首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.  相似文献   

2.
Simon R  Tennant SM  Galen JE  Levine MM 《Vaccine》2011,29(32):5094-5106
Non-typhoidal Salmonella enterica (NTS) serovars Typhimurium and Enteritidis are important causes of bacterial gastroenteritis in the USA and worldwide. In sub-Saharan Africa these two serovars are emerging as agents associated with lethal invasive disease (e.g., bacteremia, meningitis). The development of NTS vaccines, based on mucosally administered live attenuated strains and parenteral non-living antigens, could diminish the NTS disease burden globally. Mouse models of S. Typhimurium and S. Enteritidis invasive disease can accelerate the development of NTS vaccines. Live attenuated NTS vaccines elicit both cellular and humoral immunity in mice and their efficacy is well established. In contrast, non-living vaccines that primarily elicit humoral immunity have demonstrated variable efficacy. An analysis of the reported studies with non-living vaccines against S. Typhimurium and S. Enteritidis reveals that efficacy is influenced by two important independent variables: (1) the innate susceptibility to NTS infection that differs dramatically between commonly used mouse strains and (2) the virulence of the NTS strain used for challenge. Protection by non-living vaccines has generally been seen only in host-pathogen interactions where a sub-lethal infection results, such as challenging resistant mice with either highly virulent or weakly virulent strains or susceptible mice with weakly virulent strains. The immunologic basis of this discrepancy and the implications for human NTS vaccine development are reviewed herein.  相似文献   

3.
Salmonella enterica serovar Gallinarum is the causative agent of fowl typhoid, an important systemic disease of poultry with economic consequences in developing nations. A live attenuated orally applied S. Gallinarum vaccine could provide a low cost method for controlling this disease. We constructed S. Gallinarum strains in which the expression of the crp, rfc and rfaH genes, important for virulence of Salmonella Typhimurium in mice, were under the control of an arabinose-regulated promoter. We evaluated the virulence of these strains compared to wild-type S. Gallinarum and to mutants carrying deletions in these genes. We found that rfc mutants were fully virulent, indicating that, unlike the S. Typhimurium mouse model, the rfc gene is dispensable in S. Gallinarum for virulence in birds. In the case of rfaH, the deletion mutant was attenuated and protective, while the strain with arabinose-regulated rfaH expression retained full virulence. The strain exhibiting arabinose-regulated crp expression was attenuated. Its virulence was not affected by the inclusion of 0.2% arabinose in the drinking water. Birds immunized with this strain were protected against a lethal S. Gallinarum challenge and against colonization with the human pathogen Salmonella Enteritidis. This work shows that an arabinose-regulated crp strain provides a basis for further development of a fowl typhoid vaccine.  相似文献   

4.
This study describes the potential use of attenuated Salmonella enterica serovar Typhimurium Strains (S. typhimurium) to express and deliver a L7/L12 and BLS fusion antigen of Brucella as a vaccination strategy to prevent Brucella infection in mice. S. typhimurium X4072 that contained a pTrc99A-BLS-L7/L12 plasmid, designated X4072bl, can deliver a L7/L12 and BLS fusion antigen expressed by the bacterium itself, while S. typhimurium X4550 that contained an asd-pVAX1-BLS-L7/L12 (asd-pBL) plasmid, designated X4550bl, can deliver the antigen to be expressed in target eukaryotic cells. When orally administered to BALB/c mice, both attenuated carrier strains were able to elicit mucosal and systemic immunity, which induced protection against B. abortus 544 infection in mice. The immunogenicity and protective efficacy of X4072bl and X4550bl were compared with a recombinant BLS-L7/L12 fusion protein vaccine (rBL) and a pVAX1-BLS-L7/L12 DNA vaccine (pBL) in this study. When rBL and pBL were intramuscularly injected into mice, both vaccines could also elicit comparable humoral and cellular immune responses, but not mucosal immunity, which therefore induced lower protection. Taken together, Salmonella-based subunit vaccines are a promising vaccine strategy in the prevention of Brucella infection.  相似文献   

5.
We have recently demonstrated that an attenuated strain of Salmonella enterica serovar Typhimurium unable to synthesize the zinc transporter ZnuABC (S. Typhimurium ΔznuABC), is able to protect mice against systemic and enteric salmonellosis and is safe in pigs. Here, we have tested the protective effects of S. Typhimurium ΔznuABC in pigs. Resistance to challenge with the fully virulent strain S. Typhimurium ATCC 14028 was assessed in animals vaccinated with S. Typhimurium ΔznuABC (two dosages tested), in controls vaccinated with a formalin-inactivated virulent strain and in unvaccinated controls. Clinical signs of salmonellosis, faecal shedding and bacterial colonization of organs were used to assess vaccine-induced protection. After the challenge, pigs vaccinated with the attenuated S. Typhimurium ΔznuABC strain did not display clinical signs of salmonellosis (fever or diarrhoea). The vaccine also reduced intestinal tract colonization and faecal shedding of the fully virulent Salmonella strain, as compared to control groups. S. Typhimurium ΔznuABC represents a promising candidate vaccine against salmonellosis in pigs.  相似文献   

