首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The Japanese herbal medicines, Juzen-taiho-to (JTT) and Hochu-ekki-to (HET), have been shown to enhance humoral immune responses to vaccine antigen when used as adjuvants for prophylactic vaccines. However, their adjuvant effect on mucosal cellular immune responses remains unstudied. The precursor lesion of cervical cancer, high-grade CIN that expresses HPV E7 oncoprotein ubiquitously is a target for HPV therapeutic vaccines that elicit mucosal E7-specific type 1 T cell responses. We have demonstrated that oral immunization with recombinant Lactobacillus casei expressing HPV16 E7 (LacE7) is more effective in eliciting mucosal E7-specific IFNγ-producing cells than subcutaneous or intramuscular antigen delivery. Here we report the synergistic effect of an oral Lactobacillus-based vaccine and Japanese herbal medicines on mucosal immune responses. Oral immunization of mice with LacE7 plus either a Japanese herbal medicine (JTT or HET) or a mucosal adjuvant, heated-labile enterotoxin T subunit (LTB), promotes systemic E7-specific type 1 T cell responses but not mucosal responses. Administration of LacE7 plus either Japanese herbal medicine and LTB enhanced mucosal E7-specific type 1 T cell response to levels approximately 3-fold higher than those after administration of LacE7 alone. Furthermore, secretion of IFNγ and IL-2 into the intestinal lumen was observed after oral administration of LacE7 and was enhanced considerably by the addition of Japanese herbal medicines and LTB. Our data indicated that Japanese herbal medicines, in synergy with Lactobacillus and LTB, enhance the mucosal type 1 immune responses to orally immunized antigen. Japanese herbal medicines may be excellent adjuvants for oral Lactobacillus-based vaccines and oral immunization of LacE7, HET and LTB may have the potential to elicit extremely high E7-specific mucosal cytotoxic immune response to HPV-associated neoplastic lesions.  相似文献   

2.
《Vaccine》2018,36(24):3423-3426
Therapeutic HPV vaccine is an agent to induce E7-specific Th1 immune responses to treat cervical neoplasia (CIN2-3). Our previous clinical trial has demonstrated that oral administration of HPV16 E7-expressing Lactobacillus casei (L. casei), GLBL101c, resulted in the regression of HPV16-related CIN3. Here we examined optimization of the E7-expressing L. casei for induction of the mucosal immune responses to E7. Various doses of HPV16 E7 molecule were displayed on the L. casei. Immunization with E7-bound L. casei showed the induction of E7-specific mucosal IFNγ-producing cells was dependent on displayed E7-doses but saturated beyond 0.3 μg/108 cells. A new agent, L. casei with endogenous expression of E7 (IGMKK16E7), showed the optimal amount of displayed-E7. Immunization with IGMKK16E7 demonstrated 4-fold higher induction of E7-specific mucosal IFNγ-producing cells when compared with the former one. Our new system provided the optimal E7-expressing L. casei for displayed-E7 amount and induction of mucosal Th1 immune response.  相似文献   

3.
Human papillomavirus, particularly type 16 (HPV16) is present in more than 99% of cervical cancers. E7 is the major oncogenic protein produced in cervical cancer-associated HPV16. An efficient vaccine against viral infection requires induction of strong humoral and cellular responses against viral proteins. Heat shock proteins (HSPs) like Gp96 have been described as potent tumor vaccines in animal models and are currently studied in human clinical trials. In this study, we investigated the utility of HPV16 E7 along with Gp96 as an adjuvant in C57BL/6 mice model. We compared the level of humoral and cellular immune responses by E7+Gp96 co-injection as DNA/DNA and prime-boost (DNA/protein) immunization strategies. In prime-boost immunization strategies, we first immunized C57BL/6 mice with the complete open-reading frame of E7 and Gp96 (pcDNA-E7 and pcDNA-Gp96) and then boosted with rE7, rNT-gp96 (N-terminal extension of Gp96) and rCT-gp96 (C-terminal extension of Gp96) mixed with Montanide 720 in different formulations. The humoral immune responses against rE7 and the different truncated forms of rGp96 suggested a mixed Th1/Th2 response with high intensity toward Th2. Assessment of lymphoproliferative and cytokine responses against rE7 and the different fragments of Gp96, showed that DNA vaccination including E7 and Gp96 induced Th1 response. We concluded that co-delivery of naked DNA E7+Gp96 plasmid was immunologically more effective than E7 alone. Our study demonstrated that co-delivery of E7+Gp96 as DNA/DNA and E7+CT-gp96 as DNA/protein could be an effective approach to induce E7-specific immune responses as a potential vaccine candidate for cervical cancer.  相似文献   

