首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ideal vaccine to protect against toxoplasmosis in humans would include antigens that elicit a protective T helper cell type 1 immune response, and generate long-lived IFN-γ-producing CD8+ T cells. Herein, we utilized a predictive algorithm to identify candidate HLA-A02 supertype epitopes from Toxoplasma gondii proteins. Thirteen peptides elicited production of IFN-γ from PBMC of HLA-A02 supertype persons seropositive for T. gondii infection but not from seronegative controls. These peptides displayed high-affinity binding to HLA-A02 proteins. Immunization of HLA-A*0201 transgenic mice with these pooled peptides, with a universal CD4+ epitope peptide called PADRE, formulated with adjuvant GLA-SE, induced CD8+ T cell IFN-γ production and protected against parasite challenge. Peptides identified in this study provide candidates for inclusion in immunosense epitope-based vaccines.  相似文献   

2.
Toxoplasma gondii is a protozoan parasite causing toxoplasmosis to almost one-third of population all over the world. One of the most efficient ways to control this disease is immunization. However, so far, there is no effective vaccine available against this pathogen. Recently, a baculovirus pseudotype with vesicular stomatitis virus G protein (Bac-VSV–G) was found to efficiently transduce and express transgenes on mammalian cells, so it was considered as an excellent expressing vector. In this study, the value of Bac-VSV–G in delivering T. gondii antigen was investigated. T. gondii SAG1 gene was cloned into Bac-VSV–G, and recombinant baculovirus BV-G-SAG1 was obtained. Indirect immunofluorescence test showed BV-G-SAG1 was efficiently transduced and expressed in pig kidney cells. Then BALB/c mice were immunized with BV-G-SAG1 at different doses (1 × 108, 1 × 109, and 1 × 1010 PFU/mouse) and challenged with T. gondii RH strain tachyzoites after immunization. The levels of specific T. gondii antibody, interferon (IFN)-γ, IL-4, IL-10 expression and release, and the survival rate of treated mice were evaluated. Compared with the mice immunized with DNA vaccine (pcDNA/SAG1) encoding the same gene, BV-G-SAG1 induced higher levels of specific T. gondii antibody and (IFN)-γ expression with dose-dependent manner and the survival rate of mice with BV-G-SAG1 was significantly improved. These results indicated that pseudotype baculovirus-mediated gene delivery can be utilized as an alternative strategy to develop new generation of vaccines against T. gondii infection.  相似文献   

3.
The great clinical and economical impact of Toxoplasma gondii infections makes the development of an effective vaccine for controlling toxoplasmosis an extremely important aim. In the presented study, we evaluate the protective and immunogenic properties of three recombinant subunit vaccines composed of rROP2 + rGRA4 + rSAG1, rROP2 + rROP4 + rGRA4 and rROP2 + rROP4 + rSAG1 proteins of T. gondii in an experimental toxoplasmosis model in the C3H/HeJ and C57BL/6 mouse strains. All three recombinant vaccines induced partial protection as measured by the reduction of brain cyst burden following challenge with five tissue cysts of the low virulence DX T. gondii strain. The level of protection was dependent on the antigen composition of the vaccine and the genetic background of the laboratory animals. The strongest protection against chronic toxoplasmosis was induced in both C3H/HeJ and C57BL/6 mice by the mixture of rhoptry proteins rROP2 and rROP4 combined with tachyzoite major protein rSAG1. The average parasite burden in these groups of mice was reduced by 71% and 90%, respectively, compared to non-vaccinated mice. The observed protective effect was related to the vaccine-induced cellular and humoral immune responses, as measured by the antigen-induced release of the Th1 cytokines IFN-γ and IL-2, the antigen-stimulated proliferation of spleen cells of vaccinated animals in comparison to control animals and the development of systemic antigen-specific IgG1 and IgG2a (C3H/HeJ) or IgG2c (C57BL/6) antibodies. Our studies show that recombinant rROP2, rROP4, rGRA4 and rSAG1 antigens may be promising candidates for a subunit vaccine against toxoplasmosis. Additionally, we demonstrate that the ideal composition of vaccine antigens can be equally effective in mice with different genetic backgrounds and variable levels of innate resistance to toxoplasmosis, resulting in strong protection against T. gondii invasion.  相似文献   