6.
7.
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.  相似文献   

8.
During 1993–2011, cefotaxime resistance among Salmonella enterica isolates from patients in Finland increased substantially. Most of these infections originated in Thailand; many were qnr positive and belonged to S. enterica serovar Typhimurium and S. enterica monophasic serovar 4,[5],12:i:-. Although cefotaxime-resistant salmonellae mainly originate in discrete geographic areas, they represent a global threat.  相似文献   

9.
Methner U  Barrow PA  Berndt A  Rychlik I 《Vaccine》2011,29(17):3248-3253
Salmonella Enteritidis mutants with deletions in phoP, fliC or phoP fliC were tested for their virulence and their ability to induce parameters of the innate and adaptive immunity in addition to their potential for serological differentiation between vaccinated, non-vaccinated and infected chickens. The double phoP fliC deletion mutant was sufficiently attenuated but not diminished in its capability to inhibit the caecal colonisation and systemic invasion of homologous Salmonella Enteritidis shortly after administration of the vaccine strain to very young chicks. Immunisation with the attenuated ΔphoP fliC mutant resulted in protective effects which were only slightly and insignificantly lower than after “immunisation” with a Salmonella wild-type strain, indicating the capability to induce an intense adaptive immune response and protection against Salmonella exposure in older chickens. The deletion in fliC enabled the effective the differentiation between immunised and infected chickens using a commercially available ELISA kit. The double phoP fliC deletion mutant of Salmonella Enteritidis might be a potential and promising live Salmonella vaccine candidate with novel characteristics for use in poultry.  相似文献   

10.
We investigated the use of a live, attenuated Salmonella enterica serovar Typhi vaccine strain as an antitumor immunotherapy. Mice bearing a subcutaneous tumor (LM3 mammary adenocarcinoma) were immunized on three occasions with S. Typhi strain CVD 915 by injection into the tumor, the peritumoral tissue and the draining lymph node areas; this procedure was termed Salmonella multiple treatment (Salmonella MT). Tumor-bearing mice subjected to the Salmonella MT exhibited reduced tumor growth, prolonged survival and reduced incidence of lung metastases, compared to untreated mice. We examined the mechanisms mediating this effect and found that Salmonella MT promoted an antitumor Th1-type response characterized by increased frequencies of IFN-γ-secreting CD4+ T and CD8+ T cells with reduction of regulatory T cells in tumor draining lymph nodes. The main cells infiltrating bacteria-treated tumors were activated neutrophils, which can exert an antitumor effect through the secretion of TNF-α. These results demonstrate for the first time the efficacy of an attenuated S. Typhi vaccine strain as a cancer immunotherapeutic agent. By potentiating the host antitumor immune response, this approach could be a powerful adjunct tool for cancer therapy.  相似文献   

11.
Salmonella enterica is an important pathogen that causes a variety of infectious diseases in animals and humans. Live attenuated vaccines generally confer better protection than killed or subunit vaccines; however, the former are limited by their inherent toxicity. We evaluated the potential of a novel candidate Salmonella vaccine strain that lacks the ruvB gene. The ruvB gene encodes a Holliday junction helicase that is required to resolve junctions that arise during the repair of non-arresting lesions after DNA replication. The deletion of this gene in Salmonella significantly impaired cell survival and proliferation within epithelial cells and macrophages. The defective virulence in ruvB mutant may be partially due to decreased expression of ssaG, a Salmonella pathogenicity island-2 gene, and increased sensitivity to hydrogen peroxide in the lack of ruvB gene. The virulence of the ruvB-deleted mutant was also greatly attenuated in BALB/c mice. The ruvB mutant conferred strong and durable immune-based protection against a challenge with a lethal dose of a virulent strain of Salmonella Typhimurium. Moreover, protective immunity was induced by a single dose of the vaccine, and the efficacy of protection was maintained for at least 6 months. These results suggest the use of the S. Typhimurium ruvB mutant as a novel vaccine.  相似文献   

