共查询到20条相似文献,搜索用时 15 毫秒
1.
C F Gillespie E M Van Der Beek E M Mintz N C Mickley A M Jasnow K L Huhman H E Albers 《The Journal of comparative neurology》1999,411(4):683-692
Analysis of the photic induction of c-Fos immunoreactivity (-ir) within the suprachiasmatic nucleus (SCN) has proven to be a powerful tool with which to study the neurochemical mechanisms involved in phase shifting the circadian clock. Some systemically administered GABAergic drugs inhibit light-induced phase shifts and c-Fos-ir, whereas others inhibit light-induced phase shifts without affecting c-Fos-ir. More recently, we have found that injection of GABAergic drugs directly into the SCN region can have dramatically different effects on light-induced phase shifts than following their systemic administration. The present study investigated the effects of GABA(A) and GABA(B) agonists and antagonists injected into the SCN region on c-Fos-ir within the SCN. Microinjection of either a GABA(A) agonist, muscimol, or a GABA(B) agonist, baclofen, into the SCN region significantly reduced light-induced c-Fos-ir within the SCN when administered before light exposure at circadian time (CT) 13.5 or CT 19. In contrast, microinjection of a GABA(A) antagonist, bicuculline, but not a GABA(B) antagonist, CGP-35348, into the SCN region increased light-induced c-Fos-ir within the SCN when administered before light exposure at CT 13.5 or CT 19. These data indicate that GABAergic agonists and antagonists injected directly into the SCN region alter light-induced Fos-ir in a manner similar to their effects on light-induced phase shifts. Comparison of these data with previous studies examining the effects of systemically administered GABAergic drugs suggests that GABA(B)-active drugs have similar effects whether given systemically or within the SCN, but that GABA(A)-active drugs have more complex effects on c-fos induction and have multiple sites of action. 相似文献
2.
Circadian rhythms of physiology and behaviour generated by the brain's biological clock located in the suprachiasmatic nucleus are entrained by light via the retinohypothalamic tract. Two neurotransmitters, glutamate and pituitary adenylate cyclase-activating polypeptide (PACAP), found in this monosynaptic pathway mediate the effects of light to the clock. It is well known that not only light entrains the clock. Nonphotic cues mediated by neurotransmitters such as serotonin reaching the suprachiasmatic nucleus from the midbrain raphe nucleus modulate light-induced phase shifts at night. Two clock genes, per1 and per2, have been attributed a role in light-induced phase shift. In the present study, using an in vitro brain slice model and quantitative in situ hybridization for per1 and per2, we have shown that serotonin induces per1 gene expression at late subjective night but not at early night. Furthermore, serotonin application before glutamate or PACAP blocked glutamate-induced per1 expression at early night and per2 gene expression at late night. In contrast, serotonin did not influence PACAP-induced per gene expression at late night. Triple antigen immunohistochemistry and confocal microscopy supported both a pre- and post-synaptic interaction of retinohypothalamic tract (PACAP-immunoreactive) and serotonin projections on vasoactive intestinal peptide- and gastrin-releasing peptide-containing cell bodies in the ventro-lateral suprachiasmatic nucleus. Our findings suggest that the per genes could be the molecular target for the modulatory effects of serotonin on light signalling to the clock. 相似文献
3.
