purified by Ni-NTA agarose. BALB/c mice were immunized subcutaneously with purified rPilQ(406-770) mixed with Freund's adjuvant. Serum antibody responses to serogroups A and B N. meningitidis whole cells or purified rPilQ(406-770) and functional activity of antibodies were determined by ELISA and SBA, respectively. The output of rPilQ(406-770) was approximately 50% of the total bacterial proteins. Serum IgG responses were significantly increased in immunized group with PilQ(406-770) mixed with Freund's adjuvant in comparison with control groups. Antisera produced against rPilQ(406-770) demonstrated strong surface reactivity to serogroups A and B N. meningitidis tested by whole-cell ELISA. Surface reactivity to serogroup B N. meningitidis was higher than serogroup A. The sera from PilQ(406-770) immunized animals were strongly bactericidal against serogroups A and B. These results suggest that rPilQ(406-770) is a potential vaccine candidate for serogroup B N. meningitidis.  相似文献   

12.
Surface-expressed protein antigens such as factor H-binding protein (fHbp), Neisserial adhesin A (NadA), Neisserial heparin-binding antigen (NHBA) and Porin protein A (PorA); all express sequence variability that can affect their function as protective immunogens when used in meningococcal serogroup B vaccines like the recently-approved 4CMenB (Bexsero®). We assessed the sequence variation of genes coding for these proteins and two additional proteins (“fusion partners” to fHbp and NHBA) in pathogenic isolates from a recent low incidence period (endemic situation; 2005–2006) in Norway. Findings among strains from this panel were contrasted to what was found among isolates from a historic outbreak (epidemic situation; 1985–1990). Multilocus sequence typing revealed 14 clonal complexes (cc) among the 66 endemic strains, while cc32 vastly predominated in the 38-strain epidemic panel. Serogroup B isolates accounted for 50/66 among endemic strains and 28/38 among epidemic strains. Potential strain-coverage (“sequence match”) for the 4CMenB vaccine was identified among the majority (>70%) of the endemic serogroup B isolates and all of the epidemic serogroup B isolates evaluated. Further information about the degree of expression, surface availability and the true cross-reactivity for the vaccine antigens will be needed to fully characterize the clinical strain-coverage of 4CMenB in various geographic and epidemiological situations.  相似文献   

13.
The difficulty of inducing an effective immune response against the Neisseria meningitidis serogroup B capsular polysaccharide has lead to the search for vaccines for this serogroup based on outer membrane proteins. The availability of the first meningococcal genome (MC58 strain) allowed the expansion of high-throughput methods to explore the protein profile displayed by N. meningitidis. By combining a pan-genome analysis with an extensive experimental validation to identify new potential vaccine candidates, genes coding for antigens likely to be exposed on the surface of the meningococcus were selected after a multistep comparative analysis of entire Neisseria genomes. Eleven novel putative ORF annotations were reported for serogroup B strain MC58. Furthermore, a total of 20 new predicted potential pan-neisserial vaccine candidates were produced as recombinant proteins and evaluated using immunological assays. Potential vaccine candidate coding genes were PCR-amplified from a panel of representative strains and their variability analyzed using maximum likelihood approaches for detecting positive selection. Finally, five proteins all capable of inducing a functional antibody response vs N. meningitidis strain CU385 were identified as new attractive vaccine candidates: NMB0606 a potential YajC orthologue, NMB0928 the neisserial NlpB (BamC), NMB0873 a LolB orthologue, NMB1163 a protein belonging to a curli-like assembly machinery, and NMB0938 (a neisserial specific antigen) with evidence of positive selection appreciated for NMB0928. The new set of vaccine candidates and the novel proposed functions will open a new wave of research in the search for the elusive neisserial vaccine.  相似文献   

14.
中国脑膜炎球菌疫苗预防接种专家共识   总被引:1,自引:0,他引:1       下载免费PDF全文
中国上市的脑膜炎球菌疫苗包括脑膜炎球菌多糖疫苗、脑膜炎球菌多糖结合疫苗和联合疫苗,不同生产企业的脑膜炎球菌多糖结合疫苗的免疫程序有所不同,给实际接种工作带来困扰。本共识结合国内外研究最新进展,基于流行性脑脊髓膜炎流行特征、脑膜炎奈瑟菌菌群分布以及中国脑膜炎球菌疫苗免疫原性和安全性等研究证据,提出脑膜炎球菌疫苗预防接种建议,供预防接种人员和疾病预防控制机构人员参考使用。  相似文献   

