共查询到20条相似文献,搜索用时 26 毫秒
1.
《Journal of biomaterials science. Polymer edition》2013,24(4):419-433
Hyaluronic acid (hyaluronan, HA) has many medical applications as a biomaterial. To enhance its biostability, a novel hydrogel of cross-linked hyaluronic acid was prepared using a double cross-linking process, which involves building cross-linkages between hydroxyl group pairs and carboxyl group pairs. The present study explored a number of cross-linking processes in order to obtain different degrees of cross-linking, which were evaluated by the measurement of water absorption capacity as an index of the gel network density. To gain a better understanding of the stability of the gel, the chemical structure and particularly the rheological behaviour of the cross-linked HA, which included the influences of factors, such as degree of cross-linking, HA concentration and gel particle size, were investigated. The in vitro biostability against hyaluronidase and free radical degradation was tested to show that the cross-linked hydrogel had improved resistance to in vitro hyaluronidase and free radical degradation. 相似文献
2.
Zhao X 《Journal of biomaterials science. Polymer edition》2006,17(4):419-433
Hyaluronic acid (hyaluronan, HA) has many medical applications as a biomaterial. To enhance its biostability, a novel hydrogel of cross-linked hyaluronic acid was prepared using a double cross-linking process, which involves building cross-linkages between hydroxyl group pairs and carboxyl group pairs. The present study explored a number of cross-linking processes in order to obtain different degrees of cross-linking, which were evaluated by the measurement of water absorption capacity as an index of the gel network density. To gain a better understanding of the stability of the gel, the chemical structure and particularly the rheological behaviour of the cross-linked HA, which included the influences of factors, such as degree of cross-linking, HA concentration and gel particle size, were investigated. The in vitro biostability against hyaluronidase and free radical degradation was tested to show that the cross-linked hydrogel had improved resistance to in vitro hyaluronidase and free radical degradation. 相似文献
3.
Experimental tumors of myxoid malignant fibrous histiocytoma and hyaluronic acid production 总被引:1,自引:0,他引:1
Using B-10 tumor cells originated from mouse peritoneal macrophages transformed by simian virus 40, we succeeded in producing tumors in an ascitic form similar to human myxoid malignant fibrous histiocytoma. The tumor cells possessed Fc and C3 receptors, immunophagocytic activity, and lysosomal enzymes. They showed pseudopodic extensions of the cytoplasm containing lysosomes. Therefore, they maintained the functional and morphological characteristics of macrophages. On cellulose acetate electrophoresis with or without enzymatic degradation, the ascitic fluid contained a single component of glycosaminoglycans; hyaluronic acid. Electron microscopy utilizing dialyzed iron demonstrated electron-dense reaction products on the cell surfaces. Thus, the histiocytic origin of malignant fibrous histiocytoma was suggested and possibility was expressed, concerning the histogenesis of myxoid malignant fibrous histiocytoma, that the transformed tumor cells could synthesize hyaluronic acid on the cell surface and release it into the stroma. 相似文献
4.
《Journal of biomaterials science. Polymer edition》2013,24(11):1347-1358
A novel hyaluronic acid (HA)-based hydrogel was prepared through polyion complex (PIC) formation between cationic polylactide (PLA)-based microspheres (MS+) and hyaluronic acid (HA?) as an anionic polyelectrolyte. The MS+ and HA formed a biodegradable PIC hydrogel (HA?/MS+) when mixed in aqueous media. The swelling behavior and mechanical properties of the PIC hydrogel could be controlled by changing the charge ratio between HA? and MS+. In addition, the HA?/MS+ PIC hydrogel resulted in a lower inflammatory response compared with a collagen hydrogel in vivo. 相似文献
5.
