首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is extensive evidence that several neurotransmitter systems within the basolateral amygdala (BLA) influence memory consolidation. The present study investigated the influence of dopamine (DA) in the BLA on the consolidation of memory for inhibitory avoidance (IA) training. Male Sprague-Dawley rats (approximately 300 g) were trained on a step-through IA task and, 48 h later, tested for retention as indexed by their latencies to enter the shock compartment on the test day. Drugs were infused into the BLA or central amygdala nucleus (CEA) immediately or 3 h after training via bilateral cannulae. DA infused into the BLA immediately after training enhanced retention, whereas DA infused into the BLA 3 h after training or into the CEA did not affect retention. Infusions of the dopaminergic antagonist cis-Flupenthixol together with DA blocked the DA-induced memory enhancement. Immediate post-training intra-BLA infusions of the D1 receptor antagonist SCH 23390 or the D2 receptor antagonist sulpiride impaired retention. beta-adrenergic or muscarinic cholinergic receptor antagonists coinfused into the BLA with DA blocked the memory enhancing effects of DA. These findings indicate that dopaminergic activation within the BLA modulates memory consolidation and that the modulation involves activation of both D1 and D2 receptors and concurrent activation of beta-adrenergic and cholinergic influences within the BLA.  相似文献   

2.
Infusion of a beta-adrenoceptor antagonist into the basolateral nucleus of the amygdala (BLA) blocks memory enhancement induced by systemic or intra-BLA administration of a glucocorticoid receptor (GR) agonist. As there is evidence that glucocorticoids interact with the noradrenergic signalling pathway in activating adenosine 3prime prime or minute,5prime prime or minute-cyclic monophosphate (cAMP), the present experiments examined whether glucocorticoids influence the beta-adrenoceptor--cAMP system in the BLA in modulating memory consolidation. Male, Sprague--Dawley rats received bilateral infusions of atenolol (a beta-adrenoceptor antagonist), prazosin (an alpha1-adrenoceptor antagonist) or Rp-cAMPS (a protein kinase A inhibitor) into the BLA 10 min before inhibitory avoidance training and immediate post-training intra-BLA infusions of the GR agonist, RU 28362. Atenolol and Rp-cAMPS, but not prazosin, blocked 48-h retention enhancement induced by RU 28362. A second series of experiments investigated whether a GR antagonist alters the effect of noradrenergic activation in the BLA on memory consolidation. Bilateral intra-BLA infusions of the GR antagonist, RU 38486, administered 10 min before inhibitory avoidance training completely blocked retention enhancement induced by alpha1-adrenoceptor activation and attenuated the dose--response effects of post-training intra-BLA infusions of clenbuterol (a beta-adrenoceptor agonist). However, the GR antagonist did not alter retention enhancement induced by post-training intra-BLA infusions of 8-Br-cAMP (a synthetic cAMP analogue). These findings suggest that glucocorticoids influence the efficacy of noradrenergic stimulation in the BLA on memory consolidation via an interaction with the beta-adrenoceptor--cAMP cascade, at a locus between the membrane-bound beta-adrenoceptor and the intracellular cAMP formation site.  相似文献   

3.
The role of the basolateral complex of the amygdala (BLA) in recognition memory remains poorly understood. The mammalian target of rapamycin (mTOR) in the BLA and other brain areas has been implicated in synaptic plasticity and memory. We have recently shown that mTOR signaling in both the BLA and the dorsal hippocampus (DH) is required for formation and reconsolidation of inhibitory avoidance, a fear-motivated memory task. Here we examined the effects of infusions of the mTOR inhibitor rapamycin into the BLA before or after either training or reactivation on retention of novel object recognition (NOR) memory in rats, and compared the effects with those obtained using intra-DH infusions. Male Wistar rats received bilateral infusions of vehicle or rapamycin into the BLA or DH before or after NOR training or reactivation. Rapamycin impaired NOR retention tested 24 h after training when given either before or immediately after training into the BLA or DH. Rapamycin also impaired retention measured 24 h after reactivation when infused before reactivation into the BLA or DH, or immediately after reactivation into the BLA, but not when given 6 h after reactivation into either the BLA or DH. The results suggest that mTOR signaling in the BLA and DH is involved in NOR memory formation and stabilization.  相似文献   