4.
Activation of antigen-specific CD4+ T cells is critical for vaccine design. We have advanced a novel technology for enhancing activation of antigen-specific CD4+ T helper cells whereby a fragment of the MHC class II-associated invariant chain (Ii-Key) is linked to an MHC class II epitope. An HLA-DR4-restricted HPV16 E7 epitope, HPV16 E7(8–22), was used to create a homologous series of Ii-Key/HPV16 E7 hybrids testing the influence of spacer length on in vivo enhancement of HPV16 E7(8–22)-specific CD4+ T lymphocyte responses. HLA-DR4-tg mice were immunized with Ii-Key/HPV16 E7(8–22) hybrids or the epitope-only peptide HPV16 E7(8–22). As measured by IFN-γ ELISPOT assay of splenocytes from immunized mice, one of the Ii-Key/HPV16 E7(8–22) hybrids enhanced epitope-specific CD4+ T cell activation 5-fold compared to the HPV16 E7(8–22) epitope-only peptide. We further demonstrated that enhanced CD4+ T cell activation augments the CTL activity of a H-2Db-restricted HPV16 E7(49–57) epitope in HLA-DR4+ mice using an in vivo CTL assay. Binding assays indicated that the Ii-Key/HPV16 hybrid has increased affinity to HLA-DR4+ cells relative to the epitope-only peptide, which may explain its increased potency. In summary, Ii-Key hybrid modification of the HLA-DR4-restricted HPV16 E7(8–22) MHC class II epitope generates a potent immunotherapeutic peptide vaccine that may have potential for treating HPV16+ cancers in HLA-DR4+ patients.  相似文献   

5.

Background

Cervical intraepithelial neoplasia grade 3 (CIN3) is a mucosal precancerous lesion caused by high-risk human papillomavirus (HPV). Induction of immunological clearance of CIN3 by targeting HPV antigens is a promising strategy for CIN3 therapy. No successful HPV therapeutic vaccine has been developed.

Methods

We evaluated the safety and clinical efficacy of an attenuated Lactobacillus casei expressing modified full-length HPV16 E7 protein in patients with HPV16-associated CIN3. Ten patients were vaccinated orally during dose optimization studies (1, 2, 4, or 6 capsules/day) at weeks 1, 2, 4, and 8 (Step 1). Seven additional participants were only tested using the optimized vaccine formulation (Step 2), giving a total of 10 patients who received optimized vaccination. Cervical lymphocytes (CxLs) and peripheral blood mononuclear cells (PBMCs) were collected and E7 specific interferon-γ-producing cells were counted (E7 cell-mediated immune responses: E7-CMI) by ELISPOT assay. All patients were re-evaluated 9 weeks after initial vaccine exposure using cytology and biopsy to assess pathological efficacy.

Results

No patient experienced an adverse event. E7-CMI in both CxLs and PBMCs was negligible at baseline. All patients using 4–6 capsules/day showed increased E7-CMI in CxLs, whereas patients using 1–2 capsules/day did not. No patient demonstrated an increase in E7-CMI in their PBMCs. In comparison between patients of cohorts, E7-CMI at week 9 (9 wk) in patients on 4 capsules/day was significantly higher than those in patients on 1, 2, or 6 capsules/day. Most patients (70%) taking the optimized dose experienced a pathological down-grade to CIN2 at week 9 of treatment. E7-CMI in CxLs correlated directly with the pathological down-grade.

Conclusions

Oral administration of an E7-expressing Lactobacillus-based vaccine can elicit E7-specific mucosal immunity in the uterine cervical lesions. We are the first to report a correlation between mucosal E7-CMI in the cervix and clinical response after immunotherapy in human mucosal neoplasia.  相似文献   