Kristýna Matj Zdena Bendová Rehab El-Hennamy Martin Sládek Serhiy Sosniyenko Alena Sumová 《The European journal of neuroscience》2009,29(3):490-501
The molecular mechanism underlying circadian rhythmicity within the suprachiasmatic nuclei (SCN) of the hypothalamus has two light-sensitive components, namely the clock genes Per1 and Per2 . Besides, light induces the immediate-early gene c-fos . In adult rats, expression of all three genes is induced by light administered during the subjective night but not subjective day. The aim of the present study was to ascertain when and where within the SCN the photic sensitivity of Per1 , Per2 and c-fos develops during early postnatal ontogenesis. The specific aim was to find out when the circadian clock starts to gate photic sensitivity. The effect of a light pulse administered during either the subjective day or the first or second part of the subjective night on gene expression within the rat SCN was determined at postnatal days (P) 1, 3, 5 and 10. Per1 , Per2 and c-fos mRNA levels were assessed 30 min, 1 and 2 h after the start of each light pulse by in situ hybridization histochemistry. Expression of Per1 and c-fos was light responsive from P1, and the responses began to be gated by the circadian clock at P3 and P10, respectively. Expression of Per2 was only slightly light responsive at P3, and the response was not fully gated until P5. These data demonstrate that the light sensitivity of the circadian clock develops gradually during postnatal ontogenesis before the circadian clock starts to control the response. The photoinduction of the clock gene Per2 develops later than that of Per1 . 相似文献
4.
In mammals, behavioural and physiological rhythms as well as clock gene expression in the central suprachiasmatic clock (SCN) are phase-shifted by a timed calorie restriction (T-CR; animals receiving at midday 66% of their daily food intake). The molecular mechanism of SCN depends on feedback loops involving clock genes and their protein products. To understand how T-CR mediates its synchronizing effects, we examined the rhythmic expression of three clock proteins, PERIOD (PER) 1, 2 and CLOCK, and one clock-controlled protein (i.e. vasopressin; AVP) in the SCN of mice either fed ad libitum (AL) or with T-CR. Moreover, we evaluated expression of these proteins in the SCN of AL and T-CR mice following a 1-h light pulse. The results indicate that, while PER1 and AVP rhythms were phase-advanced in T-CR mice, the PER2 rhythm showed an increased amplitude. CLOCK was expressed constitutively in AL mice while in T-CR it was significantly reduced, especially after feeding time. A light pulse produced a delayed increase in PER1 and a larger increase in PER2 expression in the SCN of T-CR mice than in AL animals. In addition, light exposure triggered an increase in AVP-ir cells in both AL and T-CR mice, and also of CLOCK expression but in T-CR mice only. The circadian changes in clock and clock-controlled proteins and their acute responses to light in the SCN of T-CR mice demonstrate that metabolic cues induced by a calorie restriction modulate the translational regulation of the SCN clock. 相似文献
5.
The concentration of vasoactive intestinal peptide (VIP)-, peptide histidine isoleucine (PHI)-, neurotensin (NT)- and substance P (SP)-like immunoreactivity (LI) within the suprachiasmatic nucleus (SCN) were determined by radioimmunoassay in rats housed in LD 14:10 h, constant light or constant dark. No day-night differences were observed in the concentration of VIP-, PHI-, NT- or SP-LI within the SCN. Exposure to constant light significantly depressed the SCN concentrations of VIP- and PHI-LI, but had no significant effects on SCN concentrations of NT- or SP-LI, or VIP- or PHI-LI concentrations within the cortex. These data represent the first evidence that VIP/PHI-containing neurons may be involved in mediating photic information within the SCN. 相似文献
6.
The influence of amino acids on neuronal activity was studied microiontophoretically in the cultured Suprachiasmatic nucleus (SCN). Three types of SCN neurons could be characterized: silent (glutamate responsive), irregular, and regular neurons. Glutamate excited about 70% of the regular and 60% of the irregular cells. GABA inhibited both the spontaneous and the glutamate-evoked activity of more than 90% of all three types of SCN neurons. MK-801 partially blocked glutamate responses. N-acetyl-aspartyl-glutamate (NAAG), a new neurotransmitter found in the retinohypothalamic fibers, directly increased firing rate and potentiated glutamate responses in the SCN neurons that were studied. These results indicate the potential significance of the amino acids in neuronal transmission within the biological clock. 相似文献
7.