4.
The risk of blindness caused by ocular toxoplasmosis supports efforts to improve our understanding for control of this disease. In this study, the involvement of CD8+, CD4+, B cell, and IL-10 gene in the immune response of primary ocular infection with the temperature-sensitive mutant (ts-4) of the RH Toxoplasma gondii strain, and in the protective immunity of ocular ts-4 vaccination and challenge with RH strain was investigated in murine models utilizing inbred C57BL/6 mice-deficient in CD4+, CD8+, B cells (μMT), or IL-10 gene. Compared to naive mice, all WT and mutant mice had different degree of ocular pathological changes after ts-4 ocular infection, in which both CD8 KO and IL-10 KO mice showed the most severe ocular lesions. Immunized by ts-4 intracameral (i.c.) inoculation, all mutant mice had partially decreased vaccine-induced resistance associated with increased ocular parasite burdens after RH strain challenge. A significant increase of the percentages of B cells and CD8+ T cells in the draining lymph nodes were observed in WT and IL-10 KO mice after either infection or challenge. The levels of specific anti-toxoplasma IgG in both eye fluid and serum from all the mice were significantly increased after ts-4 i.c. immunization, except μMT mice. These results suggest that the avirulent ts-4 of T. gondii inoculated intracamerally can induce both ocular pathology and ocular protective immunity; CD4+, CD8+, B cell, and IL-10 gene are all necessary to the vaccine-induced resistance to ocular challenge by virulent RH strain, in which CD8+ T cells are the most important component.  相似文献   

5.
Makino M  Uemura N  Moroda M  Kikumura A  Piao LX  Mohamed RM  Aosai F 《Vaccine》2011,29(10):1899-1905
Toxoplasma gondii-derived heat shock protein 70 (T.g.HSP70) is a tachyzoite-specific virulent molecule expressed before the death of hosts. We have already demonstrated the vaccine effects of T.g.HSP70 gene targeting peripheral epidermal or dermal dendritic cells (DC) to limit T. gondii loads in T. gondii-infected mice. In the present study, involvement of innate immunity in T.g.HSP70 gene vaccine-induced Th polarization at draining lymph nodes (dLN) of C57BL/6 (B6) mice and vaccine effects against toxoplasmosis have been evaluated. Compared to the mice unvaccinated or vaccinated with empty plasmid, CD11c+ cells at the dLN from naïve B6 mice expressed prominent IL-12 mRNA after the T.g.HSP70 gene vaccine. Also, CD4+ cells at the dLN from the mice expressed prominent interferon-γ, but not IL-4 or IL-17, mRNA at a maximum level at day 5 following vaccination. Thus, in vivo DC activation and successive early Th1 polarization were induced at the dLN of naïve mice by the T.g.HSP70 gene vaccine. The DC activation and Th1 polarization were observed at the dLN from wild type (WT) and Toll-like receptor (TLR) 2-deficient mice, but not TLR4-deficient mice with B6 background by the vaccine. This T.g.HSP70 gene vaccine-induced DC activation and Th1 polarization were also observed in TRIF-deficient mice, but not MyD88-deficient mice with B6 background indicating the involvement of TLR4/MyD88 signal transduction cascade in the vaccine effects with T.g.HSP70 gene. The T.g.HSP70 gene vaccine (twice at a 2-week interval) has been shown to limit T. gondii loads in the mesenteric LN of WT, TLR2-deficient and TRIF-deficient mice, but neither TLR4-deficient nor MyD88-deficient mice, at an acute phase of toxoplasmosis. The T.g.HSP70 gene vaccine also limited cyst number in the brains of WT, TLR2-deficient and TRIF-deficient mice, but not TLR4-deficient mice at a chronic phase of toxoplasmosis. Thus, innate immunity also has effects on the vaccine with T.g.HSP70 gene against acute and chronic phases of toxoplasmosis.  相似文献   

