首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synergistic protective efficacy of murine interleukin 21 (mIL-21) and mIL-15 administrated with DNA vaccine against acute and chronic Toxoplasma gondii infection in mice was investigated using T. gondii MIC8 (TgMIC8) as a model. We cloned mIL-21 and mIL-15 from splenic tissues of Kunming mice, and constructed eukaryotic plasmid pVAX/mIL-15, pVAX/mIL-21, and pVAX/mIL-21/mIL-15, respectively. After immunizing with pVAX/TgMIC8 in the presence or absence of these cytokines, immune responses were analyzed using lymphoproliferative assay, cytokine and serum antibody measurements, flow cytometric surface markers on lymphocytes and protection against acute and chronic T. gondii infection. Mice receiving pVAX/TgMIC8 alone developed a strong humoral responses and Th1 type cellular immune responses, and showed an increase of CD4+ and CD8+ T cells compared with all the controls. Adding pVAX/mIL-21 to pVAX/TgMIC8 compared to pVAX/TgMIC8 resulted in only a slight increase in humoral and cellular immune responses, and this immune response was lower than that induced by the pVAX/mIL-15 combined with pVAX/TgMIC8. Co-administration of pVAX/mIL-21/mIL-15 combined with pVAX/TgMIC8 elicited the strongest humoral and cellular immune responses among all the groups, leading to significantly increased survival time against acute infection and the significant reduction of tissue cysts, compared to all the controls. Synergy of mIL-21 and mIL-15 can facilitate specific humoral as well as cellular immune responses elicited by DNA vaccine against acute and chronic T. gondii infection in mice.  相似文献   

2.
Brucellosis is a worldwide zoonotic disease. No Brucella vaccine is available for use in humans and existing animal vaccines have limitations. We have previously described the ribosomal protein L9 to have the vaccine potential. In this study, L9 based DNA vaccine (pVaxL9) was generated and evaluated in mouse model. Intramuscular immunisation of pVaxL9 was able to elicit the anti-L9 IgG antibody response of both IgG1 and IgG2a isotypes when compared with PBS and pVax immunised control animals. Heightened antibody response was observed in mice groups immunised with pVaxL9 priming and recombinant L9 boosting (PB) and where pDNA immunisation was carried out by in vivo electroporation (EP). The vaccine groups proliferated splenocytes and released Th1 type cytokines e.g. IFN-γ, TNF-α, IL-2. Further, flow cytometric analysis revealed that IFN-γ was released by both by CD4+ and CD8+ T cells particularly in PB and EP groups when compared with mice immunised with empty control vector. The L9 based pDNA vaccine was able to confer significant protection in mice against challenge with virulent B. abortus with PB and EP groups offering better protection. Taken together, it can be concluded that L9 based DNA vaccine is immunogenic and confer protection in mouse model.  相似文献   

3.
Toxoplasma gondii is an obligate intracellular protozoan parasite infecting humans, mammals and birds. Eukaryotic translation initiation factor (eIF4A) is a newly identified protein associated with tachyzoite virulence. To evaluate the protective efficacy of T. gondii eIF4A, a DNA vaccine (pVAX-eIF4A) encoding T. gondii eIF4A (Tg-eIF4A) gene was constructed. The expression ability of this recombinant DNA plasmid was examined in Marc145 cells by IFA. Then, Kunming mice were intramuscularly immunized with pVAX-eIF4A and followed by challenge infection with the highly virulent T. gondii RH strain. The results showed that vaccination with pVAX-eIF4A elicited specific humoral responses, with high IgG antibody titers and specific lymphocyte proliferative responses. The cellular immune response was associated with significant production of IFN-γ, IL-2 in Kunming mice, and a mixed IgG1/IgG2a response with predominance of IgG2a production, indicating that a Th1 type response was elicited after immunization with pVAX-eIF4A. In addition, the increase of the percentage of CD8+ T cells in lymphoid in mice suggested the activation of MHC class I restricted antigen presentation pathways. After lethal challenge, the mice vaccinated with the pVAX-eIF4A showed a significantly prolonged survival time (23.0 ± 5.5 days) compared with control mice which died within 7 days of challenge (P < 0.05). These results demonstrate that pVAX-eIF4A could elicit strong humoral, Th1-type cellular immune responses and increase survival time of immunized mice, suggesting that eIF4A is a promising vaccine candidate against acute T. gondii infection in mice.  相似文献   