Miriam E. Reyes-Méndez J. Manuel Herrera-Zamora Fernando Osuna-Lopez Irving S. Aguilar-Martínez José L. Góngora-Alfaro Ricardo A. Navarro-Polanco Enrique Sánchez-Pastor Eloy G. Moreno-Galindo Javier Alamilla 《Synapse (New York, N.Y.)》2023,77(1):e22250
The suprachiasmatic nucleus (SCN) is the most important circadian clock in mammals. The SCN synchronizes to environmental light via the retinohypothalamic tract (RHT), which is an axon cluster derived from melanopsin-expressing intrinsic photosensitive retinal ganglion cells. Investigations on the development of the nonimage-forming pathway and the RHT are scarce. Previous studies imply that light stimulation during postnatal development is not needed to make the RHT functional at adult stages. Here, we examined the effects of light deprivation (i.e., constant darkness (DD) rearing) during postnatal development on the expression in the ventral SCN of two crucial proteins for the synchronization of circadian rhythms to light: the presynaptic vesicular glutamate transporter type 2 (vGluT2) and the GluN2B subunit of the postsynaptic NMDA receptor. We found that animals submitted to DD conditions exhibited a transitory reduction in the expression of vGluT2 (at P12–19) and of GluN2B (at P7–9) that was compensated at older stages. These findings support the hypothesis that visual stimulation during early ages is not decisive for normal development of the RHT-SCN pathway. 相似文献
8.
Identification of STAT3 and STAT5 proteins in the rat suprachiasmatic nucleus and the Day/Night difference in astrocytic STAT3 phosphorylation in response to lipopolysaccharide 下载免费PDF全文
Simona Moravcová Kateřina Červená Dominika Pačesová Zdeňka Bendová 《Journal of neuroscience research》2016,94(1):99-108
9.
Circadian rhythms in behaviour and physiology generated by the suprachiasmatic nucleus (SCN) are entrained to the environmental light/dark cycle via the retinohypothalamic tract. How light is able to adjust the endogenous rhythm is not fully understood, but induction of the two clock genes per1 and per2 in the SCN is believed to be important for the adjustment. Recently, it was shown that vasoactive intestinal polypeptide (VIP), a neurotransmitter found in light-responsive cells of the SCN, is able to phase shift the circadian rhythm similar to light. In the present study we show by means of an in vitro brain slice model and quantitative in situ hybridization histochemistry that VIP induces both per1 and per2 gene expression in the SCN during late subjective night (CT19). The signalling pathways responsible for the VIP signalling to the clock were investigated using inhibitors of protein kinase A and phospholipase C mediated signalling. Our results demonstrate that both pathways are involved in VIP induced per gene expression and suggest that VIP is important for light-induced phase shift late at night. 相似文献
10.
Light induction at Fos within the Syrian hamster suprachiasmatic nucleus (SCN) occured first at postnatal day 4. The number of cells with light-induced Fos-like immunoreactivity (Fos-LI) per unit volume of SCN increased with age. Blinding experiments were used to demonstrate that the eye, though possessing an immature retina, appears to be necessary for light induction of Fos. In neonatal hamsters, environemntal cycles (e.g., light and darkness) may be able to reinforce the effect of maternal melatonin in synchronizing the pup's clock. 相似文献
11.
Circadian rhythms in mammals are synchronized to the light (L)/dark (D) cycle through messages relaying in the master clock, the suprachiasmatic nucleus of the hypothalamus (SCN). Here, we provide evidence that the SCN undergoes rhythmic ultrastructural rearrangements over the 24-h cycle characterized by day/night changes of the glial, axon terminal, and/or somato-dendritic coverage of neurons expressing arginine vasopressin (AVP) or vasoactive intestinal peptide (VIP), the two main sources of SCN efferents. At nighttime, we noted an increase in the glial coverage of the dendrites of the VIP neurons (+29%) that was concomitant with a decrease in the mean coverage of the somata (-36%) and dendrites (-43%) of these neurons by axon terminals. Conversely, glial coverage of the dendrites of AVP neurons decreased (-19%) with parallel increase in the extent of somatal (+96%) and dendritic (+52%) membrane appositions involving these neurons. These plastic events were concomitant with daily fluctuations in quantitative expression of glial fibrillary acidic protein (GFAP), which were then used as an index of structural plasticity. The GFAP rhythm appeared to be strictly dependent on light entrainment, indicating that structural reorganization of the SCN may subserve synchronization of the clock to the L/D cycle. Other results presented reinforced this view while showing that circulating glucocorticoid hormones, which are known to modulate photic entrainment, were required to maintain amplitude of the GFAP rhythm to normal values. 相似文献
12.
