首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Vaccine》2017,35(33):4220-4228
Influenza virus dominant antigens presentation using virus like particle (VLP) approach is attractive for the development of new generation of influenza vaccines. Mammalian cell platform offers many advantages for VLP production. However, limited attention has been paid to the processing of mammalian cell produced VLPs. Better understanding of the production system could contribute to increasing the yields and making large-scale VLP vaccine manufacturing feasible. In a previous study, we have generated a human embryonic kidney HEK-293 inducible cell line expressing Hemagglutinin (HA) and Neuraminidase (NA), which was used to produce VLPs upon transient transfection with a plasmid containing HIV-1 Gag. In this work, to streamline the production process, we have developed a new HEK-293 inducible cell line adapted to suspension growth expressing the three proteins HA, NA (H1N1 A/PR/8/1934) and the Gag fused to GFP for monitoring the VLP production. The process was optimized to reach higher volumetric yield of VLPs by increasing the cell density at the time of induction without sacrificing the cell specific productivity. A 5-fold improvement was achieved by doing media evaluation at small scale. Furthermore, a 3-L perfusion bioreactor mirrored the performance of small-scale shake flask cultures with sequential medium replacement. The cell density was increased to 14 × 106 cells/ml at the time of induction which augmented by 60-fold the volumetric yield to 1.54 × 1010 Gag-GFP fluorescent events/ml, as measured by flow cytometry. The 9.5-L harvest from the perfusion bioreactor was concentrated by tangential flow filtration at low shear rate. The electron micrographs revealed the presence of VLPs of 100–150 nm with the characteristic dense core of HIV-1 particles. The developed process shows the feasibility of producing high quantity of influenza VLPs from an inducible mammalian stable cell line aiming at large scale vaccine manufacturing.  相似文献   

2.
《Vaccine》2017,35(26):3423-3430
Despite major advances in developing capacities and alternative technologies to egg-based production of influenza vaccines, responsiveness to an influenza pandemic threat is limited by the time it takes to generate a Candidate Vaccine Virus (CVV) as reported by the 2015 WHO Informal Consultation report titled “Influenza Vaccine Response during the Start of a Pandemic”.In previous work, we have shown that HEK-293 cell culture in suspension and serum free medium is an efficient production platform for cell culture manufacturing of influenza candidate vaccines. This report, took advantage of, recombinant DNA technology using Reverse Genetics of influenza strains, and advances in the large-scale transfection of suspension cultured HEK-293 cells. We demonstrate the efficient generation of H1N1 with the PR8 backbone reassortant under controlled bioreactor conditions in two sequential steps (transfection/rescue and infection/production). This approach could deliver a CVV for influenza vaccine manufacturing within two-weeks, starting from HA and NA pandemic sequences. Furthermore, the scalability of the transfection technology combined with the HEK-293 platform has been extensively demonstrated at >100 L scale for several biologics, including recombinant viruses.Thus, this innovative approach is better suited to rationally engineer and mass produce influenza CVV within significantly shorter timelines to enable an effective global response in pandemic situations.  相似文献   

3.
Hollow fiber bioreactors (HFBRs) have been widely described as capable of supporting the production of highly concentrated monoclonal antibodies and recombinant proteins. Only recently HFBRs have been proposed as new single-use platforms for production of high-titer influenza A virus. These bioreactors contain multiple hollow fiber capillary tubes that separate the bioreactor in an intra- and an extra-capillary space. Cells are usually cultured in the extra-capillary space and can grow to a very high cell concentration. This work describes the evaluation of the single-use hollow fiber bioreactor PRIMER HF® (Biovest International Inc., USA) for production of influenza A virus. The process was setup, characterized and optimized by running a total of 15 cultivations. The HFBRs were seeded with either adherent or suspension MDCK cells, and infected with influenza virus A/PR/8/34 (H1N1), and the pandemic strain A/Mexico/4108/2009 (H1N1). High HA titers and TCID50 of up to 3.87 log10 (HA units/100 μL) and 1.8 × 1010 virions/mL, respectively, were obtained for A/PR/8/34 influenza strain. Influenza virus was collected by performing multiple harvests of the extra-capillary space during a virus production time of up to 12 days. Cell-specific virus yields between 2,000 and 8,000 virions/cell were estimated for adherent MDCK cells, and between 11,000 and 19,000 virions/cell for suspension MDCK.SUS2 cells. These results do not only coincide with the cell-specific virus yields obtained with cultivations in stirred tank bioreactors and other high cell density systems, but also demonstrate that HFBRs are promising and competitive single-use platforms that can be considered for commercial production of influenza virus.  相似文献   