6.
Efficacy of vaccination in cancer patients on immunotherapeutic protocols can be difficult to evaluate. The aim of this study was therefore to identify a single natural or modified epitope in prostate-specific antigen (PSA) with the ability to generate high levels of PSA-specific T cells to facilitate monitoring in patients after vaccination against prostate cancer. To the best of our knowledge, this study describes for the first time the peptide specificity of T cells stimulated by endogenously processed PSA antigen. The peptide specificity of HLA-A*0201-restricted CD8+ T cells against human and rhesus PSA was investigated both in vivo after DNA vaccination in HLA-A*0201-transgenic mice and in vitro after repetitive stimulation of human T cells with DNA-transfected human dendritic cells (DCs). One of seven native PSA peptides, psa53–61, was able to activate high levels of PSA-specific CD8+ T cells in HLA-A*0201-transgenic mice after PSA DNA vaccination. Psa53–61 was also the only peptide that induced human T cells to produce IFNγ after stimulation with PSA transfected DCs, however not in all donors. Therefore, plasmids encoding modified epitopes in predicted HLA-A*0201 sequences were constructed. One of these modified PSA plasmids consistently induced IFNγ producing CD8+ T cells to the corresponding modified peptide as well as to the corresponding native peptide, in all murine and human T cell cultures. This study demonstrates a novel concept of introducing a modified epitope within a self-tumor antigen, with the purpose of eliciting a reliable T cell response from the non-tolerized immune repertoire, to facilitate monitoring of vaccine efficacy in cancer patients on immunotherapeutic protocols. The purpose of such a modified epitope is thus not to induce therapeutically relevant T cells but rather to, in case of weak or divergent T cell responses to self antigens/peptides, help answer questions about efficacy of vaccine delivery and about the possibility to induce immune responses in the selected and often immunosuppressed cancer patients.  相似文献   

7.
We created and produced a novel self-assembling nanoparticle platform for delivery of peptide epitopes that induces CD8+ and CD4+T cells that are protective against Toxoplasma gondii infection. These self-assembling polypeptide nanoparticles (SAPNs) are composed of linear peptide (LP) monomers which contain two coiled-coil oligomerization domains, the dense granule 7 (GRA720–28 LPQFATAAT) peptide and a universal CD4+T cell epitope (derived from PADRE). Purified LPs assemble into nanoparticles with icosahedral symmetry, similar to the capsids of small viruses. These particles were evaluated for their efficacy in eliciting IFN-γ by splenocytes of HLA-B*0702 transgenic mice and for their ability to protect against subsequent T. gondii challenge. This work demonstrates the feasibility of using this platform approach with a CD8+ epitope that binds HLA-B7 and tests the biological activity of potentially protective peptides restricted by human major histocompatibility complex (HLA) class I molecules in HLA transgenic mice.  相似文献   

8.
《Vaccine》2015,33(48):6757-6762
Toxoplasma gondii (T. gondii) is an obligate, intracellular, protozoan parasite that infects large variety of warm-blooded animals including humans, livestock, and marine mammals, and causes the disease toxoplasmosis. Although T. gondii infection rates differ significantly from country to country, it still has a high morbidity and mortality. In these circumstances, developing an effective vaccine against T. gondii is urgently needed for preventing and treating toxoplasmosis. The aim of this study was to construct a multi-epitopes DNA vaccine and evaluate the immune protective efficacy against acute toxoplasmosis in mice. Therefore, twelve T- and B-cell epitopes from SAG1, GRA2, GRA7 and ROP16 of T. gondii were predicted by bioinformatics analysis, and then a multi-epitopes DNA vaccine was constructed. Mice immunized with the multi-epitopes DNA vaccine gained higher levels of IgG titers and IgG2a subclass titers, significant production of gamma interferon (IFN-γ), percentage of T lymphocyte subsets, and longer survival times against the acute infection of T. gondii compared with those of mice administered with empty plasmid and those in control groups. Furthermore, a genetic adjuvant pEGFP-RANTES (pRANTES) could enhance the efficacy of the multi-epitopes DNA vaccine associating with humoral and cellular (Th1, CD8+ T cell) immune responses. Above all, the DNA vaccine and the genetic adjuvant revealed in this study might be new candidates for further vaccine development against T. gondii infection.  相似文献   