6.
Infections by human papillomaviruses (HPV) are the major cause of uterine cancer in women worldwide. Aiming to develop a combined prophylactic and therapeutic vaccine we have previously demonstrated immunogenicity of chimeric virus-like particles consisting of a C-terminally truncated HPV 16 L1 capsid protein fused to an E7 portion. Here we show that genetic vaccination with a corresponding DNA was inefficient in the induction of a L1-specific prophylactic immune response. DNA immunization with C-terminally truncated HPV 16 L1 genes of different lengths revealed that only short deletions (L1(1-498)) were tolerated for eliciting a humoral immune response against viral capsids. This correlates with the observation that the C-terminal sequences are critical for nuclear localization, capsomere and capsid assembly. However, only the ability of L1 protein to form capsomeres or capsids showed a direct influence on the outcome of the immune response. C-terminal insertion of 60 amino acids of E7 was tolerated in fusion constructs, whereas insertion of full-length E7(1-98) or shuffled E7 (149 aa) completely abolished the humoral immune response. The L1(1-498)/E7(1-60) fusion construct not only induced L1-specific antibodies but also L1- and E7-specific CTL responses after DNA vaccination.  相似文献   

7.
Massa S  Franconi R  Brandi R  Muller A  Mett V  Yusibov V  Venuti A 《Vaccine》2007,25(16):3018-3021
The E7 oncoprotein from Human Papilloma Virus (HPV) is an attractive candidate for anti-cancer vaccine development. In this study, we engineered HPV16 E7 coding sequence (wild type or mutagenized sequence, E7GGG) as fusions to beta-1,3-1,4-glucanase (LicKM) of Clostridium thermocellum and produced in Nicotiana benthamiana plants using a transient expression system. Target antigens were purified and evaluated in mice for their potential as prophylactic and therapeutic vaccine candidates. Both fusion proteins induced E7-specific IgG and cytotoxic T-cell responses and protected mice against challenge with E7-expressing tumor cells. Furthermore, when administered after challenge, these plant-produced antigens prevented tumor development.  相似文献   

8.
A vaccine comprising human papillomavirus type 16 (HPV16) L2, E6 and E7 in a single tandem fusion protein (termed TA-CIN) has the potential advantages of both broad cross-protection against HPV transmission through induction of L2 antibodies able to cross neutralize different HPV types and of therapy by stimulating T cell responses targeting HPV16 early proteins. However, patients vaccinated with TA-CIN alone develop weak HPV neutralizing antibody and E6/E7-specific T cell responses. Here we test TA-CIN formulated along with the adjuvant GPI-0100, a semi-synthetic quillaja saponin analog that was developed to promote both humoral and cellular immune responses. Subcutaneous administration to mice of TA-CIN (20 μg) with 50 μg GPI-0100, three times at biweekly intervals, elicited high titer HPV16 neutralizing serum antibody, robust neutralizing titers for other HPV16-related types, including HPV31 and HPV58, and neutralized to a lesser extent other genital mucosatropic papillomaviruses like HPV18, HPV45, HPV6 and HPV11. Notably, vaccination with TA-CIN in GPI-0100 protected mice from cutaneous HPV16 challenge as effectively as HPV16 L1 VLP without adjuvant. Formulation of TA-CIN with GPI-0100 enhanced the production of E7-specific, interferon γ producing CD8+ T cell precursors by 20-fold. Vaccination with TA-CIN in GPI-0100 also completely prevented tumor growth after challenge with 5 × 104 HPV16-transformed TC-1 tumor cells, whereas vaccination with TA-CIN alone delayed tumor growth. Furthermore, three monthly vaccinations with 125 μg of TA-CIN and 1000 μg GPI-0100 were well tolerated by pigtail macaques and induced both HPV16 E6/E7-specific T cell responses and serum antibodies that neutralized all HPV types tested.  相似文献   

9.
《Vaccine》2005,23(3):305-311
Many successful candidate vaccines capable of combating tumours in animal models come to an untimely end because of the costs associated with the approval and production of the GMP-grade materials, which are usually of biological origin, for use in humans. We have used a GMP-compatible method to chemically synthesize a pure synthetic E7 protein of the human papillomavirus type 16 (HPV16-E7). This oncogen-derived protein is constitutively expressed in cervical cancer and its precursors and is thus considered as an excellent target for tumour-specific immunity. Injection of a mixture of the synthetic HPV16-E7 protein and the synthetic adjuvant CpG in mice resulted in strong functional HPV16-specific cytotoxic T-lymphocyte responses as measured by CD8+ MHC class I-tetramer staining, the detection of antigen-specific intracellular IFNγ production and the ability to protect mice against a challenge with HPV16-E7+ TC-1 tumour cells in both prophylactic and therapeutic vaccination regimens. Our results demonstrate the potential use of pure synthetic vaccines that can be efficiently produced under GMP at low cost, which will stimulate the translation of new vaccination strategies into phase I/II clinical trials.  相似文献   

