首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrion as a novel target of anticancer chemotherapy   总被引:33,自引:0,他引:33  
Mitochondrial membrane permeabilization is a critical event in the process leading to physiologic or chemotherapy-induced apoptosis (programmed cell death). This permeabilization event is, at least in part, under the control of the permeability transition pore complex (PTPC). Oncoproteins from the Bcl-2 family and tumor suppressor proteins from the Bax family interact with PTPC to inhibit or facilitate membrane permeabilization, respectively. Conventional chemotherapeutic agents elicit mitochondrial permeabilization in an indirect fashion by induction of endogenous effectors that are involved in the physiologic control of apoptosis. However, an increasing number of experimental anticancer drugs, including lonidamine, arsenite, betulinic acid, CD437, and several amphipathic cationic alpha-helical peptides, act directly on mitochondrial membranes and/or on the PTPC. Such agents may induce apoptosis in circumstances in which conventional drugs fail to act because endogenous apoptosis induction pathways, such as those involving p53, death receptors, or apical caspase activation, are disrupted. However, stabilization of the mitochondrial membrane by antiapoptotic Bcl-2-like proteins reduces the cytotoxic potential of most of these drugs. Targeting of specific PTPC components may overcome this Bcl-2-mediated apoptosis inhibition. One strategy involves cross-linking of critical redox-sensitive thiol groups within the PTPC; another involves the use of ligands to the mitochondrial benzodiazepine receptor. Thus, the design of mitochondrion-targeted cytotoxic drugs may constitute a novel strategy for overcoming apoptosis resistance.  相似文献   

2.
Fulda S  Meyer E  Friesen C  Susin SA  Kroemer G  Debatin KM 《Oncogene》2001,20(9):1063-1075
Apoptosis in response to cellular stress such as treatment with cytotoxic drugs is mediated by effector caspases (caspase-3) which can be activated by different initiator pathways. Here, we report on a cell type specific triggering of death receptor and/or mitochondrial pathways upon drug treatment. In type I cells (BJAB), both the receptor and the mitochondrial pathway were activated upon drug treatment, since blockade of either the receptor pathway by overexpression of dominant negative FADD (FADD-DN) or of the mitochondrial pathway by overexpression of Bcl-X(L) only partially inhibited apoptosis. Drug treatment induced formation of a FADD- and caspase-8-containing CD95 death-inducing signaling complex (DISC) in type I cells resulting in activation of caspase-8 as the most apical caspase. In contrast, in type II cells (Jurkat), apoptosis was predominantly controlled by mitochondria, since overexpression of Bcl-2 completely blocked drug-induced apoptosis, while overexpression of FADD-DN had no protective effect. In these cells, caspases including caspase-8 were activated by mitochondria-driven signaling events and no DISC was detected despite expression levels of CD95, FADD and caspase-8 proteins comparable to type I cells. Likewise, drug-induced CD95 aggregation was predominantly found in type I cells. Bid was cleaved prior to mitochondrial alterations in type I cells providing a molecular link between caspase-8 activation and mitochondrial perturbations, whereas in type II cells, Bid was cleaved downstream of mitochondria. Our findings of a cell type specific response to cytotoxic drugs have implications for the identification of molecular parameters for chemosensitivity or resistance in different tumor cells.  相似文献   

3.
Recent advances in antisense methods targeting genes involved in cell proliferation, angiogenesis, and apoptosis provide a potential anticancer effect alone as well as in combination with drugs, and antisense therapy may be useful in overcoming drug resistance and increasing survival in patients with advanced cancer including those with solid tumors. In particular, antisense to Bcl-2 comprises a most promising therapy and is being tested in combination with anticancer drugs in randomized phase III trials for chronic lymphocytic leukemia, multiple myeloma, and malignant melanoma. The targeting of apoptosis-related proteins is promising for enhancing the effect of cancer chemotherapy. The molecular mechanism by which anticancer drugs induce apoptosis has been identified as mitochondrial dysfunction mediated by the release of cytochrome c. Modulation of multiple antiapoptotic signaling pathways involving Bcl-2 and Akt, which are related to growth factor-stimulated signal transduction in cell survival, is essential for enhancement of the cytotoxic effect of anticancer drugs. Herein, we review the current status of antisense therapy and its potential for enhancing anticancer drug-induced apoptosis.  相似文献   