9.
We investigated whether a combined DNA vaccine delivered together with the IL-15 gene (DNA-IL-15(+)) enhanced the immune response against Brucella abortus in mice. Mice vaccinated with DNA-IL-15(+) developed a robust humoral response; Brucella-specific antibodies exhibited a dominance of immunoglobulin G2a (IgG2a) over IgG1. Splenocytes from DNA-IL-15(+)-vaccinated mice induced significantly higher levels of IFN-γ (P < 0.01) and CD8+ T cell response (P < 0.01), suggesting induction of a T-helper-1-dominated immune response. In a specific cytotoxic-T-lymphocyte activity assay, DNA-IL-15(+) immunization elicited mainly CD8+ T cells, which mediate cytotoxicity, but also CD4+ T cells. In vivo depletion of T cell subsets showed that the DNA-IL-15(+)-induced protection against Brucella infection is mediated predominantly by CD8+ T cells, although CD4+ T cells also contribute. These data indicate that plasmid-delivered IL-15 increases the efficacy of the Brucella DNA vaccine.  相似文献   

10.
Toxoplasma gondii is an obligate intracellular protozoan parasite infecting mammals and birds including humans. Rhoptry protein 18 has been implicated as an important virulence factor. In this study, we constructed a DNA vaccine expressing rhoptry protein 18 (ROP18) of T. gondii, and evaluated the immune response and protective immunity in Kunming mice. The gene sequence encoding ROP18 was inserted into the eukaryotic expression vector pVAX I. Intramuscular immunization of mice with pVAX-ROP18 elicited specific humoral responses and stimulated lymphoproliferation (P < 0.05). The cellular immune response was associated with the production of IFN-γ, indicating that a Th1 type response was elicited, which was confirmed by the production of large amounts of IgG2a (P < 0.05). By the expression of the CD69, an activation marker of CD4+ and CD8+ T cells, we found that pVAX-ROP18 enhanced the activation of CD4+ and CD8+ T cells in lymphoid in mice. After lethal challenge, the mice immunized with the pVAX-ROP18 showed a significantly increased survival time (27.9 ± 15.1 days) compared with control mice which died within 7 days of challenge (P < 0.05). Our results show for the first time, that a ROP18 vaccine construct can enhance the T. gondii-specific CTL. Th1 responses and increased survival suggested that ROP18 is a promising vaccine candidate against infection with T. gondii.  相似文献   

11.
《Vaccine》2018,36(27):3943-3948
Toxoplasma gondii is an obligate intracellular protozoan that can invade all eukaryotic cells and infect all warm-blood animals, causing the important zoonosis toxoplasmosis. Invasion of host cells is the key step necessary for T. gondii to complete its life cycle and microneme proteins play an important role in attachment and invasion of host cells. Microneme protein 16 (TgMIC16) is a new protective protein in T. gondii and belongs to transmembrane microneme proteins (TM-MIC). The TM-MICs are released onto the parasite’s surface as complexes capable of interacting with host cell receptors. In the present study, we expressed the TgMIC16 protein on the surface of Saccharomyce cerevisiae (pCTCON2-TgMIC16/EBY100) and evaluated it as a potential vaccine for BALB/c mice against challenge infection with the RH strain of T. gondii. We immunized BALB/c mice both orally and intraperitoneally. After three immunizations, the immune response was evaluated by measuring antibody levels, lymphocyte proliferative responses, percentages of CD4+ and CD8+ T lymphocytes, cytokine production, and the survival times of challenged mice. The results showed that the pCTCON2-TgMIC16/EBY100 vaccine stimulated humoral and cellular immune responses. In addition, mice immunized with the pCTCON2-TgMIC16/EBY100 vaccine showed increased survival times compared with non-immunized controls. In summary, TgMIC16 displayed on the cell surface of S. cerevisiae could be used as potential vaccine against toxoplasmosis.  相似文献   