15.
Neisseria meningitidis is responsible for the seasonal burden and recurrent epidemics of meningitis in an area of sub-Saharan Africa known as the meningitis belt. Historically, the majority of the cases in the meningitis belt are caused by serogroup A meningococci. Serogroup C meningococci were responsible for outbreaks in the meningitis belt in the 1980s, while serogroup W (formerly W-135) has emerged as a cause of epidemic meningitis since 2000. Serogroup X meningococci have previously been considered a rare cause of sporadic meningitis, but during 2006–2010, outbreaks of serogroup X meningitis occurred in Niger, Uganda, Kenya,Togo and Burkina Faso, the latter with at least 1300 cases of serogroup X meningitis among the 6732 reported annual cases. While serogroup X has not yet caused an epidemic wave of the scale of serogroup A in 1996–1997 or serogroup W in Burkina Faso during 2002, the existing reports suggest a similar seasonal hyperendemicity and capacity for localised epidemics. Serogroup X incidence appears to follow a pattern of highly localised clonal waves, and in affected districts, other meningococcal serogroups are usually absent from disease. Currently, no licensed vaccine is available against serogroup X meningococci. Following the introduction of a monovalent serogroup A conjugate vaccine (MenAfriVac®) in the meningitis belt and the upcoming introduction of pneumococcal conjugate vaccines, vaccine-based prevention of serogroup X may become a public health need. The serogroup X polysaccharide capsule is the most likely target for vaccine development, but recent data also indicate a potential role for protein-based vaccines. A multivalent vaccine, preferably formulated as a conjugate vaccine and covering at least serogroups A, W, and X is needed, and the efforts for vaccine development should be intensified.  相似文献   

16.
The investigational multicomponent meningococcus serogroup B vaccine (4CMenB) targets the antigenetically variable population of serogroup B meningococci. Forty-one strains of capsule null locus (cnl) meningococci, which are frequent among healthy carriers, were selected from nine sequence types (ST), which belong to four clonal complexes (cc), and three countries. They were antigen sequence typed and analyzed for antigen expression to predict whether these strains harbor the genes and express the four vaccine antigens of 4CMenB as measured by the meningococcal antigen typing system (MATS). The PorA variant used in the vaccine was not found. The nadA gene was absent in all but one strain, which did not express the antigen in vitro. Only strains of clonal complex ST-198 harbored a factor H binding protein (FHBP) allele of the cross-reactive variant 1 family which is included in the vaccine. All these strains expressed the antigen. Five variants of the Neisserial heparin binding antigen (NHBA) gene were identified. Expression of NHBA was observed in all strains with highest levels in ST-198 cc and ST-845. The data suggest a potential impact of 4CMenB immunization at least on cnl meningococci of the ST-198 cc and ST-845.  相似文献   

17.
18.
Serogroup B outer membrane vesicles (OMV) with iron regulated proteins (IRP) from Neisseria meningitidis constitute the antigen for the vaccine against the disease caused by this bacterium. Aiming to enhance final OMV concentration, seven batch experiments were carried out under four different conditions: (i) with original Catlin medium; (ii) with original Catlin medium and lactate and amino acids pulse at the 6th cultivation hour; (iii) with Catlin medium with double initial concentrations of lactate and amino acids and (iv) Catlin medium without glycerol and with double initial concentrations of lactate and amino acids. The cultivation experiments were carried out in a 7-L bioreactor under the following conditions: 36°C, 0.5atm, overlay air 1L/min, agitation: 250-850rpm, and O(2) control at 10%, 20h. After lactate and amino acids exhaustion, cell growth reached stationary phase and a significant release increase of OMV was observed. According to the Luedeking & Piret model, OMV liberation is non-growth associated. Glycerol was not consumed during cultivation. The maximum OMV concentration value attained was 162mg/L with correspondent productivity of 8.1mg/(Lh) employing Catlin medium with double initial concentrations of lactate and amino acids. The obtained OMV satisfied constitution and protein pattern criteria and were suitable for vaccine production.  相似文献   

19.
Incidence of invasive meningococcal disease is low in Germany at 0.5 cases/100,000 inhabitants. Serogroup B (MenB) is most common, causing 70% of cases, with highest incidence in infants (5.9/100,000). In 2013, a MenB vaccine was licensed in Europe. To assess pediatricians’ attitudes towards MenB vaccination and its potential use in Germany we conducted a nationwide cross-sectional survey among 5677 pediatricians. Of 3107 participants (response: 55%), 79.1% would recommend a MenB vaccination to parents, with 66.7% favoring a schedule at 6, 8 and 12 months over 2, 3, 4 and 12 months (13.4%). Administration separately from other vaccines was preferred (63.2%); 38.5% feared that a recommendation would lead to refusal of other recommended vaccinations. In conclusion, pediatricians showed distinct preferences regarding possible integration of MenB vaccination into the existent immunization schedule. As physicians play a crucial role in the implementation, findings will be useful in decision-making regarding potential introduction.  相似文献   

20.
Prior to the introduction of the MenAfriVac™ serogroup A glycoconjugate vaccine in September 2010, serogroup A was the major epidemic disease-causing meningococcal serogroup in the African meningitis belt. However, recently serogroup X meningococcal (MenX) disease has received increased attention because of outbreaks recorded in this region, with increased endemic levels of MenX disease over the past 2 years. Whereas polysaccharide–protein conjugate vaccines against meningococcal serogroups A, C, W and Y (MenA, MenC, MenW, MenY) are on the market, a vaccine able to protect against MenX has never been achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号