12.
The objective of this study was to characterize the immune response induced by a live attenuated Salmonella Enteritidis (SE; ade(-)/his(-)) vaccine using an intraperitoneal immunization/challenge model in susceptible wild-type and cytokine-deficient BALB/c mice. In wild-type mice, inoculation of the SE live vaccine induced a protective immune response characterized by both cellular (production of interleukin(IL)-12 and interferon(IFN)-gamma, granuloma formation in liver and spleen, DTH response) and humoral effector mechanisms (high antigen-specific IgG2a titers). IL-12- and IL-4-deficient mice were immunized to study the individual roles of Th1 and Th2 cells, respectively. Protective immunity in wild-type mice required inoculation of >5 x 10(3)CFU of the attenuated live SE vaccine strain used. While IL-4-deficient mice developed a protective immune response similar to that found in wild-type mice, it was not possible to induce protective immunity in the highly susceptible IL-12-deficient mice due to severe disease symptoms and death following inoculation of the SE vaccine strain (doses >or=5 x 10(2)CFU were lethal for IL-12-deficient mice). Interestingly, persistence of the vaccine strain was observed in IL-4-deficient mice, indicating a role of IL-4 for clearance which, however, did not interfere with protective immunity. Together, the data indicate that the SE live vaccine activates a cellular and a humoral immune response, which are both regulated by Th1 cells via the secretion of IFN-gamma, whereas Th2 cells did not contribute essentially to the SE live-vaccine-induced immunity.  相似文献   

13.
Eight Salmonella enterica serovar Paratyphi A strains were screened as candidates to create a live attenuated paratyphoid vaccine. Based on biochemical and phenotypic criteria, four strains, RKS2900, MGN9772, MGN9773 and MGN9779, were selected as progenitors for the construction of ΔphoPQ mutant derivatives. All strains were evaluated in vitro for auxotrophic phenotypes and sensitivity to deoxycholate and polymyxin B. All ΔphoPQ mutants were more sensitive to deoxycholate and polymyxin B than their wild-type progenitors, however MGN10028, MGN10044 and MGN10048, required exogenous purine for optimal growth. Purine requiring strains had acquired point mutations in purB during strain construction. All four mutants were evaluated for reactogenicity and immunogenicity in an oral rabbit model. Three strains were reactogenic in a dose-dependent manner, while one strain, MGN10028, was well-tolerated at all doses administered. All ΔphoPQ strains were immunogenic following a single oral dose. The in vitro profile coupled with the favorable reactogenicity and immunogenicity profiles render MGN10028 a suitable live attenuated Paratyphi A vaccine candidate.  相似文献   

14.
Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s.  相似文献   

15.
《Vaccine》2017,35(3):419-426
Invasive nontyphoidal Salmonella disease (iNTS) is a leading cause of death and morbidity in Africa. The most common pathogens are Salmonella enterica serovars Typhimurium and Enteritidis. The O-antigen portion of their lipopolysaccharide is a target of protective immunity and vaccines targeting O-antigen are currently in development. Here we investigate the use of Generalized Modules for Membrane Antigens (GMMA) as delivery system for S. Typhimurium and S. Enteritidis O-antigen. Gram-negative bacteria naturally shed outer membrane in a blebbing process. By deletion of the tolR gene, the level of shedding was greatly enhanced. Further genetic modifications were introduced into the GMMA-producing strains in order to reduce reactogenicity, by detoxifying the lipid A moiety of lipopolysaccharide. We found that genetic mutations can impact on expression of O-antigen chains. All S. Enteritidis GMMA characterized had an O-antigen to protein w/w ratio higher than 0.6, while the ratio was 0.7 for S. Typhimurium ΔtolR GMMA, but decreased to less than 0.1 when further mutations for lipid A detoxification were introduced. Changes were also observed in O-antigen chain length and level and/or position of O-acetylation. When tested in mice, the GMMA induced high levels of anti-O-antigen-specific IgG functional antibodies, despite variation in density and O-antigen structural modifications.In conclusion, simplicity of manufacturing process and low costs of production, coupled with encouraging immunogenicity data, make GMMA an attractive strategy to further investigate for the development of a vaccine against iNTS.  相似文献   

16.
Rough mutants of Brucella abortus were generated by disruption of wbkC gene which encodes the formyltransferase enzyme involved in LPS biosynthesis. In bone marrow-derived macrophages the B. abortusΔwbkC mutants were attenuated, could not reach a replicative niche and induced higher levels of IL-12 and TNF-α when compared to parental smooth strains. Additionally, mutants exhibited attenuation in vivo in C57BL/6 and interferon regulatory factor-1 knockout mice. ΔwbkC mutant strains induced lower protective immunity in C56BL/6 than smooth vaccine S19 but similar to rough vaccine RB51. Finally, we demonstrated that Brucella wbkC is critical for LPS biosynthesis and full bacterial virulence.  相似文献   