4.
This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus – a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1–1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4+ and CD8+ cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle.  相似文献   

5.
The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n = 10) or subcutaneous (n = 10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n = 10) or B. abortus RB51 (n = 10) and a negative (PBS + Montanide Gel01; n = 10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS + Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51.  相似文献   

6.
Zhou H  Min J  Zhao Q  Gu Q  Cong H  Li Y  He S 《Vaccine》2012,30(10):1800-1806
Previous immunological studies from our laboratory have demonstrated the potential role of Toxoplasma gondii antigens SAG1 and GRA2 as vaccine candidates. To further evaluate the vaccine's effects, a series of recombinant DNA vaccines pVAX1-SAG1, pVAX1-GRA2 and pVAX1-SAG1-GRA2, termed pSAG1, pGRA2 and pSAG1-GRA2, respectively, were constructed. A plasmid pVAX1-S/PreS2, termed pSPreS2 encoding hepatitis B virus (HBV) surface antigen (HBsAg) S and PreS2 as a novel genetic adjuvant, was also constructed. The expression abilities of those DNA plasmids were examined in HFF cells by Western blotting. Then BALB/c mice were intramuscularly immunized with DNA plasmids and followed by challenging with the highly virulent T. gondii RH strain. The results demonstrated that the recombinant DNA vaccine pSAG1-GRA2 was capable of eliciting high levels of antibodies, a Th1 type of immune response with significant production of IFN-γ and low levels of IL-4 or IL-10 in BALB/c mice, and partial protection against the acute phase of toxoplasmosis as compared to pSAG1, pGRA2 and controls. In addition, the adjuvant pSPreS2 formulated with DNA vaccine induced a Th1 type of immune response and therefore might be a novel genetic adjuvant to DNA vaccine for further investigation.  相似文献   

7.
We have previously reported that Ts87 is an immunodominant antigen that induces protective immunity against Trichinella spiralis larval challenge. In this study, the Ts87 gene was cloned into an expression plasmid, pVAX1, and the recombinant Ts87 DNA was transformed into attenuated Salmonella typhimurium strain SL7207. Oral immunization of mice with Ts87 DNA delivered in S. typhimurium elicited a significant local mucosal IgA response and a systemic Th1/Th2 immune response. Cytokine profiling also showed a significant increase in the Th1 (IFN-γ) and Th2 (IL-5, 6, 10) responses in splenocytes of immunized mice upon stimulation with Ts87 antigen. An immunofluorescence assay performed with antisera revealed that the recombinant Ts87 protein was expressed in mesenteric lymph nodes of immunized mice. The mice immunized with Salmonella-delivered Ts87 DNA displayed a statistically significant 29.8% reduction in adult worm burden and a 34.2% reduction in muscle larvae following challenge with T. spiralis larvae, compared with mice immunized with empty Salmonella or a PBS control. Our results demonstrate that Ts87 DNA delivered by attenuated live S. typhimurium elicits a local IgA response and a balanced Th1/Th2 immune response and produces partial protection against T. spiralis infection in mice.  相似文献   

