首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Coli surface antigen 6 (CS6) is one of the most prevalent non-fimbrial colonization factors (CFs) of enterotoxigenic Escherichia coli (ETEC) bacteria, which are the most common cause of diarrhea among infants and children in developing countries. Since immune protection against ETEC is mainly mediated by locally produced IgA antibodies in the gut, much effort is focused on the development of an oral CF-based vaccine. Previous work has described the preparation of candidate E. coli vaccine strains expressing immunogenic amounts of fimbrial CF antigens such as CFA/I and CS2, which are retained after formalin treatment. However, attempts to generate E. coli expressing immunogenic amounts of CS6 and to preserve the immunological activity of the CS6 protein in a killed whole-cell vaccine have failed until now. Here we describe the construction of a recombinant non-toxigenic E. coli strain, with thyA as a non-antibiotic-based selection, which expresses large amounts of CS6 antigen on the bacterial surface, and show that phenol inactivation of the bacteria does not destroy the CS6 antigen properties. Oral immunization of mice with such phenol-killed CS6 over-expressing E. coli bacteria induced strong fecal and intestinal IgA and serum IgG + IgM antibody responses to CS6 that exceeded the responses induced by an ETEC reference strain naturally expressing CS6 and previously used as a vaccine strain. Our data indicate that the described phenol-inactivated non-toxigenic and CS6 over-expressing E. coli strain may be a useful component in an oral ETEC vaccine.  相似文献   

2.
ETEC strains expressing K88 (F4) or F18 fimbriae and enterotoxins are the predominant cause of porcine post-weaning diarrhea (PWD). PWD continues causing significant economic losses to swine producers worldwide. Vaccines effectively protecting against PWD are needed. Our recent study revealed that a tripartite adhesin–toxin monomer (FaeG-FedF-LTA2–B) elicited protective antibodies. In this study, we constructed a new adhesin–toxoid fusion, expressed it as a 1A:5B holotoxin-structured antigen (1FaeG-FedF-LT192A2:5LTB) in an avirulent Escherichia coli strain, and evaluated its vaccine potential in pig challenge studies. Piglets orally inoculated with this live strain showed no adverse effects but developed systemic and mucosal antibodies that neutralized cholera toxin and inhibited adherence of K88 and F18 fimbriae in vitro. Moreover, the immunized piglets, when were challenged with ETEC strain 3030-2 (K88ac/LT/STb), had significant fewer bacteria colonized at small intestines and did not develop diarrhea; whereas the control piglets developed severe diarrhea and died. These results indicated the 1FaeG-FedF-LT192A2:5LTB fusion antigen induced protective antiadhesin and antitoxin immunity in pigs, and suggested a live attenuated vaccine can be potentially developed against porcine ETEC diarrhea. Additionally, presenting antigens in a holotoxin structure to target host local mucosal immunity can be used in vaccine development against other enteric diseases.  相似文献   

3.
A first-generation oral inactivated whole-cell enterotoxigenic Escherichia coli (ETEC) vaccine, comprising formalin-killed ETEC bacteria expressing different colonization factor (CF) antigens combined with cholera toxin B subunit (CTB), when tested in phase III studies did not significantly reduce overall (generally mild) ETEC diarrhea in travelers or children although it reduced more severe ETEC diarrhea in travelers by almost 80%. We have now developed a novel more immunogenic ETEC vaccine based on recombinant non-toxigenic E. coli strains engineered to express increased amounts of CF antigens, including CS6 as well as an ETEC-based B subunit protein (LCTBA), and the optional combination with a nontoxic double-mutant heat-labile toxin (LT) molecule (dmLT) as an adjuvant.  相似文献   

4.
The mechanical therapy with multiple doses of antibiotics is one of modalities for treatment of periodontal diseases. However, treatments using multiple doses of antibiotics carry risks of generating resistant strains and misbalancing the resident body flora. We present an approach via immunization targeting an outer membrane protein FomA of Fusobacterium nucleatum (F. nucleatum), a central bridging organism in the architecture of oral biofilms. Neutralization of FomA considerably abrogated the enhancement of bacterial co-aggregation, biofilms and production of volatile sulfur compounds mediated by an inter-species interaction of F. nucleatum with Porphyromonas gingivalis (P. gingivalis). Vaccination targeting FomA also conferred a protective effect against co-infection-induced gum inflammation. Here, we advance a novel infectious mechanism by which F. nucleatum co-opts P. gingivalis to exacerbate gum infections. FomA is highlighted as a potential target for development of new therapeutics against periodontal infection and halitosis in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号