首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以组分的连续性方程为基础 ,建立了药物从多孔骨架聚合物系统中释放的数学模型。在模型中引入相对渗透速度来刻画药物释放过程中不同机理的影响。对药物从多孔骨架聚合物系统中non -Fickian扩散现象进行了研究 ,特别对药物溶出机制控制的恒速释药现象进行了解释。  相似文献   

2.
Commercially available implantable needle-type glucose sensors for diabetes management are robust analytically but can be unreliable clinically primarily due to tissue–sensor interactions. Here, we present the physical, drug release and bioactivity characterization of tubular, porous dexamethasone (Dex)-releasing polyurethane coatings designed to attenuate local inflammation at the tissue–sensor interface. Porous polyurethane coatings were produced by the salt-leaching/gas-foaming method. Scanning electron microscopy and micro-computed tomography (micro-CT) showed controlled porosity and coating thickness. In vitro drug release from coatings monitored over 2 weeks presented an initial fast release followed by a slower release. Total release from coatings was highly dependent on initial drug loading amount. Functional in vitro testing of glucose sensors deployed with porous coatings against glucose standards demonstrated that highly porous coatings minimally affected signal strength and response rate. Bioactivity of the released drug was determined by monitoring Dex-mediated, dose-dependent apoptosis of human peripheral blood derived monocytes in culture. Acute animal studies were used to determine the appropriate Dex payload for the implanted porous coatings. Pilot short-term animal studies showed that Dex released from porous coatings implanted in rat subcutis attenuated the initial inflammatory response to sensor implantation. These results suggest that deploying sensors with the porous, Dex-releasing coatings is a promising strategy to improve glucose sensor performance.  相似文献   

3.
药物从多孔骨架聚合物系统中控制释放的动力学模型   总被引:4,自引:0,他引:4  
以组分的连续性方程为基础,建立了药物从多孔骨架聚合物系统中释放的数学模型。在模型中引入相对渗透速度来刻画药物释放过程中不同机理的影响,并用摄动方法对方程进行了求解。对所得结果进行了分析,特别对药物溶出机制控制的恒速释药现象进行了解释。  相似文献   

4.
Bioresorbable polymer films containing dexamethasone (DM) were prepared using a solution processing technique. Investigation of the films focused on cumulative DM release as affected by film morphology (drug location/dispersion in the film) and degradation processes. Two film structures were studied: A-type, a polymer film with large drug crystals located on the film’s surface, and B-type, a polymer film with small drug particles and crystals distributed within the bulk. The effect of the polymer’s degree of crystallinity on the drug release profile was also studied. Prototypical applications of these films are biodegradable medical support devices which combine mechanical support with drug release. In most of our studied systems the drug release profile from the film is determined mainly by both drug location/dispersion in the film and the polymer’s weight loss rate. All release profiles from A-type films exhibited a burst effect of approximately 30%, accompanied by a second release phase at a constant rate, whereas the release profiles from B-type films were determined mainly by the degradation profile of the host polymer, and did not exhibit any burst effect. A high degree of crystallinity is important for the current application, since good mechanical properties are required. This contributes to slower drug release rates, mainly at relatively low weight losses, whereas at high weight losses, where a porous structure is created, the crystallinity almost does not affect the rate of drug release. The shape of the porous structure that develops with degradation also affects the drug release profile from the B-type films.  相似文献   

5.
Release of hydrocortisone sodium succinate from acrylic resin was found to occur readily on elution in water at 37 degrees C. Increasing the degree of hydration of the acrylic resin by the addition of hydroxyethyl methacrylate impaired rather than enhanced the release of drug. The mechanism for the release of drug is believed to be surface release and drug dissolution into and diffusion via cracks and channels which are formed by incorporation of the drug, producing a 'drug-modified polymer'. Diffusion through the polymer matrix is believed to be insignificant. The results obtained are discussed in relation to this proposed model for drug release. A simple method for the manufacture of the core of an intra-oral insert capable of delivering drugs with MW greater than 400 for systemic and topical oral drug delivery is described.  相似文献   