4.
Kim R 《Cancer》2005,103(8):1551-1560
Over the past two decades, the role of apoptosis in the cytotoxicity of anticancer drugs has become clear. Apoptosis may occur via a death receptor-dependent (extrinsic) or independent (intrinsic or mitochondrial) pathway. Mitochondria play a central role in cell death in response to DNA damage, and mediate the interaction(s) of various cytoplasmic organelles, including the endoplasmic reticulum, Golgi apparatus, and lysosomes. The mitochondrial pathway of cell death is mediated by Bcl-2 family proteins, a group of antiapoptotic and proapoptotic proteins that regulate the passage of small molecules, such as cytochrome c, Smac/Diablo, and apoptosis-inducing factor, which activates caspase cascades, through the mitochondrial transition pore. In addition, apoptosis can induce autophagic cell death via crosstalk between the two pathways upon treatment with anticancer drugs. The current review focused on recent advances surrounding the mechanism(s) of cell death induced by anticancer agents and discussed potential molecular targets for enhancing the chemotherapeutic effect(s) of anticancer agents.  相似文献   

5.
Apoptosis is an important phenomenon in cytotoxicity induced by anticancer drugs. Here, we review the current status of the molecular mechanisms of anticancer drug-induced apoptosis in order to assess the contribution of molecular-level analysis to cancer chemotherapy. It is apparent that the molecular mechanisms by which anticancer drugs induce apoptosis are mediated by death receptor-dependent and -independent pathways, which are related to the release of cytochrome c through voltage-dependent anion channels in the mitochondrial inner membrane. The release of cytochrome c is the central gate in turning on/off apoptosis, and is regulated by the interaction of proapoptotic proteins, including Bid, Bax and Bak, and antiapoptotic proteins including Bcl-2 and Bcl-X(L), and a specific class of inhibitors of apoptosis proteins (IAPs) including Akt, survivin, and heat-shock proteins. The caspase cascade is activated by the release of cytochrome c, which is initiated by the formation of apoptosomes consisting of procaspase-9, Apaf-1 and cytochrome c in the presence of dATP, and results in the activation of caspase-9 and caspase-3, thereby leading to apoptosis. Drug sensitivity can be enhanced by the introduction of proapoptotic genes and the inhibition of antiapoptotic proteins. The latter process is mediated by antisense oligonucleotides and is associated with apoptosis. The signal transduction pathways that are triggered by the central gate in mitochondria play a critical role in anticancer drug-induced apoptosis. The modulation of signal transduction pathways targeting the proteins involved in these signal transduction pathways using antisense IAPs, and growth factor antibodies may be a good strategy for enhancing therapeutic efficacy of anticancer drugs in cancer chemotherapy.  相似文献   

6.
Chemotherapeutic drugs eliminate cancer cells by induction of apoptosis. Resistance to chemotherapy is partly due to a decreased apoptosis rate. Here we investigated resistance to anticancer drugs in 9 small cell lung cancer (SCLC) cell lines. Apoptosis was induced by cisplatin, doxorubicin and etoposide and was found to be independent of caspase-8 expression. Since caspase-8 is essential for signal transduction of death receptor-mediated apoptosis, all known death receptor systems are thus not required for drug-induced apoptosis in SCLC. Furthermore, we found that anticancer drugs could activate the mitochondrial pathway of apoptosis without involvement of upstream caspases. Finally, by culturing 3 sensitive cell lines in subtherapeutic concentrations of etoposide, resistant cells were generated that exhibit cross-resistance to cisplatin and doxorubicin. Drug resistance was paralleled by strong upregulation of Bcl-2, which diminished apoptosis by inhibiting the loss of the mitochondrial transmembrane potential and the release of cytochrome c. The role of bcl-2 in these processes was supported by bcl-2 transfection and antisense inhibition. These results indicate that Bcl-2 contributes to drug resistance in SCLC, a finding that has profound therapeutic implications.  相似文献   