4.
《Vaccine》2016,34(29):3371-3380
Virus-like particles (VLPs) constitute a promising alternative as influenza vaccine. They are non-replicative particles that mimic the morphology of native viruses which make them more immunogenic than classical subunit vaccines. In this study, we propose HEK-293 cells in suspension culture in serum-free medium as an efficient platform to produce large quantities of VLPs. For this purpose, a stable cell line expressing the main influenza viral antigens hemagglutinin (HA) and neuraminidase (NA) (subtype H1N1) under the regulation of a cumate inducible promoter was developed (293HA-NA cells). The production of VLPs was evaluated by transient transfection of plasmids encoding human immunodeficiency virus (HIV) Gag or M1 influenza matrix protein. To facilitate the monitoring of VLPs production, Gag was fused to the green fluorescence protein (GFP). The transient transfection of the gag containing plasmid in 293HA-NA cells increased the release of HA and NA seven times more than its counterpart transfected with the M1 encoding plasmid. Consequently, the production of HA-NA containing VLPs using Gag as scaffold was evaluated in a 3-L controlled stirred tank bioreactor. The VLPs secreted in the culture medium were recovered by ultracentrifugation on a sucrose cushion and ultrafiltered by tangential flow filtration. Transmission electron micrographs of final sample revealed the presence of particles with the average typical size (150–200 nm) and morphology of HIV-1 immature particles. The concentration of the influenza glycoproteins on the Gag-VLPs was estimated by single radial immunodiffusion and hemagglutination assay for HA and by Dot-Blot for HA and NA. More significantly, intranasal immunization of mice with influenza Gag-VLPs induced strong antigen-specific mucosal and systemic antibody responses and provided full protection against a lethal intranasal challenge with the homologous virus strain. These data suggest that, with further optimization and characterization the process could support mass production of safer and better-controlled VLPs-based influenza vaccine candidate.  相似文献   

5.
Knowledge of the relation between the antigen content of inactivated avian influenza (AI) vaccines, the serological response after vaccination and protection of vaccinated animals is important for the choice of optimal vaccines and vaccination regimes as well as for the assessment of criteria for the licensing of new AI-vaccines. We studied this relation in a dose response study using inactivated H7N7 avian influenza vaccines with varying antigen content. The serological response depended on the antigen content of the vaccines. Anti-AI antibodies were detected most frequently with ELISA, followed by the virus neutralisation test and the haemagglutination inhibition (HI) assay. Chickens with measurable HI-antibody titers, using homologous H7N7 antigen, were all protected against clinical disease after challenge with highly pathogenic A/chicken/Netherlands/621557/03 H7N7 virus. However, in these chickens high levels of virus could still be present on days 2–4 after challenge. The reduction of virus titers after challenge, depended on the antigen content of the vaccines as well as on the serum antibody titers. While 10 haemagglutinating units (HAU), equivalent to 0.8 μg haemagglutinin (HA) protein, per vaccine dose was sufficient for prevention of clinical disease, 128 HAU (9 μg HA) per dose was required for reduction of virus titers in all chickens to 103 egg-infectious dose 50% (EID50) or less. In order to reduce virus titers below 103 EID50 per swab a HI-antibody titer of 64 was required. After use of the vaccine with the highest antigen content, challenge still induced a booster of antibody titers which is indicative of replication of challenge virus.  相似文献   