Meza E Juárez C Morgado E Zavaleta Y Caba M 《The European journal of neuroscience》2008,28(7):1394-1403
Nursing in the rabbit is a circadian event during which mother and pups interact for a period of < 5 min every day. Here we explored behavioral and neuronal changes in the mother by analyzing the suprachiasmatic nucleus (SCN), and oxytocinergic (OT) neurons in the paraventricular nucleus (PVN) and the supraoptic nucleus (SON). We maintained lactating does in a light-dark cycle (lights on at 07 : 00 hours; ZT0); they were scheduled to nurse during either the day (ZT03) or the night (ZT19). Groups of intact and nursing females was perfused, one at each 4-h point through a 24-h cycle. We explored, by immunohistochemistry, the PER1 expression and double-labeling, with OT antibody, of neurons in the PVN and SON at lactation on day 7. In the SCN, intact and lactating groups had peak PER1 expression at ZT11; however, there was a reduction in PER1 at peak time in the nursing groups. There was a locomotor activity rhythm with increased activity around the time of lights-on in intact subjects and around the time of suckling in lactating does. There was an induction of PER1 in OT cells in the PVN and SON that shifted in phase with timing of nursing. We further explored the maintenance of the PER1 expression in OT cells in nursing-deprived does and found a significant decrease at 24 and 48 h after the last nursing. We conclude that suckling induced PER1 in the PVN and SON, but not in the SCN, in nursing does, and also shifted their locomotor behavior. 相似文献
13.
In rats maintained for 2 days in constant darkness, the suprachiasmatic nucleus exhibited a circadian rhythm in c-Fos immunoreactivity, with the maximum in the morning and trough during the subjective night. In contrast to the night-time photic c-Fos induction occurring in the ventrolateral part of the nucleus, the spontaneous rhythmic c-Fos induction in darkness occurred in the dorsomedial part and might indicate an elevated dorsomedial neuronal activity in the early subjective day. 相似文献
14.
The circadian system provides organisms with a temporal organization that optimizes their adaptation to environmental fluctuations on a 24‐hr basis. In mammals, the circadian clock in the suprachiasmatic nuclei (SCN) develops during the perinatal period. The rhythmicity first appears at the level of individual SCN neurons during the fetal stage, and this step is often misinterpreted as the time of complete SCN clock development. However, the process is only finalized when the SCN begin to play a role of the central clock in the body, that is, when they are able to generate robust rhythmicity at the cell population level, entrain the rhythmic signal with external light‐dark cycles and convey this signal to the rest of the body. The development is gradual and correlates with morphological maturation of the SCN structural complexity, which is based on intercellular network formation. The aim of this review is to summarize events related to the first emergence of circadian oscillations in the fetal SCN clock. Although a large amount of data on ontogenesis of the circadian system have been accumulated, how exactly the immature SCN converts into a functional central clock has still remained rather elusive. In this review, the hypothesis of how the SCN attains its rhythmicity at the tissue level is discussed in context with the recent advances in the field. For an extensive summary of the complete ontogenetic development of the circadian system, the readers are referred to other previously published reviews. 相似文献
15.