7.
Kaufmann SH  Vaux DL 《Oncogene》2003,22(47):7414-7430
Anticancer drugs can potentially kill cells in two fundamentally different ways, by interfering with cellular processes that are essential for maintenance of viability or by triggering an endogenous physiological cell death mechanism. Apoptosis is a form of physiological cell death mediated by caspases, a unique family of intracellular cysteine proteases. Zymogen forms of these proteases are found in virtually all somatic cells, but remain latent until their activation is induced by ligation of specific cell surface receptors (the so-called "death receptors"), by mitochondrial alterations that allow release of cytochrome c and other intermembrane components, or possibly by other mechanisms. Most anticancer drugs activate the mitochondrial pathway. This apoptotic pathway is regulated by pro- and antiapoptotic members of the Bcl-2 family of proteins. Once activated, certain caspases might also be controlled by the inhibitor of apoptosis (IAP) proteins. Alterations in apoptotic pathway components or their regulators have been detected in a variety of cancers, suggesting that loss of the ability of cells to undergo apoptosis might contribute to carcinogenesis. Because cancer therapies such as radiation, glucocorticoids, and chemotherapeutic drugs exert their beneficial effects, at least in part, by inducing apoptosis of cancer cells, the same alterations in apoptotic pathways would be predicted to contribute to resistance. A key issue is whether the direct toxic activity of these treatments is of benefit when neoplastic cells contain changes that diminish their ability to undergo apoptosis.  相似文献   

8.
Apoptosis pathways in neuroblastoma therapy   总被引:3,自引:0,他引:3  
Fulda S  Debatin KM 《Cancer letters》2003,197(1-2):131-135
Apoptosis, the cell's intrinsic death program, plays a crucial role in the regulation of tissue homeostasis, and an imbalance between cell death and proliferation may result in tumor formation. Also, killing of tumor cells by diverse cytotoxic approaches such as anticancer drugs, gamma-irradiation, suicide genes or immunotherapy, is predominantly mediated through induction of apoptosis. Failure to activate apoptotic pathways in response to drug treatment may lead to resistance of neuroblastoma cells to anticancer therapies. Understanding the molecular events that regulate apoptosis induced by cytotoxic therapies and how neuroblastoma cells evade apoptotic events may provide a new paradigm for neuroblastoma therapy. Thus, novel strategies targeting resistance of neuroblastoma cells will be based on insights into the molecular mechanisms of apoptosis as well as other forms of cell death.  相似文献   

9.
Cytokines such as Fas-ligand (Fas-L) and Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL) can induce human colon cancer cell apoptosis through engagement of their death domain receptors. All the cancer cells are not sensitive to these cytokines. We have shown recently that low doses of cytotoxic drugs could restore TRAIL-induced cell death in resistant colon cancer cell lines. The present work further explores the death pathway triggered by the cytotoxic drug/TRAIL combination in HT-29 colon cancer cells (www.alexis-corp.com). Clinically relevant concentrations of cisplatin, doxorubicin and 5-fluorouracil synergize with TRAIL to trigger HT-29 cell death. Activation of this pathway leads to apoptosis that involves both caspases and the mitochondria. An increased recruitment of Fas-associated death domain (FADD) and procaspase-8 to the TRAIL-induced death-inducing signaling complex (DISC) was shown in cells exposed to anticancer drugs. Following caspase-8 activation at the DISC level, the mitochondria-dependent death pathway is activated, as demonstrated by the cleavage of Bid, the dissipation of DeltaPsi(m), the release of mitochondrial proteins in the cytosol and the inhibitory effect of Bcl-2 expression. Importantly, besides mitochondrial potentiation, we show here that cytotoxic drugs sensitize HT-29 colon cancer cells to TRAIL-induced cell death by enhancing FADD and procaspase-8 recruitment to the DISC, a novel mechanism whose efficacy could depend partly on Bcl-2 expression level.  相似文献   

10.
11.
Activation of proteases can play an important role in apoptotic cell death induced by anticancer drugs. To assess involvement of activation of cysteine and serine proteases in anticancer drug-induced apoptosis, we tested effect of inhibitors of cysteine and serine proteases on sensitivity to anticancer drugs in MKN45 gastric cancer cells. Cytotoxic effect by adriamycin (ADM), SN-38 (active form of irrinotecan) and cisplatin (CDDP) was significantly prevented by cotreatment with Z-Val-Ala-Asp-fluoromethylketone (Z-VAD-fmk) (p<0.01), a pancaspase inhibitor compared with drug alone using MTT assay. In contrast, cotreatment with N-acetyl-Tyr-Val-Ala-Asp aldehyde (AC-YVAD-CHO), a caspase 1 inhibitor did not prevent any cytotoxic effect of these drugs. Cotreatment of N-acetyl-Asp-Glu-Val-Asp aldehyde (AC-DEVD-CHO), a caspase 3 inhibitor prevented cytotoxic effect of VP-16 and SN-38 (p<0.01). Prevention of these cytotoxic effects by caspase inhibitors was not dose-dependent. Cotreatment of N-tosyl-L-lysyl chloromethylketone (TLCK), a serine protease inhibitor significantly prevented cytotoxic effect of ADM, SN-38, 5-fluorouracil (5-FU) and CDDP in a slight dose-dependent manner (p<0.01) except for etoposide (VP-16) and docetaxel (TXT), while an other serine protease inhibitor, N-tosyl-L-phenylalanyl chloromethylketone (TPCK) did not prevent any anticancer drug-induced cytotoxic effect. These effects were associated with prevention of internucleosomal DNA ladder formation in apoptosis. Further, protease inhibitors did not block induction of cytochrome c, that can explain the partial effect of prevention by anticancer-induced cell death. These results suggest that anticancer drug-induced cytotoxic effect is mediated by activation of serine protease (caspase-independent) as well as caspase-dependent pathway leading to apoptotic cell death, and that protease-independent pathway may also be involved in apoptotic pathways. The involvement of protease in signal transduction pathways may differ in cytotoxic action of drugs in gastric cancer cells.  相似文献   