10.
DNA vaccines are an attractive approach to eliciting antigen-specific immunity. Intracellular targeting of tumor antigens through its linkage to immunostimulatory molecules such as calreticulin (CRT) can improve antigen processing and presentation through the MHC class I pathway and increase cytotoxic CD8+ T cell production. However, even with these enhancements, the efficacy of such immunotherapeutic strategies is dependent on the identification of an effective route and method of DNA administration. Electroporation and gene gun-mediated particle delivery are leading methods of DNA vaccine delivery that can generate protective and therapeutic levels of immune responses in experimental models. In this study, we perform a head-to-head comparison of three methods of vaccination – conventional intramuscular injection, electroporation-mediated intramuscular delivery, and epidermal gene gun-mediated particle delivery – in the ability to generate antigen-specific cytotoxic CD8+ T cell responses as well as anti-tumor immune responses against an HPV-16 E7 expressing tumor cell line using the pNGVL4a-CRT/E7(detox) DNA vaccine. Vaccination via electroporation generated the highest number of E7-specific cytotoxic CD8+ T cells, which correlated to improved outcomes in the treatment of growing tumors. In addition, we demonstrate that electroporation results in significantly higher levels of circulating protein compared to gene gun or intramuscular vaccination, which likely enhances calreticulin's role as a local tumor anti-angiogenesis agent. We conclude that electroporation is a promising method for delivery of HPV DNA vaccines and should be considered for DNA vaccine delivery in human clinical trials.  相似文献   

11.
A new and very promising approach in vaccine development is the application of naked DNA. In comparison to conventional vaccines it offers several advantages, especially if there is a need for the development of low cost vaccines. Infection with high-risk human papillomaviruses (hr-HPVs) is the major risk factor for the development of cervical cancer (cc), the third most common cancer in women worldwide. The HPV E7 oncogene is constitutively expressed in HPV-infected cells and represents an excellent target for immune therapy of HPV-related disease. Therefore, we chose the HPV-16 E7 as model antigen in the development of a therapeutic DNA vaccine candidate. For safety reasons the use of a transforming gene like the HPV-16 E7 for DNA vaccination is not feasible in humans. In consequence we have generated an artificial ("shuffled") HPV-16 E7-gene (HPV-16 E7SH), containing all putative cytotoxic T-lymphocyte (CTLs) epitopes and exhibiting high safety features. Here, we show the induction of a strong E7-wildtype (E7WT) directed cellular and humoral immune response including tumor protection and regression after in vivo immunization in the murine system. Moreover, the vaccine candidate demonstrated immunogenicity in humans, demonstrated by priming of antigen-specific T cells in vitro. Importantly, the artificial HPV-gene has completely lost its transforming properties as measured in soft agar transformation assays. These results may be of importance for the development of vaccines based on oncogenes or oncoproteins.  相似文献   

12.
《Vaccine》2015,33(28):3164-3170
DNA vaccines against human papillomavirus (HPV) type 16 have not been successful in clinical trials, due to the lack of an appropriate delivery system. In this study, a peptide-based gene delivery system, MPG, which forms stable non-covalent nanoparticles with nucleic acids, was used for in vitro and in vivo delivery of HPV16 E7 DNA as a model antigen. The results demonstrated that at Nitrogen/Phosphate (N/P) ratio over 10:1, this peptide can effectively condense plasmid DNA into stable nanoparticles with an average size of 180–210 nm and a positive surface charge. The transfection efficiency of MPG-based nanoparticles was shown to be comparable with Polyethyleneimine (PEI). The efficient protein expression detected by western blotting and flow cytometry supports the potential of MPG-based nanoparticles as a potent delivery system in DNA vaccine formulations. Immunization with MPG/E7DNA nanoparticles at an N/P ratio of 10:1 induced a stronger Th1 cellular immune response with a predominant interferon-γ (IFN-γ) profile than those induced by E7DNA alone in a murine tumor model. These findings suggest that MPG peptide as a novel gene delivery system could have promising applications in improving HPV therapeutic vaccines.  相似文献   