6.
Abstract

Polymeric porous ultrafine fibers with different structures as drug carrier could be facilely prepared. However, the drug release characteristics and relevant mechanism of different structural porous ultrafine fibers were not well studied. In the present work, different structural Poly-Ether-Sulfone (PES) based porous ultrafine fibers, namely PES, PES/Poly-Ethylene-Glycol (PEG) and PES/Water were prepared by electro-spinning. Curcumin was chosen as drug model loaded in these fibers. Investigation of curcumin release characteristics was carried out by the total immersion in buffer solution. The surface and inner structure of PES based ultrafine fibers were studied by scanning electron microscopy (SEM) in detail. It is found that there is significant difference in the accumulate release amount and release rate with similar structure. About 92.5% of curcumin released within 600?min for PES/PEG ultrafine fibers and only 58.9% of curcumin flowed out from PES with 1000?min. In order to discuss the fact of this phenomenon, the development structure of PES based porous ultrafine fibers was studied with curcumin release. The results indicated that the curcumin release was directly involved with the structure. For PES/PEG, curcumin around the surface layer released in advance. And then, some penetrable structure emerged with PEG dissolving in the buffer solution, which result in larger specific surface area and more embedded curcumin from the interior structure of the ultrafine fibers diffusing out. For the others, curcumin release only through its own pores of ultrafine fibers. Finally, the processing-structure-performance relationship of PES based porous ultrafine fibers were confirmed by the diversity of porosity and contact angle. The research results demonstrate that PES based porous ultrafine fibers have the potential to be used as drug carrier in the drug delivery according to the practical clinical requirements.  相似文献   

7.
In this work, porous octyl-dextran microspheres with excellent properties were prepared by two steps. Firstly, dextran microspheres were synthesized by reversed-phase suspension polymerization. Secondly, octyl-dextran microspheres were prepared by the reaction between dextran microspheres and ethylhexyl glycidyl ether and freezing-drying method. Porous structure of microspheres was formed through the interaction between octyl groups and organic solvents. The structure, morphology, dry density, porosity and equilibrium water content of porous octyl-dextran microspheres were systematically investigated. The octyl content affected the properties of microspheres. The results showed that the dry density of microspheres decreased from 2.35 to 1.21 g/ml, porosity increased from 80.68 to 95.05% with the octyl content increasing from 0.49 to 2.28 mmol/g. Meanwhile, the equilibrium water content presented a peak value (90.18%) when the octyl content was 2.25 mmol/g. Octyl-dextran microspheres showed high capacity. Naturally drug carriers play an important role in drug-delivery systems for their biodegradability, wide raw materials sources and nontoxicity. Doxorubicin (DOX) was used as a drug model to examine the drug-loading capacity of porous octyl-dextran microspheres. The drug-loading efficiency increased with the increase in microspheres/drug ratio, while the encapsulation efficiency decreased. When microspheres/drug mass ratio was 4/1, the drug-loading efficiency and encapsulation efficiency were 10.20 and 51.00%, respectively. The release rate of DOX increased as drug content and porosity increased. In conclusion, porous octyl-dextran microspheres were synthesized successfully and have the potential to serve as an effective delivery system in drug controlled release.  相似文献   

8.
The effect of environmental ionic strength on the rate of drug release from a cation exchange membrane was evaluated. Cationic propranolol-HCl, timolol, sotalol-HCl, atenolol and dexmedetomidine-HCl and neutral diazepam were adsorbed onto a porous poly(vinylidene fluoride) (PVDF) membrane that was grafted with bioadhesive poly(acrylic acid) chains (PAA-PVDF). Despite its porosity, the PAA-PVDF membrane acted as a cation exchange membrane. The release of adsorbed drug from the PAA-PVDF membrane was investigated by using a USP rotating basket apparatus. Adsorption of cationic drugs onto the PAA-PVDF membrane tended to increase with increasing lipophilicity of the drug. A decrease in the ionic strength of the adsorption medium increased the amount of the cationic drugs adsorbed onto the membrane, but had no effect on diazepam adsorption. The release of cationic drugs from the PAA-PVDF membrane was greatly affected by the ionic strength of both the adsorption medium and the dissolution medium, while ionic strengths did not affect diazepam release. Our results suggest that the ionic strength of both the adsorption and dissolution media substantially affects the release rate of a drug that has been adsorbed onto the ion exchange membrane, primarily via electrostatic interactions, while ionic strength has no effect on the release of a drug which has been adsorbed onto the membrane via non-electrostatic forces.  相似文献   

