首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
Autosomal recessive polycystic kidney disease (ARPKD) is one of the most common hereditary renal cystic diseases in children. The clinical spectrum ranges from stillbirth and neonatal demise to survival into adulthood. In a given family, however, patients usually display comparable phenotypes. Many families who lost a child with severe ARPKD desire an early and reliable prenatal diagnosis (PD). Given the limitations of antenatal ultrasound, this is only feasible by molecular genetics that became possible in 1994 when PKHD1, the locus for ARPKD, was mapped to chromosome 6p. However, linkage analysis might prove difficult or even impossible in families with diagnostic doubts or in whom no DNA of an affected child is available. In such cases the recent identification of the PKHD1 gene provides the basis for direct mutation testing. However, due to the large size of the gene, lack of knowledge of the encoded protein's functional properties, and the complicated pattern of splicing, significant challenges are posed by PKHD1 mutation analysis. Thus, it is important to delineate the mutational spectrum and the reachable mutation detection rate among the cohort of severely affected ARPKD patients. In the present study, we performed PKHD1 mutation screening by DHPLC in a series of 40 apparently unrelated families with at least one peri- or neonatally deceased child. We observed 68 out of an expected 80 mutations, corresponding to a detection rate of 85%. Among the mutations identified, 23 were not reported previously. We disclosed two underlying mutations in 29 families and one in 10 cases. Thus, in all but one family (98 percent;), we were able to identify at least one mutation substantiating the diagnosis of ARPKD. Approximately two-thirds of the changes were predicted to truncate the protein. Missense mutations detected were nonconservative, with all but one of the affected amino acid residues found to be conserved in the murine ortholog. PKHD1 mutation analysis has proven to be an efficient and effective means to establish the diagnosis of ARPKD.  相似文献   

5.
Autosomal recessive polycystic kidney disease (ARPKD), characterized by progressive cystic degeneration of the kidneys and congenital hepatic fibrosis (CHF), is the most common childhood onset ciliopathy, with an estimated frequency of 1 in 20,000 births. It is caused by mutations in PKHD1. The carrier frequency for ARPKD in the general population is estimated at 1 in 70. Given the recessive inheritance pattern, individuals who are heterozygous for PKHD1 mutations are not expected to have clinical findings. We performed ultrasound (USG) evaluations on 110 parents from 64 independent ARPKD families and identified increased medullary echogenicity in 6 (5.5%) and multiple small liver cysts in 10 parents (9%). All ARPKD parents with these abnormal imaging findings were asymptomatic; kidney and liver function tests were unremarkable. Complete sequencing of PKHD1 in the 16 ARPKD parents with abnormal imaging confirmed the mutation transmitted to the proband, but did not reveal any other pathogenic variants. Our data suggest that carrier status for ARPKD is a predisposition to polycystic liver disease and renal involvement associated with increased medullary echogenicity on USG. Whether some of these individuals become symptomatic as they age remains to be determined.  相似文献   

6.
7.
8.
9.
Distinguishing autosomal‐dominant polycystic kidney disease (ADPKD) from other inherited renal cystic diseases in patients with adult polycystic kidney disease and no family history is critical for correct treatment and appropriate genetic counseling. However, for patients with no family history, there are no definitive imaging findings that provide an unequivocal ADPKD diagnosis. We analyzed 53 adult polycystic kidney disease patients with no family history. Comprehensive genetic testing was performed using capture‐based next‐generation sequencing for 69 genes currently known to cause hereditary renal cystic diseases including ADPKD. Through our analysis, 32 patients had PKD1 or PKD2 mutations. Additionally, 3 patients with disease‐causing mutations in NPHP4, PKHD1, and OFD1 were diagnosed with an inherited renal cystic disease other than ADPKD. In patients with PKD1 or PKD2 mutations, the prevalence of polycystic liver disease, defined as more than 20 liver cysts, was significantly higher (71.9% vs 33.3%, P = .006), total kidney volume was significantly increased (median, 1580.7 mL vs 791.0 mL, P = .027) and mean arterial pressure was significantly higher (median, 98 mm Hg vs 91 mm Hg, P = .012). The genetic screening approach and clinical features described here are potentially beneficial for optimal management of adult sporadic polycystic kidney disease patients.  相似文献   

10.
Cystinuria is a hereditary disorder of cystine and dibasic amino acid transport across the luminal membrane of renal tubules and intestine, resulting in recurrent nephrolithiasis. While mutations in the SLC3A1 gene cause type I cystinuria, patients with non-type I cystinuria carry mutations in the SLC7A9 gene. Up to now, more than 80 mutations in SLC3A1 and 50 in SLC7A9 have been reported in the literature. While deletions, duplications, and truncating mutations can often unambiguously classified to be pathogenic, the functional relevance of base pair substitutions is often difficult to predict. To determine the functional relevance of a new splice site mutation in intron 5 of SLC7A9, c.605-3C>A, we transfected COS7 cells with expression constructs containing the wild-type and mutant allele, respectively. cDNAs derived from the resulting SLC7A9 mRNAs were sequenced. By this approach we could demonstrate that the mutant allele c.605-3A causes exon skipping and therefore represents a splice site mutation. To the best of our knowledge, this is the first splice site mutation in a cystinuria gene with a proven functional consequence.  相似文献   