Arimura H Ouchi T Kishida A Ohya Y 《Journal of biomaterials science. Polymer edition》2005,16(11):1347-1358
A novel hyaluronic acid (HA)-based hydrogel was prepared through polyion complex (PIC) formation between cationic polylactide (PLA)-based microspheres (MS+) and hyaluronic acid (HA-) as an anionic polyelectrolyte. The MS+ and HA formed a biodegradable PIC hydrogel (HA-/MS+) when mixed in aqueous media. The swelling behavior and mechanical properties of the PIC hydrogel could be controlled by changing the charge ratio between HA- and MS+. In addition, the HA-/MS+ PIC hydrogel resulted in a lower inflammatory response compared with a collagen hydrogel in vivo. 相似文献
6.
An injectable and biodegradable hydrogel system comprising hyaluronic acid-tyramine (HA-Tyr) conjugates can safely undergo covalent cross-linking in vivo by the addition of small amounts of peroxidase and hydrogen peroxide (H(2)O(2)), with the independent tuning of the gelation rate and degree of cross-linking. Such hydrogel networks with tunable mechanical and degradation properties may provide the additional level of control needed to enhance chondrogenesis and overall cartilage tissue formation in vitro and in vivo. In this study, HA-Tyr hydrogels were explored as biomimetic matrices for caprine mesenchymal stem cells (MSCs) in cartilage tissue engineering. The compressive modulus, equilibrium swelling and degradation rate could be controlled by varying the concentration of H(2)O(2) as the oxidant in the oxidative coupling reaction. Cellular condensation reflected by the increase in effective number density of rounded cells in lacunae was greater in softer hydrogel matrices with lower cross-linking that displayed enhanced scaffold contracture. Conversely, within higher cross-linked matrices, cells adopted a more elongated morphology, with a reduced degree of cellular condensation. Furthermore, the degree of hydrogel cross-linking also modulated matrix biosynthesis and cartilage tissue histogenesis. Lower cross-linked matrix enhanced chondrogenesis with increases in the percentage of cells with chondrocytic morphology; biosynthetic rates of glycosaminoglycan and type II collagen; and hyaline cartilage tissue formation. With increasing cross-linking degree and matrix stiffness, a shift in MSC differentiation toward fibrous phenotypes with the formation of fibrocartilage and fibrous tissues was observed. These findings suggest that the tunable three-dimensional microenvironment of the HA-Tyr hydrogels modulates cellular condensation during chondrogenesis and has a dramatic impact on spatial organization of cells, matrix biosynthesis, and overall cartilage tissue histogenesis. 相似文献
7.
Summary: Despite aggressive multi-modality therapy including surgery, radiation, and chemotherapy, the prognosis for patients with malignant primary brain tumors remains very poor. Moreover, the non-specific nature of conventional therapy for brain tumors often results in incapacitating damage to surrounding normal brain and systemic tissues. Thus, there is an urgent need for the development of therapeutic strategies that precisely target tumor cells while minimizing collateral damage to neighboring eloquent cerebral cortex. The rationale for using the immune system to target brain tumors is based on the premise that the inherent specificity of immunologic reactivity could meet the clear need for more specific and precise therapy. The success of this modality is dependent on our ability to understand the mechanisms of immune regulation within the central nervous system (CNS), as well as counter the broad defects in host cell-mediated immunity that malignant gliomas are known to elicit. Recent advances in our understanding of tumor-induced and host-mediated immunosuppressive mechanisms, the development of effective strategies to combat these suppressive effects, and a better understanding of how to deliver immunologic effector molecules more efficiently to CNS tumors have all facilitated significant progress toward the realization of true clinical benefit from immunotherapeutic treatment of malignant gliomas. 相似文献
8.
Stimulation of in vivo angiogenesis by cytokine-loaded hyaluronic acid hydrogel implants 总被引:1,自引:0,他引:1
Crosslinked hyaluronic acid (HA) hydrogels were evaluated for their ability to elicit new microvessel growth in vivo when preloaded with one of two cytokines, vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF). HA film samples were surgically implanted in the ear pinnas of mice, and the ears retrieved 7 or 14 days post implantation. Histologic analysis showed that all groups receiving an implant demonstrated significantly more microvessel density than control ears undergoing surgery but receiving no implant (p < 0.01). Moreover, aqueous administration of either growth factor produced substantially more vessel growth than an HA implant with no cytokine. However, the most striking result obtained was a dramatic synergistic interaction between HA and VEGF. Presentation of VEGF in crosslinked HA generated vessel density of NI = 6.7 at day 14, where NI is a neovascularization index defined below, more than twice the effect of the sum of HA alone (NI = 1.8) plus VEGF alone (NI=1.3). This was twice the vessel density generated by co-addition of HA and bFGF (NI=3.4, p<0.001). New therapeutic approaches for numerous pathologies could be notably enhanced by the localized, synergistic angiogenic response produced by release of VEGF from crosslinked HA films. 相似文献
9.