9.
A series of poly(l ‐lactide)‐grafted gelatin (Gel‐g‐PLLA) copolymers are synthesized by coupling the amino groups of gelatin with different molar masses and the carboxyl endgroup of poly(l ‐lactide) in the presence of 1‐ethyl‐3‐(3‐dimethylaminopropyl)carbodiimide hydrochloride and N‐hydroxysuccinimide. Fourier transform infrared and nuclear magnetic resonance (1H NMR) data confirm the successful bonding between gelatin and PLLA. Self‐assembled micelles of copolymers are prepared by using the direct dissolution method. The size and micellar morphology are determined from dynamic light scattering as well as transmission electron microscopy measurements. Meanwhile, in vitro drug release reveals that Gel‐g‐PLLA micelles show excellent sustained‐release properties when used as the carrier of the anticancer drug paclitaxel. A burst release of about 70% is observed in the first 24 h. All these features, together with the outstanding biocompatibility, make Gel‐g‐PLLA micelles a promising drug carrier for cancer therapy.  相似文献   

10.
An efficient nanomedical platform that can combine two-photon cell imaging, near infrared (NIR) light and pH dual responsive drug delivery, and photothermal treatment was successfully developed based on fluorescent porous carbon-nanocapsules (FPC-NCs, size ∼100 nm) with carbon dots (CDs) embedded in the shell. The stable, excitation wavelength (λex)-tunable and upconverted fluorescence from the CDs embedded in the porous carbon shell enable the FPC-NCs to serve as an excellent confocal and two-photon imaging contrast agent under the excitation of laser with a broad range of wavelength from ultraviolet (UV) light (405 nm) to NIR light (900 nm). The FPC-NCs demonstrate a very high loading capacity (1335 mg g−1) toward doxorubicin drug benefited from the hollow cavity structure, porous carbon shell, as well as the supramolecular π stacking and electrostatic interactions between the doxorubicin molecules and carbon shell. In addition, a responsive release of doxorubicin from the FPC-NCs can be activated by lowering the pH to acidic (from 7.4 to 5.0) due to the presence of pH-sensitive carboxyl groups on the FPC-NCs and amino groups on doxorubicin molecules. Furthermore, the FPC-NCs can absorb and effectively convert the NIR light to heat, thus, manifest the ability of NIR-responsive drug release and combined photothermal/chemo-therapy for high therapeutic efficacy.  相似文献   

11.
In this study amino-terminated poly(ethylene glycol) (PEG-diamine) hydrogels were crosslinked with genipin, a chemical naturally derived from the gardenia fruit. Dissolution, swelling, and PEG-genipin release properties were determined. The dissolution studies indicated that the hydrogels are water soluble, and that the dissolution rate was concentration, mass, and temperature dependent. The dissolution rates are easily tailored from 3 min to >100 days. The PEG-genipin release study indicated that the greatest release occurs within the first 24 h of immersion in water, and that incubation at 37 degrees C elicits a greater initial release than samples incubated at room temperature for all genipin concentrations. Through scanning electron microscopy it was observed that the hydrogels are porous, and surface morphology changes before and after swelling. Furthermore, smooth muscle cell (SMC) adhesion studies indicated that the PEG-genipin hydrogel is a suitable substrate for SMC seeding. Overall, the results of these studies indicate that PEG-genipin hydrogels may provide potential scaffolding for a variety of tissue engineering applications.  相似文献   

12.
The present paper reports the preparation and characterization of composite hydroxypropyl methylcellulose/polyacrylonitrile (HPMC/PAN)-medicated fibers via a wet spinning technique. Tamoxifen (TAM) was selected as a model drug. Numerous analyses were conducted to characterize the mechanical, structure and morphology properties of the composite fibers. The drug content and in vitro dissolution behavior were also investigated. SEM images showed that the TAM-loaded HPMC/PAN composite fibers had a finger-like outer skin and a porous structure. FT-IR spectra demonstrated that there was a good compatibility between polymer and drug. Results from X-ray diffraction and DSC suggested that most of the incorporated TAM was evenly distributed in the fiber matrix in an amorphous state, except for a minority that aggregated on the surface of fibers. The drug content in the fibers was lower than that in the spinning solution and about 10% of TAM was lost during spinning process. In vitro dissolution results indicated that, compared to TAM-PAN fibers, HPMC/PAN composite systems had weaker initial burst release effects and more drug-loading. The combination of hydrophilic polymer HPMC with PAN could improve the performance of polymer matrix composite fibers in regulating the drug-release profiles.  相似文献   