11.
12.
13.
Metachromatic leukodystrophy is a lysosomal storage disorder caused by the deficiency of arylsulfatase A. Sequencing of the arylsulfatase A genes of a patient affected with late infantile metachromatic leukodystrophy revealed that the patient is a compound heterozygote of two alleles carrying two deleterious mutation each. One allele bears a splice donor site mutation together with two polymorphisms and an additional missense mutation (Gly 122>Ser). The splice donor site mutation and the Gly 122>Ser substitution have been described recently but on different alleles. The other allele carries two missense mutations causing a Gly 154>Asp and a Pro 167>Arg substitution. When arylsulfatase A cDNAs carrying these mutations separately or in combination were transfected into baby hamster kidney cells expression of arylsulfatase A activity could not be detected. Linkage of mutations was verified by sequencing of the parental DNAs. Biosynthesis studies performed with the patients' fibroblasts show that the enzyme carrying both mutations is synthesized in almost normal amounts but is rapidly degraded in an early biosynthetic compartment. The occurence of two disease causing mutations on the same allele is a novel phenomenon in metachromatic leukodystrophy and as far as lysosomal storage diseases are concerned have so far only been described in Fabry disease and in the complex glucocerebrosidase alleles associated with Gaucher disease. © 1994 Wiley-Liss, Inc.  相似文献   

14.
15.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in one of three genes: PKD1 on chromosome 16 accounts for approximately 85% of cases whereas PKD2 on chromosome 4 accounts for approximately 15%. Mutations in the PKD3 gene are rare. All patients present with similar clinical phenotypes, and the cardinal symptom is the formation of fluid-filled cysts in the kidneys. Previous work has provided data supporting the notion that cysts in ADPKD1 are focal in nature and form after loss of function of polycystin 1. This became evident by demonstrating that the normal PKD1 allele was inactivated somatically by loss of heterozygosity or by mutagenesis in a subset of renal or liver cysts examined. We show in this report, for the first time, multiple novel somatic mutations within the PKD2 gene of epithelial cells, in both kidneys of an ADPKD2 patient. From a total of 21 cysts examined, seven (33%) had the same C insertion within the inherited wild-type allele. In two other cysts, a nonsense mutation and a splice site AG deletion had occurred in a PKD2 allele that could not be identified as the inherited wild-type or mutant. We suggest that the autosomal dominant form of ADPKD2 occurs by a cellular recessive mechanism, supporting a two-hit model for cyst formation.   相似文献   

16.
Autosomal recessive polycystic kidney disease (ARPKD) is a serious genetic disease characterized by cystic changes in the collecting ducts of the kidney and bile ducts within the liver. The gene for ARPKD (PKHD1) is located on chromosome 6p12 and encodes a protein called fibrocystin/polyductin (FPC), 1 of many proteins that are normally present at the primary cilia of the renal tubules and intrahepatic bile ducts. The severity of the clinical disease depends on the type of genetic mutations. Although exact function of FPC is not fully known, it is generally felt that like many of the other ciliary proteins, it plays a vital role in maintaining the structural integrity of organs such as kidney and liver, by modulating important cellular functions, including proliferation, secretion, apoptosis, and terminal differentiation. FPC probably works in conjunction with cellular proteins involved in autosomal dominant polycystic kidney disease that is, polycystin-1 and polycystin-2, which are also located in the primary cilia. Genetic abnormalities in PKHD1 may result in structural and functional abnormalities of FPC, leading to cystic phenotype.  相似文献   

17.
目的 应用DKD2紧密连锁的微卫星DNA对 2型染色体显性多囊肾病进行基因诊断。方法应用聚合酶链反应 毛细管电泳 基因扫描方法对PKD2基因侧翼微卫星D4S15 3 4、D4S15 42、D4S15 63、D4S2 460和D4S42 3进行基因分型 ,对常染色体显性多囊肾病家系成员进行连锁分析 ,确定患病家系是否与PKD2连锁 ,并对未发病成员进行基因诊断。结果 通过连锁分析 2 0个家系 ,寻找到 3个与PKD2连锁的多囊肾病家系 ;在 3个家系的 4名未发病成员中发现 2例携带PKD2基因突变的症状前个体。结论 连锁分析是多囊肾病异质性研究和基因诊断的一种快速、简便的方法。  相似文献   

18.
19.
The locus PKHD1 (polycystic kidney and hepatic disease 1) has been linked to all typical forms of the autosomal recessive polycystic kidney disease (ARPKD) and maps to chromosome 6p21.1-p12. We previously defined its genetic interval by the flanking markers D6S1714 and D6S1024. In our current work, we have fine-mapped the gene for the human P1 protein (MCM3), thought to be involved in the DNA replication process, to this critical region. We have also established its genomic structure. Mutation analyses using SSCP were performed in ARPKD patients' cDNA samples, leading to the exclusion of this gene as a candidate for this disorder. We also identified two intragenic polymorphisms that allowed families with critical recombination events to be evaluated. Although neither marker was informative in these individuals, they are the closest yet described for PKHD1 and may help to refine the candidate region.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号