Timothy M.A. Henderson Katharina Ladewig David N. Haylock Keith M. McLean 《Journal of biomaterials science. Polymer edition》2013,24(13):881-897
A facile method for the synthesis of cell supportive, highly macro-porous hyaluronic acid (HA) hydrogels via cryogelation is presented. Unmodified HA was chemically cross-linked via EDC/NHS zero-length cross-linking at sub-zero temperatures to yield cryogels with high porosity and high pore interconnectivity. The physical properties of the HA cryogels including porosity, average pore size, elasticity and swelling properties were characterised as a function of cryogelation conditions and composition of the precursor solution. The HA cryogels swell extensively in water, with the average porosities observed being ~90% under all conditions explored. The morphology of the cryogels can be controlled, allowing scaffolds with an average pore size ranging from 18 ± 2 to 87 ± 5 μm to be formed. By varying the cross-linking degree and HA concentration, a wide range of bulk elastic properties can be achieved, ranging from ~1 kPa to above 10 kPa. Preliminary cell culture experiments, with NIH 3T3 and HEK 293 cell lines, performed on biochemically modified and unmodified gels show the cryogels support cell proliferation and cell interactions, illustrating the biomedical potential of the platform. 相似文献
10.
Injectable hydrogel allows irregular surgical defects to be completely filled, lessens the risk of implant migration, and minimizes surgical defects due to the solution–gel state transformation. Here, we first propose a method for preparing oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) injectable hydrogel by chemical cross-linking under physiological conditions. Fourier transform infrared spectrometry and trinitrobenzene sulfonate assay were used to confirm the oxidation of hyaluronic acid. Rheological properties were measured to evaluate the working ability of the hydrogel for further clinical application. The oxi-HA/ADH in situ forming hydrogel can transform from liquid form into a gel-like matrix within 3–8 min, depending on the operational temperature. Furthermore, hydrogel degradation and cell assessment is also a concern for clinical application. Injectable oxi-HA/ADH8 hydrogel can maintain its gel-like state for at least 5 weeks with a degradation percentage of 40%. Importantly, oxi-HA/ADH8 hydrogel can assist in nucleus pulposus cell synthesis of type II collagen and aggrecan mRNA gene expression according to the results of real-time PCR analysis, and shows good biocompatibility based on cell viability and cytotoxicity assays. Based on the results of the current study, oxi-HA/ADH hydrogel may possess several advantages for future application in nucleus pulposus regeneration. 相似文献
11.
Pengfei Chen Shouan Zhu Yanyan Wang Qin Mu Yan Wu Qingqing Xia Xiaolei Zhang Heng Sun Jiadong Tao Hu Hu Ping Lu Hongwei Ouyang 《Biomaterials》2014
Degradation of proteoglycan is the key early event in the development of osteoarthritis (OA). The aggrecanase ADAMTS-5 has been identified as the major enzyme responsible for the degradation and thus is an attractive therapeutic target for OA. However, currently there is no report on using an ADAMTS-5 inhibition strategy for OA treatment. The present study aimed to investigate the synergic effect of combining an ADAMTS-5 inhibitor (114810) with a hyaluronic acid hydrogel (HAX) for OA therapeutics. Two OA models were induced by surgically creating an osteochondral defect or removing the anterior cruciate ligament (ACL) in Sprague–Dawley rats. Human OA cartilage was obtained from total joint replacement patients. Both human and rat OA cartilage showed marked proteoglycan loss with significantly increased ADAMTS-5 expression. The effectiveness of ADAMTS-5 inhibition by 114810 was confirmed by a cartilage explants assay in vitro, which showed that the 114810 halted the aggrecanase-mediated 374ARGS neoepitope released from aggrecan induced by IL-1β stimulation. The in vivo effect of ADAMTS-5 inhibition was assessed by the articular injection of HAX with 114810 into OA knee joints. Evaluated eight weeks after injection, 114810 with HAX significantly promoted the in vivo cartilage healing in the osteochondral defect model, and prevented the progression of degenerative changes in the ACL model. Our results confirmed that ADAMTS-5 is an effective target for OA treatment, and the intra-articular injection of an ADAMTS-5 inhibitor within HAX gel could be a promising strategy for OA treatment. 相似文献
12.