17.
Innovative vaccines against typhoid and other Salmonella diseases that are safe, effective, and inexpensive are urgently needed. In order to address this need, buoyant, self-adjuvating gas vesicle nanoparticles (GVNPs) from the halophilic archaeon Halobacterium sp. NRC-1 were bioengineered to display the highly conserved Salmonella enterica antigen SopB, a secreted inosine phosphate effector protein injected by pathogenic bacteria during infection into the host cell. Two highly conserved sopB gene segments near the 3’-coding region, named sopB4 and B5, were each fused to the gvpC gene, and resulting GVNPs were purified by centrifugally accelerated flotation. Display of SopB4 and B5 antigenic epitopes on GVNPs was established by Western blotting analysis using antisera raised against short synthetic peptides of SopB. Immunostimulatory activities of the SopB4 and B5 nanoparticles were tested by intraperitoneal administration of recombinant GVNPs to BALB/c mice which had been immunized with S. enterica serovar Typhimurium 14028 ΔpmrG-HM-D (DV-STM-07), a live attenuated vaccine strain. Proinflammatory cytokines IFN-γ, IL-2, and IL-9 were significantly induced in mice boosted with SopB5-GVNPs, consistent with a robust Th1 response. After challenge with virulent S. enterica serovar Typhimurium 14028, bacterial burden was found to be diminished in spleen of mice boosted with SopB4-GVNPs and absent or significantly diminished in liver, mesenteric lymph node, and spleen of mice boosted with SopB5-GVNPs, indicating that the C-terminal portions of SopB displayed on GVNPs elicit a protective response to Salmonella infection in mice. SopB antigen-GVNPs were found to be stable at elevated temperatures for extended periods without refrigeration in Halobacterium cells. The results all together show that bioengineered GVNPs are likely to represent a valuable platform for the development of improved vaccines against Salmonella diseases.  相似文献   

18.
Herein we report studies with a novel combination vaccine that, when administered to mice, conferred protection against highly virulent strains of Francisella tularensis by stimulating both arms of the immune system. Our earlier studies with Ft.LVS::wbtA, an O-polysaccharide (OPS)-negative mutant derived from the available live vaccine strain of F. tularensis (Ft.LVS), elucidated the role of antibodies to the OPS – a key virulence determinant – in protection against virulent type A organisms. However, when expressed on the organism, the OPS enhances virulence. In contrast, in purified form, the OPS is completely benign. We hypothesized that a novel combination vaccine containing both a component that induces humoral immunity and a component that induces cellular immunity to this intracellular microbe would have an enhanced protective capacity over either component alone and would be much safer than the LVS vaccine. Thus we developed a combination vaccine containing both OPS (supplied in an OPS–tetanus toxoid glycoconjugate) to induce a humoral antibody response and strain Ft.LVS::wbtA (which is markedly attenuated by its lack of OPS) to induce a cell-mediated protective response. This vaccine protected mice against otherwise-lethal intranasal and intradermal challenge with wild-type F. tularensis strains Schu S4 (type A) and FSC 108 (type B). These results represent a significant advance in our understanding of immunity to F. tularensis and provide important insight into the development of a safer vaccine effective against infections caused by clinical type A and B strains of F. tularensis.  相似文献   

19.
Salmonella enterica subsp. enterica serovar Enteritidis (SE) infection in chickens shows a mild pathogenicity except for young ages, compared with other animals, and laying hens sometimes produce SE-contaminated eggs leading to public health concerns. To reduce the problem, SE bacterin in poultry farms has been applied. We previously demonstrated that a subunit antigen, g.m. part polypeptide in SE-Fli C (SEp 9), could be a candidate subunit antigen of SE vaccine which may show less side effects in chickens. In this study, we used SEp 9 along with an adjuvant to inoculate chickens, then the chickens were orally challenged with SE, and suppression of the SE count in the cecum was investigated. Chickens inoculated with a commercial SE vaccine were prepared as positive controls (vaccine group), and those with physiological saline (control group) for comparison of the bacterial count after challenge. Employing two types of antibody-detection ELISA coated with either de-flagellated SE or SEp 9, specific antibody levels in blood and the intestine were determined.  相似文献   

20.
《Vaccine》2020,38(45):7094-7099
Salmonella enterica serovar Enteritidis remains the most prevalent serotype causing human salmonellosis through the consumption of contaminated foods, especially poultry products. The development of a subunit vaccine against S. Enteritidis can not only protect chickens against Salmonella infection in the poultry industry but also cut the transmission sources. In this study, both the expressed recombinant outer membrane protein F (rOmpF) and extracted outer membrane vesicles (OMVs) were developed as subunit vaccines against S. Enteritidis challenge in chickens. Immunization with the subunit vaccine could induce not only antibody production but also strong cell-mediated immune response. Both rOmpF plus QuilA adjuvant and OMVs alone had highly protective efficacy against S. Enteritidis challenge and rapidly decreased the colonization of bacteria in chicken. These findings revealed the potential application of rOmpF and OMVs as subunit vaccines in the poultry industry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号