12.
PURPOSE: Overexpression of antiapoptotic Bcl-2 family members has recently been related to resistance to chemo/radiotherapy in several human malignancies, particularly lymphomas. Hence, innovative approaches bypassing this resistance mechanism are required in the therapeutic approach. This study evaluated whether chemoresistance associated with Bcl-2 and Bcl-x(L) overexpression would be overcome by activating the death receptor pathway by tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in the Jurkat cell model EXPERIMENTAL DESIGN: We made use of genetically modified Jurkat cells to evaluate the effect of Bcl-2 or Bcl-x(L) overexpression on the cytotoxic effect produced by the anticancer drugs doxorubicin, etoposide, and oxaliplatin and TRAIL. Caspase activation was detected by cleavage of caspase-8 and -3. The mitochondrial transmambrane potential was assessed by staining with DiOC(6) and flow cytometry. Caspase activity was blocked by the broad-spectrum caspase inhibitor zVAD-fmk. RESULTS: Bcl-2 and Bcl-x(L) overexpression but not lack of caspase-8 protects the Jurkat cells from the anticancer drug-induced cytolysis. However, Bcl-2/Bcl-x(L) Jurkat cells retained some susceptibility to TRAIL-induced cytolysis. A highly synergistic cytotoxic effect of the combination of TRAIL with any of the antiblastic used in this study was detected in the chemoresistant cells. This effect was associated with mitochondrial disassemblage and dependent on caspase activation CONCLUSIONS: The combination of TRAIL with conventional anticancer drugs may prove to be useful in the treatment of antiapoptotic Bcl-2 family proteins-expressing malignancies.  相似文献   

13.
In many tumor cell types, ionizing radiation (IR) or DNA-damaging anticancer drugs enhance sensitivity to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis, which is of great clinical interest. We have investigated the molecular mechanism underlying the response to combined modality treatment in p53-mutant Jurkat T leukemic cells overexpressing Bcl-2. These cells are largely resistant to individual treatment with TRAIL or IR, but sensitive to combined treatment, in vitro as well as in vivo. We demonstrate that IR and DNA-damaging anticancer drugs enable TRAIL receptor-2 and CD95/Fas to bypass the mitochondrial pathway for effector caspase activation. This was validated by RNA interference for Bax and Bak and by overexpression of dominant-negative Caspase-9. Improved effector caspase activation was neither caused by altered expression of proapoptotic components nor by impaired activity of inhibitor of apoptosis proteins or nuclear factor-kappaB signaling. Rather, we found that pretreatment of cells with IR caused quantitative and qualitative changes in death receptor signaling. It strongly improved the capacity of ligand-bound receptors to recruit FADD and activate Caspase-8 and -10 in the death-inducing signaling complex, while c-FLIP(L) levels were unaffected.  相似文献   

14.
Bcl-2 family proteins as targets for anticancer drug design.   总被引:8,自引:0,他引:8  
Z Huang 《Oncogene》2000,19(56):6627-6631
Bcl-2 family proteins are key regulators of programmed cell death or apoptosis that is implicated in many human diseases, particularly cancer. In recent years, they have attracted intensive interest in both basic research to understand the fundamental principles of cell survival and cell death and drug discovery to develop a new class of anticancer agents. The Bcl-2 family includes both anti- and pro-apoptotic proteins with opposing biological functions in either inhibiting or promoting cell death. High expression of anti-apoptotic members such as Bcl-2 and Bcl-XL commonly found in human cancers contributes to neoplastic cell expansion and interferes with the therapeutic action of many chemotherapeutic drugs. The functional blockade of Bcl-2 or Bcl-XL could either restore the apoptotic process in tumor cells or sensitize these tumors for chemo- and radiotherapies. This article reviews the recent progress in the design and discovery of small molecules that block the anti-apoptotic function of Bcl-2 or Bcl-XL. These chemical inhibitors are effective modulators of apoptosis and promising leads for the further development of new anticancer agents.  相似文献   