6.
《Vaccine》2019,37(47):7011-7018
Driven by the concept of plug-and-play cell culture-based viral vaccine production using disposable bioreactors, we evaluated an orbital shaken bioreactor (OSB) for human influenza A virus production at high cell concentration. Therefore, the OSB model SB10-X was coupled to two hollow fiber-based perfusion systems, namely, tangential flow filtration (TFF) and alternating tangential flow filtration (ATF). The AGE1.CR.pIX avian suspension cells grew to 50 × 106 cells/mL in chemically defined medium, maintaining high cell viabilities with an average specific growth rate of 0.020 h−1 (doubling time = 32 h). Maximum virus titers in the range of 3.28–3.73 log10(HA units/100 µL) were achieved, corresponding to cell-specific virus yields of 1000–3500 virions/cell and productivities of 0.5–2.2 × 1012 virions/L/d. This clearly demonstrates the potential of OSB operation in perfusion mode, as results achieved in a reference OSB batch cultivation were 2.64 log10(HA units/100 µL), 1286 virions/cell and 1.4 × 1012 virions/L/d, respectively. In summary, the SB10-X bioreactor can be operated with ATF and TFF systems, which is to our knowledge the first report regarding OSB operation in perfusion mode. Moreover, the results showed that the system is a promising cultivation system for influenza A virus vaccine production. The OSB disposable bioreactor has the potential for simplifying the scale-up from shake flasks to the large-scale bioreactor, facilitating rapid responses in the event of epidemics or pandemics.  相似文献   

7.
《Vaccine》2019,37(47):7019-7028
Seasonal and pandemic influenza respiratory infections are still a major public health issue. Vaccination is the most efficient way to prevent influenza infection. One option to produce influenza vaccines is cell-culture based virus propagation. Different host cell lines, such as MDCK, Vero, AGE1.CR or PER.C6 cells have been shown to be a good substrate for influenza virus production. With respect to the ease of scale-up, suspension cells should be preferred over adherent cells. Ideally, they should replicate different influenza virus strains with high cell-specific yields. Evaluation of new cell lines and further development of processes is of considerable interest, as this increases the number of options regarding the design of manufacturing processes, flexibility of vaccine production and efficiency.Here, PBG.PK2.1, a new mammalian cell line that was developed by ProBioGen AG (Germany) for virus production is presented. The cells derived from immortal porcine kidney cells were previously adapted to growth in suspension in a chemically-defined medium. Influenza virus production was improved after virus adaptation to PBG.PK2.1 cells and optimization of infection conditions, namely multiplicity of infection and trypsin concentration. Hemagglutinin titers up to 3.24 log10(HA units/100 µL) were obtained in fed-batch mode in bioreactors (700 mL working volume). Evaluation of virus propagation in high cell density culture using a hollow-fiber based system (ATF2) demonstrated promising performance: Cell concentrations of up to 50 × 106 cells/mL with viabilities exceeding 95%, and a maximum HA titer of 3.93 log10(HA units/100 µL). Analysis of glycosylation of the viral HA antigen expressed showed clear differences compared to HA produced in MDCK or Vero cell lines. With an average cell-specific productivity of 5000 virions/cell, we believe that PBG.PK2.1 cells are a very promising candidate to be considered for next-generation influenza virus vaccine production.  相似文献   

8.
Currently MedImmune manufactures cold-adapted (ca) live, attenuated influenza vaccine (LAIV) from specific-pathogen free (SPF) chicken eggs. Difficulties in production scale-up and potential exposure of chicken flocks to avian influenza viruses especially in the event of a pandemic influenza outbreak have prompted evaluation and development of alternative non-egg based influenza vaccine manufacturing technologies. As part of MedImmune's effort to develop the live attenuated influenza vaccine (LAIV) using cell culture production technologies we have investigated the use of high yielding, cloned MDCK cells as a substrate for vaccine production by assessing host range and virus replication of influenza virus produced from both SPF egg and MDCK cell production technologies. In addition to cloned MDCK cells the indicator cell lines used to evaluate the impact of producing LAIV in cells on host range and replication included two human cell lines: human lung carcinoma (A549) cells and human muco-epidermoid bronchiolar carcinoma (NCI H292) cells. The influenza viruses used to infect the indicators cell lines represented both the egg and cell culture manufacturing processes and included virus strains that composed the 2006–2007 influenza seasonal trivalent vaccine (A/New Caledonia/20/99 (H1N1), A/Wisconsin/67/05 (H3N2) and B/Malaysia/2506/04). Results from this study demonstrate remarkable similarity between influenza viruses representing the current commercial egg produced and developmental MDCK cell produced vaccine production platforms. MedImmune's high yielding cloned MDCK cells used for the cell culture based vaccine production were highly permissive to both egg and cell produced ca attenuated influenza viruses. Both the A549 and NCI H292 cells regardless of production system were less permissive to influenza A and B viruses than the MDCK cells. Irrespective of the indicator cell line used the replication properties were similar between egg and the cell produced influenza viruses. Based on these study results we conclude that the MDCK cell produced and egg produced vaccine strains are highly comparable.  相似文献   