8.
Actinobacillus pleuropneumoniae is the major etiological agent of swine pleuropneumonia that causes critical economic losses in swine industry. The use of DNA vaccines encoding Apx exotoxin structural proteins is a promising novel approach for immunization against A. pleuropneumoniae. The goal of this study was to design DNA vaccines which encode the gene of ApxIA or ApxIIA, and to evaluate the elicited immune responses and protective efficacy in mice. Significant humoral immune responses were induced by these DNA vaccines through intramuscular immunization. The IgG subclass (IgG1 and IgG2a) analysis indicates that divalent DNA vaccine induces both Th1 and Th2 immune responses. The protective efficacy was evaluated by the survival against lethal challenge with A. pleuropneumoniae serotype 1. The groups of vaccination with pcDNA-apxIA or divalent (pcDNA-apxIA and pcDNA-apxIIA) DNA vaccine provided protective efficacy significantly higher than that of the negative control groups (P < 0.05). However, pcDNA-apxIIA vaccine conferred protection was limited and not significant than that of the negative control groups (P > 0.05). These results show that the divalent DNA vaccine could confer the best protection. This finding indicates that DNA immunization should facilitate the development of a ‘third-generation’ of vaccines and provide a novel strategy against A. pleuropneumoniae infection.  相似文献   

9.
DNA vaccination with plasmid has conventionally involved vectors designed for transient expression of antigens in injected tissues. Next generation plasmids are being developed for site-directed integration of transgenes into safe sites in host genomes and may provide an innovative approach for stable and sustained expression of antigens for vaccination. The goal of this study was to evaluate in vivo antigen expression and the generation of cell mediated immunity in mice injected with a non-integrating plasmid compared to a plasmid with integrating potential. Hyperactive piggyBac transposase-based integrating vectors (pmhyGENIE-3) contained a transgene encoding either eGFP (pmhyGENIE-3-eGFP) or luciferase (pmhyGENIE-3-GL3), and were compared to transposase-deficient plasmids with the same transgene and DNA backbone. Both non-integrating and integrating plasmids were equivalent at day 1 for protein expression at the site of injection. While protein expression from the non-integrating plasmid was lost by day 14, the pmhyGENIE-3 was found to exhibit sustained protein expression up to 28 days post-injection. Vaccination with pmhyGENIE-3-eGFP resulted in a robust CD8+ T cell response that was three-fold higher than that of non-integrating plasmid vaccinations. Additionally we observed in splenocyte restimulation experiments that only the vaccination with pmhyGENIE-3-eGFP was characterized by IFNγ producing CD8+ T cells. Overall, these findings suggest that plasmids designed to direct integration of transgenes into the host genome are a promising approach for designing DNA vaccines. Robust cell mediated CD8+ T cell responses generated using integrating plasmids may provide effective, sustained protection against intracellular pathogens or tumor antigens.  相似文献   

10.
Attenuated Salmonella enterica offers a vaccine delivery route that has the benefits of enhanced immunogenicity and oral delivery. The majority of immunization studies have been conducted to deliver recombinant proteins, expressed from a gene that is either chromosomally integrated or carried on a low- or medium-copy number plasmid. There are, however, an increasing number of reports demonstrating the delivery of DNA vaccines, but the high-copy number plasmids that are preferentially used for this application are unstable in Salmonella. Here, we use the Operator-Repressor Titration (ORT) plasmid maintenance system in Salmonella enterica serovar Typhimurium to deliver a high-copy number plasmid expressing the Mycobacterium tuberculosis gene mpt64 to mice. MPT64 expression was detected in phagocytes using immunofluorescence microscopy following Salmonella-mediated delivery of the DNA vaccine. The indicative CD8+ responses measured by antigen-specific IFN-γ were higher from the live bacterial vector than from injected plasmid DNA, and a reduction in the pulmonary bacterial load was seen following an aerogenic challenge. This illustrates the potential of live attenuated Salmonella as oral tuberculosis vaccine vectors.  相似文献   