15.
Waxman DJ  Schwartz PS 《Cancer research》2003,63(24):8563-8572
Advances in our understanding of the mechanisms by which tumor cells detect drug-induced DNA damage leading to apoptotic death have aided in the design of novel, potentially more selective strategies for cancer treatment. Several of these strategies use proapoptotic factors and have shown promise in sensitizing tumor cells to the cytotoxic actions of traditional cancer chemotherapeutic drugs. Although antiapoptotic factors are generally regarded as poor prognostic factors for successful cancer chemotherapy, strategies that use antiapoptotic factors in combination with suicide or other gene therapies can also be considered. The introduction of antiapoptotic factors that act downstream of drug-induced mitochondrial transition delays, but does not block, the ultimate cytotoxic response to cancer chemotherapeutic drugs that activate a mitochondrial pathway of cell death. Recent studies using the cytochrome P-450 prodrug cyclophosphamide exemplify how the antiapoptotic, caspase-inhibitory baculovirus protein p35 can be combined with P-450 gene-directed enzyme prodrug therapy to prolong localized, intratumoral production of cytotoxic drug metabolites without inducing tumor cell drug resistance. This model may be adapted to other gene therapies, including those that target death receptor pathways, to maximize the production of soluble, bystander cytotoxic factors and prodrug metabolites and thereby amplify the therapeutic response.  相似文献   

16.
APAF-1 signaling in human melanoma   总被引:3,自引:0,他引:3  
Acquired resistance to mechanisms of programmed cell death is one of the hallmarks of cancer. Human melanoma, in advanced stage, is hardly curable, due to development of several strategies that impair apoptosis induced by the death receptor and the mitochondrial pathways of apoptosis. Among these apoptosis escape strategies, one is based on inactivation of pro-apoptotic factors such as Apoptotic Protease Activating Factor-1 (APAF-1). APAF-1 couples cytochrome c release from the mitochondria to caspase-9 activation and has been considered a central adaptor in the intrinsic pathway of programmed cell death. Inactivation of APAF-1 in human melanoma may impair the mitochondrial pathway of apoptosis induced by chemotherapeutic drugs that activate the p53 pathway, thus contributing to the development of chemoresistance. In-vivo, loss of expression of APAF-1 is associated with tumor progression, suggesting that APAF-1 inactivation may provide a selective survival advantage to neoplastic cells. However, recent results have indicated the existence of APAF-1-independent pathways of caspase activation and apoptosis in normal and neoplastic cells. Moreover, it has been found that expression of APAF-1 is not necessary for the apoptotic response of melanoma cells to different pro-apoptotic drugs. The emerging picture from results obtained in melanoma and other human tumors is that the relevance of the APAF-1 pathway in programmed cell death is cell-context-dependent and related to the specificity of the pro-apoptotic-stimuli.  相似文献   

17.
We previously described that betulinic acid (BetA), a naturally occurring pentacyclic triterpenoid, induces apoptosis in tumor cells through the mitochondrial pathway. Here, for the first time, we provide evidence that BetA cooperated with anticancer drugs to induce apoptosis and to inhibit clonogenic survival of tumor cells. Combined treatment with BetA and anticancer drugs acted in concert to induce loss of mitochondrial membrane potential and the release of cytochrome c and Smac from mitochondria, resulting in activation of caspases and apoptosis. Overexpression of Bcl-2, which blocked mitochondrial perturbations, also inhibited the cooperative effect of BetA and anticancer drugs, indicating that cooperative interaction involved the mitochondrial pathway. Notably, cooperation of BetA and anticancer drugs was found for various cytotoxic compounds with different modes of action (e.g., doxorubicin, cisplatin, Taxol, VP16, or actino-mycin D). Importantly, BetA and anticancer drugs cooperated to induce apoptosis in different tumor cell lines, including p53 mutant cells, and also in primary tumor cells, but not in human fibroblasts indicating some tumor specificity. These findings indicate that using BetA as sensitizer in chemotherapy-based combination regimens may be a novel strategy to enhance the efficacy of anticancer therapy, which warrants further investigation.  相似文献   