4.
There is extensive evidence indicating that the noradrenergic system of the amygdala, particularly the basolateral nucleus of the amygdala (BLA), is involved in memory consolidation. Infusions of norepinephrine or beta-adrenoceptor agonists into the BLA enhance memory for inhibitory avoidance as well as water maze training. Other findings show that alpha 1-adrenoceptor activation also enhances memory for inhibitory avoidance training through an interaction with beta-adrenergic mechanisms. The central hypothesis guiding the research reviewed in this chapter is that stress hormones released during emotionally arousing experiences activate noradrenergic mechanisms in the BLA, resulting in enhanced memory for those events. Findings from experiments using rats have shown that the memory-modulatory effects of the adrenocortical stress hormones epinephrine and glucocorticoids are mediated by influences involving activation of beta-adrenoceptors in the BLA. In addition, both behavioral and microdialysis studies have shown that the noradrenergic system of the BLA also mediates the influences of other neuromodulatory systems such as opioid peptidergic and GABAergic systems on memory storage. Other findings indicate that this stress hormone-induced activation of noradrenergic mechanisms in the BLA regulates explicit/declarative memory storage in other brain regions.  相似文献   

5.
In rats, the septo-hippocampal system is important for memory encoding. Previous reports indicate that muscimol, a specific GABAergic agonist induces learning and memory deficits when infused into the medial septal area. The basolateral nucleus of the amygdala (BLA) modulates memory encoding in other brain areas, including the hippocampus. To explore the interactions between the septo-hippocampal system and amygdala in memory, we studied the effects of intra-medial septal infusions of muscimol in rats with BLA lesions. Animals received sham surgery or excitotoxic BLA lesions and were given infusions of either vehicle or muscimol (5 nmol) into the medial septal area 5 min prior to training sessions in inhibitory avoidance and water maze tasks. In the inhibitory avoidance task, muscimol-induced memory impairment was potentiated by BLA amygdala lesions. Additionally, in the water maze task, BLA-lesioned rats given muscimol infusions into the medial septal also showed memory impairment. These findings indicate that the MSA interacts with the BLA in the processing of memory storage.  相似文献   

6.
These experiments examined the effects of bilateral amygdala nuclei lesions on modulation of memory storage induced by bilateral intrahippocampal microinfusions of glucocorticoids in male Sprague-Dawley rats. Post-training infusions of the glucocorticoid receptor (type II) agonist RU 28362 (3.0 or 10.0 ng) enhanced inhibitory avoidance retention, and infusions of the glucocorticoid receptor antagonist RU 38486 (3.0 or 10.0 ng) administered shortly before training in a water maze spatial task did not affect acquisition, but impaired retention. In both tasks, neurochemically induced lesions of the basolateral but not of the central amygdala blocked the memory-modulatory effects of the intrahippocampal infusions of the drugs affecting glucocorticoid receptors. Lesions of the central amygdala alone impaired inhibitory avoidance retention, but basolateral amygdala lesions alone did not affect acquisition or retention in either task. These findings are consistent with previous evidence indicating that lesions of the basolateral amygdala block the memory-modulatory effects of systemically administered glucocorticoids, and provide further evidence that the basolateral amygdala is a critical area involved in regulating glucocorticoid effects in other brain regions involved in memory storage.  相似文献   