13.
The present paper reports the preparation and characterization of composite hydroxypropyl methylcellulose/polyacrylonitrile (HPMC/PAN)-medicated fibers via a wet spinning technique. Tamoxifen (TAM) was selected as a model drug. Numerous analyses were conducted to characterize the mechanical, structure and morphology properties of the composite fibers. The drug content and in vitro dissolution behavior were also investigated. SEM images showed that the TAM-loaded HPMC/PAN composite fibers had a finger-like outer skin and a porous structure. FT-IR spectra demonstrated that there was a good compatibility between polymer and drug. Results from X-ray diffraction and DSC suggested that most of the incorporated TAM was evenly distributed in the fiber matrix in an amorphous state, except for a minority that aggregated on the surface of fibers. The drug content in the fibers was lower than that in the spinning solution and about 10% of TAM was lost during spinning process. In vitro dissolution results indicated that, compared to TAM–PAN fibers, HPMC/PAN composite systems had weaker initial burst release effects and more drug-loading. The combination of hydrophilic polymer HPMC with PAN could improve the performance of polymer matrix composite fibers in regulating the drug-release profiles.  相似文献   

14.
A novel, empirical, macroscopic model is developed to describe the release of a model anticancer drug, Mitoxantrone, from native and chemically modified porous Si (PSi) thin films. Drug release from these carriers results from a combination of two mechanisms, i.e. out-diffusion of the drug molecules and erosion of the Si scaffold. Thus, the proposed mathematical model adapts the Crank model to lump the effects of temporal changes in molecular interactions and carrier scaffold erosion into a comprehensive model of hindered drug diffusion from nanoscale porous systems. Careful characterization of pore size, porosity, surface area, drug loading, as well as Si scaffold degradation profiles, measured over the same time-scale as drug release, are incorporated into the model parameter estimation. A comparison of the experimental and model results shows accurate representation of the data, emphasizing the reliability of the model. The proposed model shows that drug diffusivity values significantly vary with time for the two studied carriers, which are ascribed to the distinctive role of the prevailing physical mechanisms in each system. Finally, secondary validation of the proposed model is demonstrated by showing adequate fit to published data of the release of dexamethasone from similar mesoporous Si carriers.  相似文献   

15.
Biodegradable microcapsules of pentamidine/poly(L-lactide-co-D,L-lactide) were prepared by solvent evaporation technique using a mixture of organic solvents. The control batch of microcapsules was prepared using dichloromethane. The effect of solvent on the characteristics of pentamidine loaded microcapsules was examined by substituting up to 30% of dichloromethane with acetone, methanol, DMSO, ethyl acetate, and ethanol, respectively. No significant change in the surface morphology was observed when dichloromethane was substituted with 20% or less amount of other solvents. These microcapsules were all porous and spherical. However, the use of 30% DMSO or ethanol, along with dichloromethane, resulted in a mixture of elongated and spherical microcapsules. The efficiency of encapsulation of these two batches was also significantly higher than the other batches of microcapsules. The average particle size of the microcapsules prepared with 30% DMSO (165 microm) was significantly higher than the other batches (< 80 microm). A substitution of 10-30% dichloromethane with other listed organic solvents also showed a significant difference in the initial drug release. The drug release within the first twenty-four hours varied from 4 to 16%. The use of a second organic solvent, except ethanol, resulted in a significantly higher drug release during the second half of the dissolution study. The drug release continued more than 60 days.  相似文献   

16.
In the present study, methotrexate (MTX)-encapsulated magnetic-/pH-responsive hydrogel beads based on Fe3O4 nanoparticles and chitosan were successfully prepared through a one-step gelation process, which is a very facile, economic and environmentally friendly route. The developed hydrogel beads exhibited homogeneous porous structure and super-paramagnetic responsibility. MTX can be successfully encapsulated into magnetic chitosan hydrogel beads, and the drug encapsulation efficiency (%) and encapsulation content (%) were 93.8 and 6.28%, respectively. In addition, the drug release studies in vitro indicated that the MTX-encapsulated magnetic chitosan hydrogel beads had excellent pH-sensitivity, 90.6% MTX was released from the magnetic chitosan hydrogel beads within 48 h at pH 4.0. WST-1 assays in human liver hepatocellular carcinoma cells (HepG2) demonstrated that the MTX-encapsulated magnetic chitosan hydrogel beads had good cytocompatibility and high anti-tumor activity. Therefore, our results revealed that the MTX-encapsulated magnetic chitosan hydrogel beads would be a competitive candidate for controlled drug release in the area of targeted cancer therapy in the near future.  相似文献   