18.
Nakashima T  Miura M  Hara M 《Cancer research》2000,60(5):1229-1235
Bcl-2 is an integral, intracellular membrane protein that prevents cells from undergoing apoptosis in response to a variety of cell death signals. It negatively regulates the activation of Caspase-3, which functions as effector of mammalian cell death pathways. Overexpression of Bcl-2 inhibits the caspase activities and apoptosis. A microbial secondary metabolite, Tetrocarcin A (TC-A), was identified as an inhibitor of the anti-apoptotic function of Bcl-2. Apoptosis could be induced in cell lines that overexpressed Bcl-2 or Bcl-XL when the cells were treated with anti-Fas antibody, tumor necrosis factor alpha, staurosporine, or Bax, in addition to TC-A. TC-A showed selectivity against the pro-apoptotic Bcl-2 family members, in that cells overexpressing CrmA or dominant-negative FADD could not undergo apoptosis with TC-A treatment. In Bcl-2-overexpressing cell lines, TC-A inhibited mitochondrial functions regulated by Bcl-2, resulting in Fas-triggered mitochondrial transmembrane potential loss and cytochrome c release. Inhibition of the mitochondrial functions of Bcl-2 and, thereby, its anti-apoptotic effect could serve as useful pharmacological targets. Thus, TC-A should serve as an archetype for specific inhibitors of Bcl-2 functions.  相似文献   

19.
Bcl-2 family proteins and cancer   总被引:1,自引:0,他引:1  
Yip KW  Reed JC 《Oncogene》2008,27(50):6398-6406
BCL-2 was the first anti-death gene discovered, a milestone with far reaching implications for tumor biology. Multiple members of the human Bcl-2 family of apoptosis-regulating proteins have been identified, including six antiapoptotic, three structurally similar proapoptotic proteins and several structurally diverse proapoptotic interacting proteins that operate as upstream agonists or antagonists. These proteins, in turn, are regulated through myriad post-translational modifications and interactions with other proteins. Bcl-2-family proteins regulate all major types of cell death, including apoptosis, necrosis and autophagy, thus operating as nodal points at the convergence of multiple pathways with broad relevance to oncology. Experimental therapies targeting Bcl-2-family mRNAs or proteins are currently in clinical testing, raising hopes that a new class of anticancer drugs may soon be available.  相似文献   

20.
Novel mechanisms of apoptosis induced by histone deacetylase inhibitors   总被引:12,自引:0,他引:12  
Histone deacetylase inhibitors (HDACIs) are a new class of chemotherapeutic drugs able to induce tumor cell apoptosis and/or cell cycle arrest; however, the molecular mechanisms underpinning their anticancer effects are poorly understood. Herein, we assessed the apoptotic pathways activated by three HDACIs, suberoylanilide hydroxamic acid, oxamflatin, and depsipeptide. We determined that all three drugs induced the accumulation of cells with a 4n DNA content and apoptosis mediated by the intrinsic apoptotic pathway. HDACI-induced mitochondrial membrane damage and apoptosis were inhibited by overexpression of Bcl-2, but not by the polycaspase inhibitor N-tert-butoxy-carbonyl-Val-Ala-Asp-fluoromethylketone (zVAD-fmk). Moreover, induction of a G(1)-S checkpoint through overexpression of p16(INK4A) or suppression of de novo protein synthesis also inhibited HDACI-induced cell death. Proteolytic cleavage of caspase-2, which is poorly inhibited by zVAD-fmk, was concomitant with HDACI-induced death; however, full processing of caspase-2 to the p19 active form was blocked by Bcl-2. Whereas all three drugs induce the activation of the proapoptotic Bcl-2 protein Bid upstream of mitochondrial membrane disruption, Bid cleavage in response to depsipeptide was significantly attenuated by zVAD-fmk. Suberoylanilide hydroxamic acid and oxamflatin could kill both P-glycoprotein (P-gp)(+) MDR cells and their P-gp(-) counterparts, whereas depsipeptide was shown to be a substrate for P-gp and was less effective in killing P-gp(+) cells. These data provide insight into the functional profile of three HDACIs and are important for the development of more rational approaches to chemotherapy, where information regarding the genetic profile of the tumor is matched with the functional profile of a given chemotherapeutic drug to promote favorable clinical responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号