7.
There is extensive evidence suggesting that the basolateral nucleus of the amygdala plays a critical role in modulating memory consolidation processes in other brain regions. The present experiments examined interactions between the basolateral amygdala and the entorhinal cortex in modulating memory consolidation for inhibitory avoidance training. Several studies have reported that activation of the second messenger system adenosine 3',5'-cyclic monophosphate (cAMP) in several brain regions enhances memory and induces long-term plasticity. In the present experiments, a unilateral infusion of the cAMP analogue, 8-Br-cAMP (0.25 or 1.25 microg in 0.5 microL), administered into the entorhinal cortex of male Sprague-Dawley rats immediately after training, enhanced 48-h retention. An N-methyl-d-aspartate-induced lesion of the ipsilateral basolateral amygdala did not impair retention, but blocked the memory-enhancing effect of 8-Br-cAMP (infused into the entorhinal cortex) post-training. A lesion of the contralateral basolateral amygdala did not block the 8-Br-cAMP-induced retention enhancement. These findings indicate that an intact basolateral amygdala is essential for modulation of memory consolidation involving the entorhinal cortex, and are consistent with evidence that the basolateral amygdala regulates memory consolidation mediated by other brain regions.  相似文献   

8.
Glucocorticoid-induced memory enhancement is known to depend on beta-adrenoceptor activation in the basolateral amygdala (BLA). Additionally, inactivation of muscarinic cholinergic receptors in the rat amygdala blocks memory enhancement induced by concurrent beta-adrenergic activation. Together, these findings suggest that glucocorticoid-induced modulation of memory consolidation requires cholinergic as well as adrenergic activation in the BLA. Two experiments investigated this issue. The first experiment examined whether blockade of muscarinic cholinergic receptors in the BLA with atropine alters the memory-enhancing effects of the systemically administered glucocorticoid dexamethasone. Dexamethasone (0.3, 1.0 or 3.0 mg/kg, s.c.) administered to rats immediately after inhibitory avoidance training produced dose-dependent enhancement of 48-h retention. Concurrent bilateral infusions of the muscarinic cholinergic antagonist atropine (0.5 microg in 0.2 microL per side) into the BLA blocked the memory enhancement. The second experiment investigated whether the BLA is a locus of interaction between glucocorticoid and muscarinic activation. The specific glucocorticoid receptor (GR or type II) agonist RU 28362 (1.0, 3.0 or 10 ng) was infused into the BLA either alone or together with atropine immediately after training. The GR agonist produced dose-dependent memory enhancement and atropine blocked the memory enhancement. These findings indicate that muscarinic cholinergic activation within the BLA is critical for enabling glucocorticoid enhancement of memory consolidation and that enhancement of memory induced by GR activation in the BLA requires cholinergic activation within the BLA.  相似文献   

9.
Several receptor and intracellular signalling systems in the basolateral amygdala (BLA) regulate memory formation. In the present study, we show that bombesin/gastrin-releasing peptide (GRP) receptors in the BLA are involved in the consolidation of affectively motivated memory. Adult male rats were trained in a single-trial step-down inhibitory avoidance task and tested for retention 24 h later. Post-training systemic injection of the bombesin/GRP receptor antagonist (D-Tpi6, Leu13 psi[CH2NH]-Leu14) bombesin (6-14) (RC-3095) impaired memory retention. In rats implanted under thionembutal anaesthesia with guide cannulae aimed at the BLA, post-training bilateral infusion of RC-3095 into the BLA dose-dependently impaired retention. Pre-training unilateral muscimol inactivation of the BLA blocked the memory-impairing effect of post-training systemic administration of RC-3095. The results suggest that bombesin/GRP receptors in the BLA are involved in the consolidation of aversive memory, and the BLA mediates the memory-impairing effect of systemic bombesin/GRP receptor blockade.  相似文献   

10.
Adult male rats bilaterally implanted with guide canullae aimed either at the dorsal hippocampus (dHIP) or the basolateral nucleus of the amygdala (BLA) were trained in a step-down inhibitory avoidance task (IA) and tested for retention 24 h after training. Immediately after training, animals were given a bilateral infusion of the N-methyl-D-aspartate (NMDA) glutamate receptor antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) (5.0 microg) into the dHIP or the BLA. Both intrahippocampal and intraamygdala infusions of AP5 blocked IA retention. Preexposure to the training box, but not to a different environment 24 h prior to training prevented the impairing effect of intrahippocampal infusion of AP5 on retention. Preexposure did not affect the retention impairment induced by intraamygdala infusion of AP5. These data suggest that hippocampal NMDA receptors might be involved in the contextual and spatial aspects, while amygdalar NMDA receptors might be involved in the aversive aspects of memory for IA.  相似文献   