17.
This work focuses on an evaluation of novel composites of porous silicon (pSi) with the biocompatible polymer ε-polycaprolactone (PCL) for drug delivery and tissue engineering applications. The degradation behavior of the composites in terms of their morphology along with the effect of pSi on polymer degradation was monitored. PSi particles loaded with the drug camptothecin (CPT) were physically embedded into PCL films formed from electrospun PCL fiber sheets. PSi/PCL composites revealed a release profile of CPT (monitored via fluorescence spectroscopy) in accordance with the Higuchi release model, with significantly lower burst release percentage compared to pSi microparticles alone. Degradation studies of the composites, using gravimetric analysis, differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FESEM), carried out in phosphate-buffered saline (PBS) under simulated physiological conditions, indicated a modest mass loss (15%) over 5 weeks due to pSi dissolution and minor polymer hydrolysis. DSC results showed that, relative to PCL-only controls, pSi suppressed crystallization of the polymer film during PBS exposure. This suppression affects the evolution of surface morphology during this exposure that, in turn, influences the degradation behavior of the polymer. The implications of the above properties of these composites as a possible therapeutic device are discussed.  相似文献   

18.
A controlled and observable drug delivery system that enables long-term local drug administration is reported. Biodegradable and biocompatible drug-loaded porous Si microparticles were prepared from silicon wafers, resulting in a porous 1-dimensional photonic crystal (rugate filter) approx. 12 μm thick and 35 μm across. An organic linker, 1-undecylenic acid, was attached to the Si-H terminated inner surface of the particles by hydrosilylation and the anthracycline drug daunorubicin was bound to the carboxy terminus of the linker. Degradation of the porous Si matrix in vitro was found to release the drug in a linear and sustained fashion for 30 d. The bioactivity of the released daunorubicin was verified on retinal pigment epithelial (RPE) cells. The degradation/drug delivery process was monitored in situ by digital imaging or spectroscopic measurement of the photonic resonance reflected from the nanostructured particles, and a simple linear correlation between observed wavelength and drug release was observed. Changes in the optical reflectance spectrum were sufficiently large to be visible as a distinctive red to green color change.  相似文献   

19.
Natural rubber latex biomedical (NRLb) obtained from the rubber tree Hevea brasiliensis has shown great potential in biomedicine and biomaterial applications. NRLb has been utilized as a physical barrier against infectious agents and in the controlled release of drugs and extracts. In the present work, NRLb was polymerized in a lyophilizer using different volumes of water to control the resultant membrane porosity and characterized regarding the surface morphology, water vapour permeability (WVP), mechanical properties, haemolytic activity and cytotoxicity. The release of bovine serum albumin protein from the latex membranes was evaluated. Drug release rates increased with porosity and membranes were able to control protein release up to 12 h. In addition, WVP increased with the quantity of pores. The cell viability observed for the porous membrane was higher than that noted for conventional membranes. In summary, the porosity control of natural latex membranes can be used to modulate properties and make them suitable for biomedical applications, such as wound dressings, modulated gas-exchange membranes and controlled drug delivery systems.  相似文献   

20.
目的 研究利用微孔膜乳化法制备载抗癌药10-羟基喜树碱(IqCPT)缓释微球的可行性。方法 以HCPT为模型药物,聚乳酸(PEA)为载体,以膜乳化法制备载药微球,并研究制剂的表面形态、载药率、包封率和缓释效果等性质。结果 膜乳化法制备的载HCPT聚乳酸微球,粒径可控制在1-10μm之间。表面圆整,稳定性、单分散性良好,载药率和包封率最高分别可达32.7%和81.7%,24h体外累积释放量为17.3%。结论 膜乳化法制备的载HCPT微球制剂均匀分散,具有明显缓释效果,是制备缓释微球制剂的较好方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号