12.
Salmonella flagellin, the flagellum structural subunit, has received particular interest as a vaccine adjuvant conferring enhanced immunogenity to soluble proteins or peptides, both for activation of antibody and cellular immune responses. In the present study, we evaluated the Salmonella enterica FliCd flagellin as a T cell vaccine adjuvant using as model the 9-mer (SYVPSAEQI) synthetic H2d-restricted CD8+ T cell-specific epitope (CS280–288) derived from the Plasmodium yoelii circumsporozoite (CS) protein. The FliCd adjuvant effects were determined under two different conditions: (i) as recombinant flagella, expressed by orally delivered live S. Dublin vaccine strains expressing the target CS280–288 peptide fused at the central hypervariable domain, and (ii) as purified protein in acellular vaccines in which flagellin was administered to mice either as a recombinant protein fused or admixed with the target CS280–288 peptide. The results showed that CS280–288-specific cytotoxic CD8+ T cells were primed when BALB/c mice were orally inoculated with the expressing the CS280–288 epitope S. Dublin vaccine strain. In contrast, mice immunized with purified FliCd admixed with the CS280–288 peptide and, to a lesser extent, fused with the target peptide developed specific cytotoxic CD8+ T cell responses without the need of a heterologous booster immunization. The CD8+ T cell adjuvant effects of flagellin, either fused or not with the target peptide, correlated with the in vivo activation of CD11c+ dendritic cells. Taken together, the present results demonstrate that Salmonella flagellins are flexible adjuvant and induce adaptative immune responses when administered by different routes or vaccine formulations.  相似文献   

13.
The lipid core peptide (LCP) system has successfully been used in development of peptide-based vaccines against cancer and infectious diseases (such as group A streptococcal infection). CD8+ T cells are important targets for vaccines, however developing a vaccine that activates long-lasting immunity has proven challenging. The ability of LCP vaccines to activate antigen-specific CD8+ and/or CD4+ T cell responses was tested using compounds that contained two or four copies of OVA257–264 and/or OVA323–339 peptides conjugated to LCP, which are recognised by OTI (CD8+ specific) and OTII (CD4+ specific) T cells, respectively. The LCP–ovalbumin vaccines developed in this study were synthesised in 30% yields and showed no significant haemolytic effect on red blood cells (below 4% haemolysis when tested with compounds at up to 100 μM concentrations). Promising in vivo data in mice suggested that this LCP–ovalbumin vaccine system could act as a novel and potent vehicle for the stimulation of robust antigen-specific CD8+ T cell responses.  相似文献   

14.
In this study, we have characterized the immune mechanisms elicited by antigenic candidates, TcG2 and TcG4, delivered by a DNA-prime/MVA-boost approach, and evaluated the host responses to Trypanosoma cruzi infection in C57BL/6 mice. Immunization of mice with antigenic candidates elicited antigen-specific, high-avidity, trypanolytic antibody response (IgG2b > IgG1) and CD8+T cells that exhibited type-1 cytolytic effector (CD8+CD107a+IFN-γ+Perforin+) phenotype. The extent of TcG2-dependent type 1 B and T cell immunity was higher than that noted in TcG4-immunized mice, and expanded accordingly in response to challenge infection with T. cruzi. The progression of chronic phase in immunized mice was associated with persistence of IgGs, 55–90% reduction in the frequency of proinflammatory (IFN-γ+ or TNF-α+) CD8+T cells, and an increase or emergence of immunoregulatory (IL-10+) CD4/CD8 T cells. The tissue parasitism, infiltration of inflammatory infiltrate, parasite persistence, and fibrosis were decreased by 82–92% in heart and skeletal muscle of immunized/chronically infected mice. Control mice exhibited a significantly low antibody response, consistent activation of effector CD8+T cells dominated by pro-inflammatory phenotype and mixed cytokine profile (IFN-γ + TNF-α > IL-4 + IL-10), parasite persistence and pathologic damage in chagasic hearts. We conclude that delivery of TcG2 or TcG4 by DNA-rMVA approach elicits effective antibody and CD8+T cell mediated immunity against T. cruzi and Chagas disease. The emergence of type 2 cytokine and T cell response in chronic phase was indicative of prevention of clinical disease.  相似文献   