11.
Extensive evidence suggests that N-methyl-D-aspartate (NMDA) glutamate receptor channels in the amygdala are involved in fear-motivated learning, and infusion of NMDA receptor antagonists into the amygdala blocks memory of fear-motivated tasks. Recent studies have shown that previous training can prevent the amnestic effects of NMDA receptor antagonists on spatial learning. In the present study, we evaluated whether infusion of the NMDA antagonist D,L-2-amino-5-phosphonopentanoic acid (AP5) into the basolateral nucleus of the amygdala (BLA) impairs reinforcement of inhibitory avoidance learning in rats given previous training. Adult male Wistar rats (220-310 g) were bilaterally implanted under thionembutal anesthesia (30 mg/kg, i.p.) with 9.0-mm guide cannulae aimed 1.0 mm above the BLA. Infusion of AP5 (5.0 microg) 10 min prior to training in a step-down inhibitory avoidance task (0.4 mA footshock) blocked retention measured 24 h after training. When infused 10 min prior to a second training session in animals given previous training (0.2 mA footshock), AP5 blocked the enhancement of retention induced by the second training. Control experiments showed that the effects were not due to alterations in motor activity or footshock sensitivity. The results suggest that NMDA receptors in the basolateral amygdala are involved in both formation of memory for inhibitory avoidance and enhancement of retention in rats given previous training.  相似文献   

12.
The basolateral region of the amygdala (BLA) plays a crucial role in making significant experiences memorable. There is extensive evidence that stress hormones and other neuromodulatory systems activated by arousing training experiences converge in regulating noradrenaline-receptor activity within the BLA. Such activation of the BLA modulates memory consolidation via BLA projections to many brain regions involved in consolidating lasting memory, including the hippocampus, caudate nucleus, nucleus basalis and cortex. Investigation of the involvement of BLA projections to other brain regions is essential for understanding influences of the amygdala on different aspects and forms of memory.  相似文献   

13.
These experiments examined the involvement of glucocorticoid receptors (GRs or type II) located in the A2-noradrenergic cell group of the rat nucleus of the solitary tract (NTS) in modulating memory storage. Bilateral intra-NTS infusions (0.5 microL) of the specific GR agonist RU 28362 (11beta, 17beta-dihydroxy-6, 21-dimethyl-17alpha-pregna-4,6-trien-20yn-3-one), in doses ranging from 0.01 to 10.0 ng, immediately after inhibitory avoidance training produced a dose-dependent enhancement of 48 h retention performance. Infusions of 0.1 or 1.0 ng of the agonist enhanced retention, whereas lower or higher doses were ineffective. Post-training infusions of the GR antagonist RU 38486 [17beta-hydroxy-11beta-(4-dimethylaminophenyl)-17alpha-(1-pr opynyl)-o estra-4,9-dien-3-one, 0.01-10.0 ng] into the NTS did not significantly affect retention performance, but shifted the dose-response effects of post-training systemic injections of the synthetic glucocorticoid dexamethasone to the right. These results indicate that activation of GRs in the NTS can influence memory formation for inhibitory avoidance training, and suggest that the effects of circulating glucocorticoids on memory are mediated, in part, by an activation of GRs in the NTS. Additionally, pretraining infusions of the beta1-adrenergic antagonist atenolol (0.5 microg in 0.2 microL) into the basolateral nucleus of the amygdala (BLA), a brain structure which receives noradrenergic projections from the NTS and is implicated in memory storage modulation, blocked the memory-enhancing effects of the GR agonist (1.0 ng) infused into the NTS. These findings provide evidence that memory storage is modulated by glucocorticoid binding to GRs in noradrenergic cell bodies in the NTS and suggest that these modulatory effects are conveyed by ascending projections to the BLA.  相似文献   