13.
Li YL  Liu J  Liu JN  Zhang J 《Vaccine》2011,29(35):5959-5962
Human papillomavirus (HPV) 16 is the primary etiologic agent of cervical cancer. Most HPV16 therapeutic vaccines target E7 protein which is consistently expressed in tumor cells. In this study, we cloned mouse autologous heat shock protein 70 (mHSP70) gene from mouse liver cells and then expressed mHSP70 and fused HPV16 E7-mHSP70 (E7 at the N-terminus and mHSP70 at the C-terminus) proteins in E. coli. Then we investigated the inhibition of TC-1 cell growth by using the E7-expressing murine tumor cell line, TC-1, as a model of cervical cancer. In this model, mice were immunized with the fusion protein of E7-mHSP70 without any adjuvant. The results showed that prophylactic immunization of E7-mHSP70 protected mice against challenge with TC-1 cells. In addition, therapeutic immunization with E7-mHSP70 could inhibit TC-1 tumor growth on lungs. Our study demonstrated that immunization with E7-mHSP70 protein without any adjuvant could generate anti-tumor effect in mice challenged with TC-1 cells.  相似文献   

14.
Many successful candidate vaccines capable of combating tumours in animal models come to an untimely end because of the costs associated with the approval and production of the GMP-grade materials, which are usually of biological origin, for use in humans. We have used a GMP-compatible method to chemically synthesize a pure synthetic E7 protein of the human papillomavirus type 16 (HPV16-E7). This oncogen-derived protein is constitutively expressed in cervical cancer and its precursors and is thus considered as an excellent target for tumour-specific immunity. Injection of a mixture of the synthetic HPV16-E7 protein and the synthetic adjuvant CpG in mice resulted in strong functional HPV16-specific cytotoxic T-lymphocyte responses as measured by CD8+ MHC class I-tetramer staining, the detection of antigen-specific intracellular IFNgamma production and the ability to protect mice against a challenge with HPV16-E7+ TC-1 tumour cells in both prophylactic and therapeutic vaccination regimens. Our results demonstrate the potential use of pure synthetic vaccines that can be efficiently produced under GMP at low cost, which will stimulate the translation of new vaccination strategies into phase I/II clinical trials.  相似文献   

15.
Peptide-based vaccines aimed at the induction of effective T-cell responses against established tumors have not been successful in clinic and require the use of new adjuvants. One of those is a new adjuvant in which gangliosides are incorporated into the outer membrane protein complex of Neisseria meningitidis to form very small size proteoliposomes (VSSP). In a preclinical model of human papillomavirus HPV16-induced cervical cancer we show that vaccination with HPV 16 E7 derived minimal CTL peptide and VSSP protects mice against tumor challenge, induces regression of established tumors and produces E7-specific CD8+ T-cell responses.  相似文献   

16.
Vaccination with oncogene-derived DNA for anti-cancer treatment carries a risk of de-novo tumor induction triggered by the persisting recombinant DNA. We hypothesized that an oncoprotein whose primary sequence has been rearranged ('shuffled') to maintain all possible T cell epitopes still induces cytotoxic T cells against the authentic protein but is devoid of transforming properties. As a model antigen, we used the E7 oncoprotein of the human papillomavirus (HPV) type 16, the major cause of cervical cancer. We have generated an artificial E7 molecule in which four domains were rearranged and, in order to maintain all possible T cell epitopes, certain sequences were duplicated. Upon transfection of this shuffled E7 gene (E7SH) into RMA cells, presentation of an E7 Db-restricted T cell epitope was shown by an E7-specific CTL line in vitro. Immunization of C57BL/6 mice with E7SH DNA induced E7-specific CTL and also conveyed protection against E7-positive syngeneic tumor cells. No transforming activity of E7SH DNA in NIH3T3 cells was detected, as determined by focus formation, induction of S-phase under conditions of serum deprivation and degradation of endogenous pRB. Our results suggest that DNA shuffling may become a promising concept for DNA-based anti-cancer vaccines.  相似文献   