11.
Comparative genomic analysis of a wild-type strain of the ovine pathogen Chlamydophila abortus and its nitrosoguanidine-induced, temperature-sensitive and virulence-attenuated live vaccine derivative identified point mutations unique to the mutant (Burall et al. [1]). Here, we evaluate the capacity of some of these mutations to either create or eliminate restriction sites using the wild-type strain C. abortus S26/3 as a reference. Three of eight genomic sites with confirmed point mutations (CAB153, CAB636 and CAB648) were retained for analysis as each resulted in the loss of a restriction site in the genome sequence of the vaccine strain. PCR-restriction fragment length polymorphism analysis using restriction enzymes chosen to specifically target the three genomic sites was then applied to a large number of C. abortus field isolates and reference strains. Our results indicate that the three mutations are uniquely present in the vaccine strain, and as such provide easy-to-use markers for the differential identification of the vaccine strain and wild-type isolates.  相似文献   

12.
DNA vaccines are a promising new generation of vaccines that can elicit an immune response using DNA encoding the antigen of interest. The efficacy of these vaccines, however, still needs to be improved. In this study, we investigated the effect of autophagy on increasing the efficacy of a candidate DNA vaccine against Mycobacterium tuberculosis (MTB), a causative agent of tuberculosis. Low molecular weight chitosan was used to encapsulate plasmid DNA containing a gene encoding MTB Antigen 85B (Ag85B), a secreted fibronectin-binding protein. To induce autophagy upon DNA vaccination, the kinase defective mTOR (mTOR-KD) was transfected into cells, and autophagy was detected based on the presence of LC3II. To investigate whether autophagy enhances an immune response upon DNA vaccination, we coencapsualted the Ag85B-containing plasmid with a plasmid encoding mTOR-KD. Plasmids encapsulated by chitosan particles were used for primary subcutaneous immunization and for intranasal boost in mice. After the boost vaccination, sera from the mice were measured for humoral immune response. The DNA vaccine with the autophagy-inducing construct elicited significantly higher Ag85B-specific antibody levels than the control group treated with the Ag85B plasmid alone or with the Ag85B plasmid plus the wild type mTOR construct. Upon in vitro stimulation of splenocytes from mice immunized with recombinant Ag85B, the highest levels of secreted IFN-γ and IL-2 were detected in mice immunized with the autophagy-inducing plasmid, while no differences in IL-4 levels were detected between the groups, suggesting that the DNA vaccine regimen with autophagy induction induced primarily a Th1 immune response. Furthermore, the enhanced proliferation of CD4+ T cells from mice receiving the autophagy-inducing vaccine was observed in vitro. Based on the evidence presented, we conclude that incorporating an autophagy-inducing element into a DNA vaccine may help to improve immune response.  相似文献   

13.
14.
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortusΔwbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-α when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. ΔwbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence.  相似文献   

15.
Disseminated coccidioidomycosis is a life-threatening infection. In these studies, we examined protection against systemic murine coccidioidomycosis by vaccination with heat-killed Saccharomyces cerevisiae (HKY). CD-1 mice received HKY subcutaneously or by oral gavage with or without adjuvants once weekly beginning 3 or 4 weeks prior to infection; oral live Saccharomyces was also studied. All HKY sc regimens were equivalent, prolonging survival (P ≤ 0.005) and reducing fungal burden versus controls. Oral live Saccharomyces, but not HKY, prolonged survival (P = 0.03), but did not reduce fungal burden. Survival of mice given HKY was equivalent to vaccination with formalin-killed spherules, but inferior in reduction of fungal burden. HKY was superior to a successful recombinant vaccine, PRA plus adjuvant. This novel heterologous protection afforded by HKY vaccination offers a new approach to a vaccine against coccidioidomycosis.  相似文献   