14.
It is well established that glucocorticoid hormones, secreted by the adrenal cortex after a stressful event, influence cognitive performance. This article reviews recent findings from this laboratory on the acute effects of glucocorticoids in rats on specific memory phases, i.e., memory consolidation and memory retrieval. Posttraining activation of glucocorticoid-sensitive pathways involving glucocorticoid receptors (GRs) enhances memory consolidation in a dose-dependent manner. Glucocorticoid influences on memory consolidation depend on noradrenergic activation of the basolateral complex of the amygdala (BLA) and interactions of the BLA with other brain regions. By contrast, memory retrieval processes are usually impaired with high circulating levels of glucocorticoids or following infusions of GR agonists into the hippocampus. Although the BLA does not appear to be a site of glucocorticoid action in influencing memory retrieval, an intact BLA is required for enabling glucocorticoid effects on memory retrieval. The BLA appears to be a key structure in a memory-modulatory system that regulates, in concert with other brain regions, stress and glucocorticoid effects on both memory consolidation and memory retrieval.  相似文献   

15.
This paper summarizes recent findings on the amygdala's role in mediating acute effects of glucocorticoids on memory consolidation in rats. Posttraining activation of glucocorticoid-sensitive pathways involving glucocorticoid receptors (GRs or type II) enhances memory consolidation in a dose-dependent inverted-U fashion. Selective lesions of the basolateral nucleus of the amygdala (BLA) or infusions of beta-adrenoceptor antagonists into the BLA block the memory-modulatory effects of systemic injections of glucocorticoids. Additionally, posttraining infusions of a specific GR agonist administered directly into the BLA enhance memory consolidation, whereas those of a GR antagonist impair. These findings indicate that glucocorticoid effects on memory consolidation are mediated, in part, by an activation of GRs in the BLA and that the effects require beta-adrenergic activity in the BLA. Other findings indicate that the BLA interacts with the hippocampus in mediating glucocorticoid-induced modulatory influences on memory consolidation. Lesions of the BLA or inactivation of beta-adrenoceptors within the BLA also block the memory-modulatory effects of intrahippocampal administration of a GR agonist or antagonist. These findings are in agreement with the general hypothesis that the BLA integrates hormonal and neuromodulatory influences on memory consolidation. However, the BLA is not a permanent locus of storage for this information, but modulates consolidation processes for explicit/associative memories in other brain regions, including the hippocampus.  相似文献   

16.
There is extensive evidence that amnestic treatments are less effective, or ineffective when administered to subjects that have been overtrained or subjected to high foot‐shock intensities in aversively motivated learning. This protective effect has been found with a variety of learning tasks and with treatments that disrupt activity in several regions of the brain, including the hippocampus, amygdala, striatum, and substantia nigra. Such findings have been interpreted as suggesting that the brain regions disrupted are not critical sites for the memory processes induced by these types of training. In most experiments investigating this issue the amnestic treatments were administered after training. Thus, it might be less amnesia was induced because the training accelerated memory consolidation and, thus, the maximum effect of the amnestic treatment occurred after memory of the learning experience was consolidated. This study investigated this issue by inactivating the hippocampus of rats bilaterally with tetrodotoxin (TTX) (10 ng/side) 30 min before one‐trial inhibitory avoidance training using relatively low (1.0 mA), medium (2.0 mA), or high (3.0 mA) foot‐shock intensities. Retention of the task was measured 48 h after training. TTX produced a profound retention deficit, a mild deficit, and no deficit at all in the 1.0, 2.0, and 3.0 mA groups, respectively. These data confirm the protective effect of training with relatively high foot‐shock intensity against experimentally induced amnesia, and suggests that this protection is not due to accelerated consolidation. Rather, the findings suggest that strong training activates brain systems other than those typically involved in mediating memory consolidation. © 2013 Wiley Periodicals, Inc.  相似文献   