9.
Johansson BE  Pokorny BA  Tiso VA 《Vaccine》2002,20(11-12):1670-1674
Influenza viruses neuraminidase (NA) were chromatographically extracted from influenza viruses A/Nanchang/933/95 H3(NC)N2(NC) [R] and A/Johannesburg/82/96 H1(JH)N1(JH) [R] and used to supplement conventional inactivated trivalent influenza vaccine. Immunization of mice with this preparation resulted in high titers of antibodies to both hemagglutinins (HA) and neuraminidases (NA); there were no significant differences in the anti-HA antibody titers between the conventional and the supplemented vaccine preparation. Likewise, there were no significant differences in anti-NA antibody titers between the supplemented vaccine and titers from mice immunized with a neuraminidase vaccine containing a mixture of N1-NA and N2-NA. There was no evidence of a diminution of the immune response to the HA components of the vaccine despite the presence of antigenically equivalent amounts of both N1-NA and N2-NAs. Homotypic and distantly related heterotypic infections for both H1, N1 and H3N2 subtypes were suppressed and greater reduction in pulmonary virus titers (PVT) were observed in the trivalent vaccine supplemented with purified neuraminidase from each subtype, N1 and N2. Effects on the influenza B viral components were not studied. Previous studies on supplementation of conventional influenza vaccine focused only on monovalent H3N2 vaccine preparations; this study demonstrates in a mouse model system that supplementation of trivalent influenza vaccine with both influenza A subtype neuraminidases, N1 and N2 is highly immunogenic for HA and NA of each subtype and efficacious in protecting against influenza from homotypic and heterotypic infectious challenges of either subtype.  相似文献   

10.
An adherently growing MDCK cell line was adapted in a two-step process in a fully defined medium and in suspension. The resulting MDCK.SUS2 cells were subsequently evaluated for their potential as host cells for influenza vaccine production in two lab-scale bioreactors (wave and stirred-tank). Cell concentrations up to 2.3 × 106 cells/mL were obtained after 96 h, which is slightly higher than cell concentrations obtained with adherent MDCK cells cultivated on microcarriers (2 g/L). Infections with influenza A/PR/8/34 and B/Malaysia resulted in high virus titers (2.90 and 2.75 log HA units/100 μL, respectively). The monitoring of extracellular metabolites, including amino acids, revealed a change in some of the metabolite consumption or release profiles, which indicates changes in metabolism during the adaptation process. Overall, the MDCK.SUS2 cell line represents a new cell substrate for a robust influenza vaccine production in a fully defined process.  相似文献   

11.
Aggarwal K  Jing F  Maranga L  Liu J 《Vaccine》2011,29(17):3320-3328
Uncertainties and shortcomings associated with the current influenza vaccine production processes demand attention and exploration of new vaccine manufacture technologies. Based on a newly developed mammalian cell culture-based production process we investigated selected process parameters and describe three factors that are shown to impact productivity, process robustness and development time. They are time of infection, harvest time and virus input, or multiplicity of infection (MOI). By defining the time of infection as 4-5 days post cell seeding and harvest time as 2-3 days post-infection and comparing their effect on virus production, MOI is subsequently identified as the most impactful process parameter for live attenuated influenza vaccine (LAIV) manufacture. Infection at very low MOI (between 10−4 and 10−6 FFU/cell) resulted in high titer virus production (up to 30-fold productivity improvement) compared to higher MOI infections (10−3 to 10−2 FFU/cell). Application of these findings has allowed us to develop a platform process that can reduce the development time to approximately three weeks for an influenza vaccine manufacture process for new strains.  相似文献   