Yan XM Seo MS Hwang EJ Cho IH Hahn SK Sohn UD 《Journal of biomaterials applications》2012,27(2):179-186
HA-HMDA hydrogels were developed by direct amide bond formation between the carboxyl groups of hyaluronic acid (HA) and hexamethylenediamine (HMDA) with an optimized carboxyl group modification in the preliminary experiment. However, these HA-HMDA hydrogels transformed into an unstable liquid form after steam sterilization, and were problematic for application to actual dermal filler. A new method to overcome the problem of the previously developed HA-HMDA hydrogels is to prepare them by adjusting the pH in this study. Not only are these improved HA-HMDA hydrogels prepared with lower amounts of cross-linking and activation agents compared to the previously developed hydrogels, but they also maintain a stable form after steam sterilization. These improved HA-HMDA hydrogels showed higher viscoelasticity and longer lasting effects than the previous ones, despite the fact that the amount of the HMDA used as a cross-linking agent as well as 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide (EDC) and 1-hydroxybenzotriazole monohydrated (HOBt) used as activation agents were substantially reduced. According to an in?vivo test using a wrinkled mouse model, the improved HA-HMDA hydrogels exhibited significantly improved tissue augmentation effects compared to a positive control of Restylane, which is widely used for the tissue augmentation throughout the world. Furthermore, histological analysis revealed excellent biocompatibility and safety of the improved synthesized HA-HMDA hydrogels. 相似文献
13.
Fangfang Song Weikang Hu Longqiang Xiao Zheng Cao Xiaoqiong Li Chao Zhang 《Journal of biomaterials science. Polymer edition》2013,24(6):339-352
Hyaluronic acid (HA) is made up of repeating disaccharide units (β-1,4-d-glucuronic acid and β-1,3-N-acetyl-d-glucosamine) and is a major constituent of the extracellular matrix. HA and its derivatives which possess excellent biocompatibility and physiochemical properties have been studied in drug delivery and tissue engineering applications. Tyramine-based HA hydrogel with good compatibility to cell and tissue has been reported recently. However, inferior mechanical property may limit the biomedical application of the HA hydrogel. In this study, HA/graphene oxide (GO) nanocomposite (NC) hydrogel was prepared through a horseradish peroxidase catalyzed in situ cross-linking process. As compared with pure HA hydrogels, incorporation of GO to the HA matrix could significantly enhance the mechanical properties (storage moduli 1800 Pa) of the hydrogel and prolong the release of rhodamine B (RB) as the model drug from the hydrogel (33?h) as well. In addition, due to the multiple interactions between GO and RB, the NC hydrogels showed excellent pH-responsive release behavior. The release of RB from the NC hydrogel was prolonged at low pH (pH 4.0) in the presence of GO, which could be attributed to the enhanced interactions between GO and HA as well as with RB. In situ three-dimensional encapsulation of mouse embryonic fibroblasts (BALB 3T3 cells) in the NC hydrogels and cytotoxicity results indicated the cytocompatibility of both the enzymatic cross-linking process and HA/GO NC hydrogels (cell viability 90.6 ± 4.25%). The enzymatically catalyzed fabrication of NC hydrogels proved to be an easy and mild approach, and had great potential in the construction of both tissue engineering scaffolds and stimuli-responsive drug release matrices. 相似文献
14.