17.
Persistent infection with high-risk human papillomaviruses (hrHPV) can result in the formation of anogenital cancers. As hrHPV proteins E6 and E7 are required for cancer initiation and maintenance, they are ideal targets for immunotherapeutic interventions. Previously, we have described the development of DNA vaccines for the induction of HPV16 E6 and E7 specific T cell immunity. These vaccines consist of 'gene-shuffled' (SH) versions of HPV16 E6 and E7 that were fused to Tetanus Toxin Fragment C domain 1 (TTFC) and were named TTFC-E6SH and TTFC-E7SH. Gene-shuffling was performed to avoid the risk of inducing malignant transformation at the vaccination site. Here, we describe the preclinical safety evaluation of these candidate vaccines by analysis of their transforming capacity in vitro using established murine fibroblasts (NIH 3T3 cells) and primary human foreskin keratinocytes (HFKs). We demonstrate that neither ectopic expression of TTFC-E6SH and TTFC-E7SH alone or in combination enabled NIH 3T3 cells to form colonies in soft agar. In contrast, expression of HPV16 E6WT and E7WT alone or in combination resulted in effective transformation. Similarly, retroviral transduction of HFKs from three independent donors with both TTFC-E6SH and TTFC-E7SH alone or in combination did not show any signs of immortalization. In contrast, the combined expression of E6WT and E7WT induced immortalization in HFKs from all donors. Based on these results we consider it justified to proceed to clinical evaluation of DNA vaccines encoding TTFC-E6SH and TTFC-E7SH in patients with HPV16 associated (pre)malignancies.  相似文献   

18.
Heterologous prime-boost vaccination schedules employing TA-HPV, a vaccinia virus encoding HPV 16/18 E6 and E7, in combination with TA-CIN, an HPV 16 L2E6E7 fusion protein, may offer advantages over the use of either agent alone for the immunotherapy of human papillomavirus (HPV) type 16-associated vulval intraepithelial neoplasia (VIN). In the present study, 10 women with HPV 16-positive high grade VIN, previously primed with TA-HPV, received three booster immunisations with TA-CIN. All but one demonstrated HPV 16-specific proliferative T-cell and/or serological responses following vaccination. Three patients additionally showed lesion shrinkage or symptom relief, but no direct correlation between clinical and immunological responses was seen.  相似文献   

19.
Human papillomavirus type 16 (HPV-16) infection is associated with a majority of cervical cancers and a significant proportion of head and neck cancers. Here, we describe a novel-engineered DNA vaccine that encodes a HPV-16 consensus E6/E7 fusion gene (pConE6E7) with the goal of increasing its antitumor cellular immunity. Compared to an early stage HPV-16 E7 DNA vaccine (pE7), this construct was up to five times more potent in driving E7-specific cellular immune responses. Prophylactic administration of this vaccine resulted in 100% protection against HPV E6 and E7-expressing tumors. Therapeutic studies indicated that vaccination with pConE6E7 prevented or delayed the growth of tumors. Moreover, immunization with pConE6E7 could also partially overcome immune tolerance in E6/E7 transgenic mice. Such DNA immunogens are interesting candidates for further study to investigate mechanisms of tumor immune rejection in vivo.  相似文献   

20.
《Vaccine》2017,35(31):3850-3858
Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer, and subsets of anogenital and oropharyngeal cancers. HPV18 is the second most prevalent high-risk HPV type after HPV16. Furthermore, HPV18 is responsible for approximately 12% of cervical squamous cell carcinoma and 37% of cervical adenocarcinoma cases worldwide. In this study, we aimed to characterize the HPV18-E6-specific epitope and establish an HPV18 animal tumor model to evaluate the E6-specific immune response induced by our DNA vaccine. We vaccinated naïve C57BL/6 mice with a prototype DNA vaccine, pcDNA3-HPV18-E6, via intramuscular injection followed by electroporation, and analyzed the E6-specific CD8+ T cell responses by flow cytometry using a reported T cell epitope. We then characterized the MHC restriction element for the characterized HPV18-E6 epitope. Additionally, we generated an HPV18-E6-expressing tumor cell line to study the antitumor effect mediated by E6-specific immunity. We observed a robust HPV18-E6aa67-75 peptide-specific CD8+ T cell response after vaccination with pcDNA3-HPV18-E6. Further characterization demonstrated that this epitope was mainly restricted by H-2Kb, but was also weakly presented by HLA-A10201, as previously reported. We observed that vaccination with pcDNA3-HPV18-E6 significantly inhibited the growth of HPV18-E6-expressing tumor cells, TC-1/HPV18-E6, in mice. An antibody depletion study demonstrated that both CD4+ and CD8+ T cells are necessary for the observed antitumor immunity. The characterization of HPV18-E6-specific T cell responses and the establishment of HPV18-E6-expressing tumor cell line provide infrastructures for further development of HPV18-E6 targeted immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号