16.
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.  相似文献   

17.
The immunogenicity of a DNA vaccine containing an open reading frame (ORF) of genomic island 3 (GI-3), specific for Brucella abortus and Brucella melitensis, has been examined. Intramuscular injection of plasmid DNA carrying the open reading frame with homology to an ABC-type transporter (pV278a) into BALB/c mice elicited both humoral and cellular immune responses. Mice injected with pV278a had a dominant immunoglobulin G2a (IgG2a) response. This DNA vaccine elicited a T-cell-proliferative response and induced significant levels of interferon gamma (INF-γ) upon restimulation with recombinant 278a protein. Upon stimulation with an appropriate recombinant protein or crude Brucella protein, the vaccine did not induce IL-4, suggesting a typical T-helper (TH1) response. Furthermore, the vaccine induced protection in BALB/c mice when challenged with the virulent strain Brucella abortus 2308. Taken together, these data suggest that DNA vaccination offers an improved delivery of the homologous of an ABC-type transporter antigen, and provides the first evidence of a protective effect of this antigen in the construction of vaccines against B. abortus.  相似文献   

18.
Wang C  Luo J  Amer S  Guo Y  Hu Y  Lu Y  Wang H  Duan M  He H 《Vaccine》2010,29(2):323-9245
The aim of this work was to evaluate efficiency as well as the type of immune response, Th1 or Th2, induced by multivalent DNA vaccinations in C57BL/6 interleukin-12p40 (IL-12p40) knockout (KO) mice. A recombinant pVAX-15-23 plasmid DNA was constructed by inserting surface glycoprotein (cp15- and p23)-encoding DNA into the pVAX1 expression vector. Various parameters including antibody and cytokine responses, proliferation assay and oocyst shedding were used to evaluate the type of immune response and the level of protection against challenge infection. Obtained results indicated that plasmid pVAX-15-23 induced strong protective immune response against C. parvum characterized by dominance of IgG2a, high level of INF-γ and lower level of the oocysts shedding after challenge infection. Moreover, co-immunization with the multivalent DNA and pMEM12R plasmid encoding IL-12 can further enhance these responses compared with the multivalent DNA alone. The obtained results suggest that multivalent pVAX-15-23 DNA vaccine may be a candidate as a generic approach to C. parvum immunization applicable to clinical practice.  相似文献   

19.
The present study was conducted mainly to evaluate the contribution of the cellular and the humoral responses in protection conferred by the MIC3 DNA vaccine (pMIC3i) that was proved as a potent vaccine against toxoplasmosis. We performed the adoptive transfer of CD4+ and CD8+ T lymphocytes from pMIC3i immunized mice to naive ones and the role of humoral immunity was evaluated by in vitro invasion assays. We also constructed plasmids encoding the EGF-like domains and the Lectin-like domain of MIC3, to define which domains of MIC3 are involved in the protection. Furthermore, the adjuvant effect of the GM-CSF-expressing vector (granulocyte-macrophage colony-stimulating factor) required the precise temporal and spatial codelivery of GM-CSF with antigen, thus, we constructed a bicistronic plasmid expressing MIC3 and GM-CSF. In conclusion, the protection induced by pMIC3i was mainly mediated by CD4+ and CD8+ T lymphocytes and both EGF and Lectin domains of MIC3 conferred protection. Furthermore, the codelivery of GM-CSF by a bicistronic plasmid appeared to be a most effective way for enhancing the adjuvant properties of GM-CSF.  相似文献   

20.
Epitope vaccine is a promising option for therapeutic vaccination against Helicobacter pylori (H. pylori) infection. In this study, we constructed a multi-epitope vaccine with five epitopes and mucosal adjuvant E. coli heat-labile enterotoxin B subunit (LTB) named HUepi-LTB and evaluated its therapeutic effect against H. pylori infection in BALB/c mice model. HUepi-LTB containing three Th epitopes from UreB and two B cell epitopes from UreB and HpaA was constructed and expressed in E. coli. Oral therapeutic immunization with HUepi-LTB significantly decreased H. pylori colonization compared with oral immunization with PBS, and the protection was correlated with antigen-specific CD4+ T cells and IgG and mucosal IgA antibody responses. This multi-epitope vaccine may be a promising vaccine candidate that may help to control H. pylori infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号