15.
Cytotoxic CD8+ T lymphocytes (CTLs) play an important role in antiviral immunity. Several human HLA-A*0201 restricted CTL epitopes of severe acute respiratory syndrome (SARS) spike (S) protein have been identified in HLA-A*0201 transgenic (Tg) mice, but the mechanisms and properties of immune responses are still not well understood. In this study, HLA-A*0201 Tg mice were primed intramuscularly with SARS S DNA and boosted subcutaneously with HLA-A*0201 restricted peptides. The lymphocytes from draining lymph nodes, spleens and lungs were stimulated with the cognate peptides. Three different methods (ELISA, ELISPOT and FACS) were used to evaluate the immune responses during short and long periods of time after immunization. Results showed that peptide-specific CD8+ T cells secreted IFN-γ, TNF-α and IL-2 and expressed CD107a/b on cell surface. IFN-γ+CD8+ T cells and CD107a/b+CD8+ T cells distributed throughout the lymphoid and non-lymphoid tissues, but the frequency of peptide-specific CD8+ T cells was higher in lungs than in spleens and lymph nodes. The phenotype of the CD8+ T cells was characterized based on the expression of IFN-γ. Most of the HLA-A*0201 restricted peptide-specific CD8+ T cells represented a memory subset with CD45RBhigh and CD62Llow. Taken together, these data demonstrate that immunization with SARS S DNA and HLA-A*0201 restricted peptides can elicit antigen-specific CD8+ T cell immune responses which may have a significant implication in the long-term protection. We provide novel information in cellular immune responses of SARS S antigen-specific CD8+ T cells, which are important in the development of vaccine against SARS-CoV infection.  相似文献   

16.
Leishmania lipophosphoglycan (LPG) is a molecule that has been used as a vaccine candidate, with contradictory results. Since unsuccessful protection could be related to suppressed T cell responses, we analyzed the expression of inhibitory receptor PD-1 in CD8+ and CD4+ lymphocytes and it is ligand PD-L2 in macrophages of BALB/c mice immunized with various doses of Leishmania mexicana LPG and re-stimulated in vitro with different concentrations of LPG. Vaccination with LPG enhanced the expression of PD-1 in CD8+ cells. Activation molecules CD137 were reduced in CD8+ cells from vaccinated mice. In vitro re-stimulation enhanced PD-L2 expression in macrophages of healthy mice in a dose-dependent fashion. The expression of PD-1, PD-L2 and CD137 is modulated according to the amount of LPG used during immunization and in vitro re-stimulation. We analyzed the expression of these molecules in mice infected with 1 × 104 or 1 × 105L. mexicana promastigotes and re-stimulated in vitro with LPG. Infection with 1 × 105 parasites increased the PD-1 expression in CD8+ and diminished PD-L2 in macrophages. When these CD8+ cells were re-stimulated in vitro with LPG, simulating a second exposure to parasite antigens, PD-1 expression increased significantly more, in a dose dependent fashion. We conclude that CD8+ T lymphocytes and macrophages express inhibition molecules according to the concentrations of Leishmania LPG and to the parasite load. Vaccination with increased amounts of LPG or infections with higher parasite numbers induces enhanced expression of PD-1 and functional inactivation of CD8+ cells, which can have critical consequences in leishmaniasis, since these cells are crucial for disease control. These results call for pre-vaccination evaluations of potential immunogens, specifically where CD8 cells are required, since inhibiting molecules can be induced after certain thresholds of antigen concentrations. We propose that the analysis of PD-1 and PD-L2 are useful tools to monitor the optimal dose for vaccination candidates.  相似文献   

17.
《Vaccine》2018,36(11):1414-1422
DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-TEXO capable of stimulating HER2-specific CD8+ T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdVHuRt expressing HuRt fusion protein composed of NH2-HER21-407 (Hu) and COOH-neu408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-TEXO using polyclonal CD4+ T-cells uptaking exosomes released by AdVHuRt-transfected dendritic cells. We found that the HuRt-TEXO vaccine stimulates enhanced CD4+ T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-TEXO vaccine. By using PE-H-2Kd/HER223-71 tetramer, we determined that HuRt-TEXO stimulates stronger HER2-specific CD8+ T-cell responses eradicating 90% of HER2-specific target cells, while HER2-TEXO-induced CD8+ T-cell responses only eliminating 53% targets. Furthermore, HuRt-TEXO, but not HER2-TEXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10A2/HER2 melanoma. HuRt-TEXO-stimulated HER2-specific CD8+ T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-TEXO, circumventing HER2 tolerance, may provide a new therapeutic alternative for patients with trastuzumab-resistant HER2+ breast tumor.  相似文献   