12.
13.
The highly pathogenic avian H5N1 influenza virus has the potential to incite a global pandemic. Therefore, there is an urgent need to develop effective vaccines against these viruses. Because it is difficult to predict which strain of influenza will cause a pandemic, it is advantageous to develop vaccines that will confer cross-protective immunity against variants of the influenza virus. Recently, we reported that the Toll-like receptor 3 agonist, polyI:polyC12U (Ampligen®), has been proven to be safe in a Phase III human trial, and is an effective mucosal adjuvant for intranasal H5N1 influenza vaccination. Intranasal administration of an Ampligen® adjuvanted pre-pandemic H5N1 vaccine (NIBRG14), which was derived from the A/Vietnam/1194/2004 strain, resulted in the secretion of vaccine-specific IgA and IgG in nasal mucosa and serum, respectively, and protected mice against homologous A/Vietnam/1194/2004 and heterologous A/Hong Kong/483/97 and A/Indonesia/6/2005 viral challenge.  相似文献   

14.
In efforts to overcome limitations associated with egg-based influenza vaccines, mammalian cell substrates have gradually emerged as potential production platforms. Recently, a suspension Madin Darby canine kidney (MDCK) cell line for influenza virus production was created by expressing the human siat7e gene. To examine the broad susceptibility of this novel cell line, the scalability of the production process, and the antigenic stability of cell-derived progeny viruses, infection experiments using four current influenza vaccine strains (A/California/07/2009 X-179A H1N1, A/Brisbane/59/2007 IVR-148 H1N1, A/Uruguay/716/2007 X-175C H3N2, and B/Brisbane/60/2008) were performed. In small-scale experiments, this cell line was found to support high-titer replication of all four virus strains. Subsequently, production in a bench-scale bioreactor and the antigenic characteristics of progeny viruses were assessed. High titers of hemagglutinin (at least 1:512) were produced in a 2-L bench-scale bioreactor with all four strains. Immunoblot results demonstrated higher yields in the cells than those obtained in chicken embryonated eggs with three of the four tested strains. Progeny viruses collected after serial passages in this cell line exhibited minimal mutations in the HA-encoding gene. Hemagglutination inhibition (HAI) assays using ferret antiserum confirmed the antigenic stability. As a proof-of-concept this work demonstrates that by using a proper strategy, high yields of biologically active hemagglutinin can be produced from scalable cultures of suspension MDCK-siat7e cells.  相似文献   

15.
The antigenic variation of influenza virus represents a major health problem, thus continuous efforts have been made to develop broad-spectrum vaccines against influenza virus. Matrix protein 1 (M1) protein is highly conserved in all influenza A strains. In this study, M1 protein was efficiently expressed in Escherichia coli (E. coli), then purified and used for immunization of BALB/c mice by intranasal drip using chitosan as adjuvant. The M1 protein was administered intranasally to mice in combination with chitosan adjuvant twice at an interval of 3 weeks. Three weeks after the second immunization, the mice were challenged with a lethal dose (5 × LD50) of A/Chicken/Jiangsu/7/2002 (H9N2) virus, PR8 (H1N1) virus and A/Chicken/Henan/12/2004 (H5N1) virus. The protective immunity of the vaccine was evaluated by determining the survival rates, residual lung virus titers, bodyweight, and the serum antibody titers of the mice. The results showed that nasal administration of 100 μg M1 in combination with chitosan could not only completely protect the mice effectively against the challenge of the homologous virus but also protect 70% and 30% of the mice against the heterologous H1N1 and H5N1 viruses, respectively. The study indicated that the M1 protein was a candidate antigen for a broad-spectrum influenza virus vaccine and the adjuvant chitosan significantly improved the efficacy of the M1 vaccine.  相似文献   

16.
Dosage-sparing strategies, adjuvants and alternative substrates for vaccine production are being explored for influenza vaccine development. We assessed the safety and immunogenicity of a Vero cell culture-grown inactivated whole virus influenza A/H5N1 vaccine with or without aluminum hydroxide adjuvant [Al(OH)3] in healthy young adults. Vaccines were well tolerated, but injection site discomfort was more frequent in groups receiving Al(OH)3. Dose-related increases in serum antibody levels were observed. Neutralizing antibody titers varied significantly when tested by two different laboratories.  相似文献   