Parkanová D Nováková M Sosniyenko S Sumová A 《The European journal of neuroscience》2012,35(9):1446-1457
Changes in photoperiod modulate the central circadian clock in the suprachiasmatic nucleus (SCN) as well as the peripheral clocks. Consequently, the SCN-driven output rhythms in activity and feeding are also modulated by the photoperiod. The aim of the present study was to elucidate whether photoperiodic modulation of the hepatic clock is mediated by changes in feeding or by another SCN-driven pathway. Five days after the change from short photoperiod (SP) to long photoperiod (LP), the profiles of Per2 and Rev-erbα expression in the rostral, middle and caudal regions of the SCN were desynchronized and those in the liver were modulated as in mice fully entrained to LP. The SCN profiles were not affected in mice left under SP and subjected to the 6-h night-time feeding regime for 5 days. In the liver, the profiles were shifted to the same phase, but their waveforms were not modulated compared with those under LP. In mice subjected to the change from SP to LP and fed twice daily during the daytime, the profiles in the SCN were not affected, whereas the waveforms and phases of those in the liver were affected. The data demonstrate that the adjustment of gene expression profiles in the rostral, middle and caudal SCN to the change from SP to LP proceeds within 5 days and is not affected by changes in the feeding regime. The results also suggest that the photoperiod-modulated SCN affects waveforms of gene expression profiles in the liver by food-independent signals. 相似文献
16.
Zlomanczuk P Mrugala M de la Iglesia HO Ourednik V Quesenberry PJ Snyder EY Schwartz WJ 《Experimental neurology》2002,174(2):162-168
Multipotent neural stem-like cells (NSCs) obtained from one brain region and transplanted to another region appear to differentiate into neuronal and glial phenotypes indigenous to the implantation site. Whether these donor-derived cells are appropriately integrated remains unanswered. In order to test this possibility, we exploited the suprachiasmatic nucleus (SCN) of the hypothalamus, site of a known circadian clock, as a novel engraftment target. When a clone of NSCs initially derived from neonatal mouse cerebellum was transplanted into mouse embryos, the cells incorporated within the SCN over a narrow gestational window that corresponded to the conclusion of SCN neurogenesis. Immunocytochemical staining suggested that donor-derived cells in the SCN synthesized a peptide neurotransmitter (arginine vasopressin) characteristic of SCN neurons. Donor-derived SCN cells reacted to light pulses by expressing immunoreactive c-Fos protein in a pattern that is appropriate for native SCN cells. This region-specific and physiologically appropriate response to the natural stimulation of a remote sensory input implies that donor-derived and endogenous cells formed true SCN chimeras, suggesting that exogenous NSCs engrafted to ectopic locations can integrate in a meaningful fashion. 相似文献
17.
Temporal profile of circadian clock gene expression in a transplanted suprachiasmatic nucleus and peripheral tissues 总被引:1,自引:0,他引:1
Sujino M Nagano M Fujioka A Shigeyoshi Y Inouye ST 《The European journal of neuroscience》2007,26(10):2731-2738
The mammalian hypothalamic suprachiasmatic nucleus (SCN) is the master oscillator that regulates the circadian rhythms of the peripheral oscillators. Previous studies have demonstrated that the transplantation of embryonic SCN tissues into SCN-lesioned arrhythmic mice restores the behavioral circadian rhythms of these animals. In our present study, we examined the clock gene expression profiles in a transplanted SCN and peripheral tissues, and also analysed the circadian rhythm of the locomotor activity in SCN-grafted mice. These experiments were undertaken to elucidate whether the transplanted SCN generates a dynamic circadian oscillation and maintains the phase relationships that can be detected in intact mice. The grafted SCN indeed showed dynamic circadian expression rhythms of clock genes such as mPeriod1 (mPer1) and mPeriod2 (mPer2). Furthermore, the phase differences between the expression rhythms of these genes in the grafted SCN and the locomotor activity rhythms of the transplanted animals were found to be very similar to those in intact animals. Moreover, in the liver, kidney and skeletal muscles of the transplanted animals, the phase angles between the circadian rhythm of the grafted SCN and that of the peripheral tissues were maintained as in intact animals. However, in the SCN-grafted animals, the amplitudes of the mPer1 and mPer2 rhythms were attenuated in the peripheral tissues. Our current findings therefore indicate that a transplanted SCN has the capacity to generate a dynamic intrinsic circadian oscillation, and can also lock the normal phase angles among the SCN, locomotor activity and peripheral oscillators in a similar manner as in intact control animals. 相似文献
18.