17.
The amygdala is important for memory processes of emotionally motivated learning and the amygdala glutamatergic system may play a key role in this process. In this study we assessed the effect of the infusion of (+/-)-alpha-methyl-4-carboxyphenylglycine (MCPG), a metabotropic glutamate receptor (mGluR) antagonist, into the basolateral complex of the amygdala (BLA) on the learning and retention of an emotionally motivated task. Rats received either vehicle or three different doses of MCPG (0.2, or 1.0, or 5.0 microg/0.2 microl/side, respectively) bilaterally into the BLA, 5 min before they were trained in a continuous multiple-trial inhibitory avoidance (CMIA) task. Response latencies during the training were recorded. Retention was assessed 8 days later. MCPG in the doses given did not significantly affect the acquisition of the CMIA task. However, MCPG at a dose of 5.0 microg/0.2 microl/side impaired the long-term retention test performance. Additionally, a nociception test indicated that dose of MCPG infused into the BLA did not affect the footshock sensitivity. Our results indicate that MCPG, when infused into the BLA of rats prior to the training, impaired long-term memory of aversive training without affecting acquisition.  相似文献   

18.
These experiments examined the effects of posttraining systemic administration of the GABAergic agonist muscimol and the GABAergic antagonist bicuculline on retention in mice with bilateral lesions of the amygdala, dorsal hippocampus or caudate nucleus. Unoperated male CD1 mice and mice with either sham lesions or electrolytically induced lesions of these 3 brain regions were trained in a one-trial inhibitory avoidance task and, immediately after training, received i.p. injections of either muscimol, (1.0, 2.0 or 3.0 mg/kg), bicuculline, (0.25, 0.5 or 1.0 mg/kg), or control solutions. Retention was tested 24 h after training. Lesions of the 3 brain regions produced comparable impairment of retention. In the unoperated controls and sham controls muscimol and bicuculline produced dose-dependent impairment and enhancement, respectively, of retention. The drug effects on retention were blocked by lesions of the amygdala and hippocampus, but were not blocked by lesions of the caudate nucleus. These findings are consistent with other recent evidence suggesting that the amygdala and hippocampus are involved in mediating posttraining neuromodulatory influences on memory storage.  相似文献   

19.
The amygdala is important for memory processes of emotionally motivated learning and the amygdala glutamatergic system may play a key role in this process. In this study we assessed the effect of the infusion of (±)-α-methyl-4-carboxyphenylglycine (MCPG), a metabotropic glutamate receptor (mGluR) antagonist, into the basolateral complex of the amygdala (BLA) on the learning and retention of an emotionally motivated task. Rats received either vehicle or three different doses of MCPG (0.2, or 1.0, or 5.0 μg/0.2μl/side, respectively) bilaterally into the BLA, 5 min before they were trained in a continuous multiple-trial inhibitory avoidance (CMIA) task. Response latencies during the training were recorded. Retention was assessed 8 days later. MCPG in the doses given did not significantly affect the acquisition of the CMIA task. However, MCPG at a dose of 5.0 μg/0.2 μl/side impaired the long-term retention test performance. Additionally, a nociception test indicated that dose of MCPG infused into the BLA did not affect the footshock sensitivity. Our results indicate that MCPG, when infused into the BLA of rats prior to the training, impaired long-term memory of aversive training without affecting acquisition.  相似文献   

20.
Although the lateral and basal nuclei of the amygdala are believed to be essential for the acquisition of Pavlovian fear conditioning, studies using post-training manipulations of the amygdala in the inhibitory avoidance learning paradigm have recently called this view into question. We used the GABA(A) agonist muscimol to functionally inactivate these nuclei immediately after single-trial Pavlovian fear conditioning or single-trial inhibitory avoidance learning. Immediate post-training infusions of muscimol had no effect on Pavlovian conditioning but produced a dose-dependent effect on inhibitory avoidance. However, pre-training infusions dose-dependently disrupted Pavlovian conditioning. These findings indicate that the amygdala plays an essential role in the acquisition of Pavlovian fear conditioning and contributes to the modulation of memory consolidation of inhibitory avoidance but not of Pavlovian fear conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号