17.
Eating infected wild birds may put wild carnivores at high risk for infection with highly pathogenic avian influenza (HPAI) virus (H5N1). To determine whether red foxes (Vulpes vulpes) are susceptible to infection with HPAI virus (H5N1), we infected 3 foxes intratracheally. They excreted virus pharyngeally for 3–7 days at peak titers of 103.5–105.2 median tissue culture infective dose (TCID50) per mL and had severe pneumonia, myocarditis, and encephalitis. To determine whether foxes can become infected by the presumed natural route, we fed infected bird carcasses to 3 other red foxes. These foxes excreted virus pharyngeally for 3–5 days at peak titers of 104.2–104.5 TCID50/mL, but only mild or no pneumonia developed. This study demonstrates that red foxes fed bird carcasses infected with HPAI virus (H5N1) can excrete virus while remaining free of severe disease, thereby potentially playing a role in virus dispersal.  相似文献   

18.
Understanding host antibody response is crucial for predicting disease severity and for vaccine development. We investigated antibody responses against influenza A(H7N9) virus in 48 serum samples from 21 patients, including paired samples from 15 patients. IgG against subtype H7 and neutralizing antibodies (NAbs) were not detected in acute-phase samples, but ELISA geometric mean titers increased in convalescent-phase samples; NAb titers were 20–80 (geometric mean titer 40). Avidity to IgG against subtype H7 was significantly lower than that against H1 and H3. IgG against H3 was boosted after infection with influenza A(H7N9) virus, and its level in acute-phase samples correlated with that against H7 in convalescent-phase samples. A correlation was also found between hemagglutinin inhibition and NAb titers and between hemagglutinin inhibition and IgG titers against H7. Because of the relatively weak protective antibody response to influenza A(H7N9), multiple vaccinations might be needed to achieve protective immunity.  相似文献   

19.
目的研究对多亚型流感病毒流行提供预防的DNA疫苗。方法以pIRES为双表达载体,在其两个多克隆位点中分别插入H1N1(A/PR/8/34)和H3N2(A/Guizhou/54/89)的NA DNA片段,构建双表达质粒pN1-IRES-N2及pN2-IRES-N1。以BALB/c小鼠为模型,采用电穿孔法进行免疫,并用致死量流感病毒感染以检测双表达载体的保护力。结果实验表明pN1-IRES-N2能完全保护小鼠抵御致死量H1N1同源病毒的攻击,部分保护小鼠抵御致死量H3N2同源病毒攻击;pN2-IRES-N1能完全保护小鼠抵御致死量H3N2同源病毒攻击,对致死量H1N1同源病毒的攻击提供部分保护。结论双表达DNA疫苗可望开发为一种提供广泛保护的新型流感疫苗。  相似文献   

20.
《Vaccine》2015,33(29):3398-3406
A long-term objective when designing influenza vaccines is to create one with broad cross-reactivity that will provide effective control over influenza, no matter which strain has caused the disease. Here we summarize the results from an investigation into the immunogenic and protective capacities inherent in variations of a recombinant protein, HBc/4M2e. This protein contains four copies of the ectodomain from the influenza virus protein M2 (M2e) fused within the immunodominant loop of the hepatitis B virus core antigen (HBc). Variations of this basic design include preparations containing M2e from the consensus human influenza virus; the M2e from the highly pathogenic avian A/H5N1 virus and a combination of two copies from human and two copies from avian influenza viruses. Intramuscular delivery in mice with preparations containing four identical copies of M2e induced high IgG titers in blood sera and bronchoalveolar lavages. It also provoked the formation of memory T-cells and antibodies were retained in the blood sera for a significant period of time post immunization. Furthermore, these preparations prevented the death of 75–100% of animals, which were challenged with lethal doses of virus. This resulted in a 1.2–3.5 log 10 decrease in viral replication within the lungs. Moreover, HBc particles carrying only “human” or “avian” M2e displayed cross-reactivity in relation to human (A/H1N1, A/H2N2 and A/H3N2) or A/H5N1 and A(H1N1)pdm09 viruses, respectively; however, with the particles carrying both “human” and “avian” M2e this effect was much weaker, especially in relation to influenza virus A/H5N1. It is apparent from this work that to quickly produce vaccine for a pandemic it would be necessary to have several variations of a recombinant protein, containing four copies of M2e (each one against a group of likely influenza virus strains) with these relevant constructs housed within a comprehensive collection Escherichia coli-producers and maintained ready for use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号