Clémence Girardet Marie‐Pierre Blanchard Géraldine Ferracci Christian Lévêque Mathias Moreno Anne‐Marie François‐Bellan Denis Becquet Olivier Bosler 《The European journal of neuroscience》2010,31(2):359-370
The daily temporal organization of rhythmic functions in mammals, which requires synchronization of the circadian clock to the 24‐h light–dark cycle, is believed to involve adjustments of the mutual phasing of the cellular oscillators that comprise the time‐keeper within the suprachiasmatic nucleus of the hypothalamus (SCN). Following from a previous study showing that the SCN undergoes day/night rearrangements of its neuronal–glial network that may be crucial for intercellular phasing, we investigated the contribution of glutamatergic synapses, known to play major roles in SCN functioning, to such rhythmic plastic events. Neither expression levels of the vesicular glutamate transporters nor numbers of glutamatergic terminals showed nycthemeral variations in the SCN. However, using quantitative imaging after combined immunolabelling, the density of synapses on neurons expressing vasoactive intestinal peptide, known as targets of the retinal input, increased during the day and both glutamatergic and non‐glutamatergic synapses contributed to the increase (+36%). This was not the case for synapses made on vasopressin‐containing neurons, the other major source of SCN efferents in the non‐retinorecipient region. Together with electron microscope observations showing no differences in the morphometric features of glutamatergic terminals during the day and night, these data show that the light synchronization process in the SCN involves a selective remodelling of synapses at sites of photic integration. They provide a further illustration of how the adult brain may rapidly and reversibly adapt its synaptic architecture to functional needs. 相似文献
19.
The suprachiasmatic nucleus (SCN) is the master clock in mammals governing the daily physiological and behavioral rhythms. It is composed of thousands of clock cells with their own intrinsic periods varying over a wide range (20-28 h). Despite this heterogeneity, an intact SCN maintains a coherent 24 h periodic rhythm through some cell-to-cell coupling mechanisms. This study examined how the clock cells are connected to each other and how their phases are organized in space by monitoring the cytosolic free calcium ion concentration ([Ca(2+)](c)) of clock cells using the calcium-binding fluorescent protein, cameleon. Extensive analysis of 18 different organotypic slice cultures of the SCN showed that the SCN calcium dynamics is coordinated by phase-synchronizing networks of long-range neurites as well as by diffusively propagating phase waves. The networks appear quite extensive and far-reaching, and the clock cells connected by them exhibit heterogeneous responses in their amplitudes and periods of oscillation to tetrodotoxin treatments. Taken together, our study suggests that the network of long-range cellular connectivity has an important role for the SCN in achieving its phase and period coherence. 相似文献
20.
Light information reaches the suprachiasmatic nucleus (SCN) through a subpopulation of retinal ganglion cells. Previous work raised the possibility that brain-derived neurotrophic factor (BDNF) and its high-affinity tropomyosin-related receptor kinase may be important as modulators of this excitatory input into the SCN. In order to test this possibility, we used whole-cell patch-clamp methods to measure spontaneous excitatory currents in mouse SCN neurons. We found that the amplitude and frequency of these currents were increased by BDNF and decreased by the neurotrophin receptor inhibitor K252a. The neurotrophin also increased the magnitude of currents evoked by application of N-methyl-d-aspartate and amino-methyl proprionic acid. Next, we measured the rhythms in action potential discharge from the SCN brain slice preparation. We found that application of K252a dramatically reduced the magnitude of phase shifts of the electrical activity rhythm generated by the application of glutamate. By itself, BDNF caused phase shifts that resembled those produced by glutamate and were blocked by K252a. The results demonstrate that BDNF and neurotrophin receptors can enhance glutamatergic synaptic transmission within a subset of SCN neurons and potentiate glutamate-induced phase shifts of the circadian rhythm of neural activity in the SCN. 相似文献