18.
Human vaccines are not available and current anti-toxoplasma treatment is disappointing. To investigate the possible adjuvant effect of aqueous extracts obtained from medicinal herbs of Astragalus membranaceus (Am) and Scutellaria baicalensis GEORGI (Sb) on the immune response to Toxoplasma gondii in the mouse models induced by ultraviolet (UV)-attenuated T. gondii, this paper studies the possible vaccination strategies to help combat infections with Toxoplasma and looking towards developing new vaccine and approaches. We used UV-attenuated T. gondii (UV-T.g) of RH strain as a vaccine and the extracts of Am (AmE) and Sb (SbE) as adjuvant. Mice were infected by intraperitoneal (i.p.) injection of 102 RH tachyzoites alone (infected controls), infected and treated with AmE (T.g + AmE) and SbE (T.g + SbE), respectively; and mice immunized i.p. with UV-T.g alone, UV-T.g co-administrated with AmE (UV-T.g + AmE) or SbE (UV-T.g + SbE), and then challenged with T.g, respectively. The animal survival time, parasite burden in peritoneal lavage fluids, liver histopathological analysis, and levels of serum antibodies among the groups were compared after either infection or challenge. The results showed that, compared to infected controls, infected mice treated with AmE or SbE, or vaccinated mice and then challenged, had significantly prolonged survival time, decreased parasite burden, improved liver histopathological score, and increased Th1-type cellular immune response; furthermore, vaccinated mice co-administrated with AmE or SbE had even longer survival, lower parasite burden, lower liver histopathological score, and higher Th1 response after challenge. Our data demonstrated that the protective immunity of UV-attenuated T. gondii could be markedly enhanced by AmE or SbE co-administration, which suggests that both AmE and SbE may have the potential to be used as effective vaccine adjuvant.  相似文献   

19.
Toxoplasma gondii is an obligate intracellular protozoan parasite infecting humans, mammals and birds. Eukaryotic translation initiation factor (eIF4A) is a newly identified protein associated with tachyzoite virulence. To evaluate the protective efficacy of T. gondii eIF4A, a DNA vaccine (pVAX-eIF4A) encoding T. gondii eIF4A (Tg-eIF4A) gene was constructed. The expression ability of this recombinant DNA plasmid was examined in Marc145 cells by IFA. Then, Kunming mice were intramuscularly immunized with pVAX-eIF4A and followed by challenge infection with the highly virulent T. gondii RH strain. The results showed that vaccination with pVAX-eIF4A elicited specific humoral responses, with high IgG antibody titers and specific lymphocyte proliferative responses. The cellular immune response was associated with significant production of IFN-γ, IL-2 in Kunming mice, and a mixed IgG1/IgG2a response with predominance of IgG2a production, indicating that a Th1 type response was elicited after immunization with pVAX-eIF4A. In addition, the increase of the percentage of CD8+ T cells in lymphoid in mice suggested the activation of MHC class I restricted antigen presentation pathways. After lethal challenge, the mice vaccinated with the pVAX-eIF4A showed a significantly prolonged survival time (23.0 ± 5.5 days) compared with control mice which died within 7 days of challenge (P < 0.05). These results demonstrate that pVAX-eIF4A could elicit strong humoral, Th1-type cellular immune responses and increase survival time of immunized mice, suggesting that eIF4A is a promising vaccine candidate against acute T. gondii infection in mice.  相似文献   

20.
Toxoplasma gondii is a significant zoonotic parasite which can cause congenital infection and abortion in warm-blooded animals and humans. Microneme protein 13 (MIC13) plays an important role in attachment and penetration of the host cell by T. gondii. In this study, a DNA vaccine expressing mic13 of T. gondii was constructed and its protective efficacy was evaluated in Kunming L615H2k mice. Immunization with pVAX-TgMIC13 induced a strong immune responses demonstrated by significant lymphocyte proliferation, cytokine production and antibody responses. Immunized mice showed increased survival time (21.3 ± 11.3 days) and reduced number of cysts in brain of mice (57.14%) after challenge with tachyzoites of the virulent T. gondii RH strain and cysts of the T. gondii PRU strain, respectively, demonstrating that T. gondii MIC13 is a potential vaccine candidate, worth being included in future vaccine development against acute and chronic T. gondii infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号