Furqan A. Maulvi Tejal G. Soni Dinesh O. Shah 《Journal of biomaterials science. Polymer edition》2013,24(15):1035-1050
Current dry eye treatment includes delivering comfort enhancing agents to the eye via eye drops, but low residence time of eye drops leads to low bioavailability. Frequent administration leads to incompliance in patients, so there is a great need for medical device such as contact lenses to treat dry eye. Studies in the past have demonstrated the efficacy of hyaluronic acid (HA) in the treatment of dry eyes using eye drops. In this paper, we present two methods to load HA in hydrogel contact lenses, soaking method and direct entrapment. The contact lenses were characterized by studying their optical and physical properties to determine their suitability as extended wear contact lenses. HA-laden hydrogel contact lenses prepared by soaking method showed release up to 48 h with acceptable physical and optical properties. Hydrogel contact lenses prepared by direct entrapment method showed significant sustained release in comparison to soaking method. HA entrapped in hydrogels resulted in reduction in % transmittance, sodium ion permeability and surface contact angle, while increase in % swelling. The impact on each of these properties was proportional to HA loading. The batch with 200-μg HA loading showed all acceptable values (parameters) for contact lens use. Results of cytotoxicity study indicated the safety of hydrogel contact lenses. In vivo pharmacokinetics studies in rabbit tear fluid showed dramatic increase in HA mean residence time and area under the curve with lenses in comparison to eye drop treatment. The study demonstrates the promising potential of delivering HA through contact lenses for the treatment of dry eye syndrome. 相似文献
15.
16.
Postoperative peritoneal adhesions cause pelvic pain, infertility, and potentially lethal bowel obstruction. We have designed and synthesized an injectable hydrogel composed of cross-linkable modified hyaluronic acids (HAs) conjugated to dexamethasone (HAX-DEX), and investigated its anti-inflammatory function. HAX-DEX formed a hydrogel in <1min by cross-linking reactions between aldehyde groups and hydrazide groups. The hydrogel degraded in media over 5 days, releasing dexamethasone slowly over that time, reducing TNF-alpha and IL-6 production from lipopolysaccharide-stimulated primary mouse macrophages in vitro. HAX-DEX was biocompatible on subcutaneous injection, and caused less inflammation than unmodified cross-linked HA. 相似文献
17.
Ferry Iskandar Asep Bayu Dani Nandiyanto W. Widiyastuti Lee Sin Young Kikuo Okuyama Leon Gradon 《Acta biomaterialia》2009,5(4):1027-1034
Hyaluronic acid (HA) porous particles with controllable porosity and pore size, ranging from 100 to 300 nm, were successfully prepared using a colloidal templating and spray-drying method. HA powder and polystyrene latex (PSL) particles, which were used as the precursor and templating agent, respectively, were mixed in aqueous solution and spray-dried using a two-fluid nozzle system to produce HA and PSL composite particles. Water was evaporated during spray-drying using heated air with a temperature of 120 °C. This simple process was completed within several seconds. The prepared particles were collected and washed with an organic solvent to dissolve the PSL templating agent. The porosity and pore size of the resulting particles were easily controlled by changing the initial mass ratio of precursor to templating agent, i.e., HA to PSL, and by altering the size of the PSL template particles. 相似文献
18.
M.M. Knüpfer H. Poppenborg M. Hotfilder K. Kühnel J.E.A. Wolff M. Domula 《Clinical & experimental metastasis》1999,17(1):81-86
The mechanisms leading to rapid invasive growth of malignant gliomas are poorly understood. Expression of the hyaluronic acid (HA) receptor CD44 and adhesion to HA are involved in invasive properties. Our previous studies have shown that malignant glioma cells are able to adhere to extracellular HA. Here we investigated expression of the hyaluronic acid receptor CD44 protein in five human (T98G, A172, U87MG, 86HG39, 85HG66) and two rat (C6, 9L) glioma cell lines. Influence of anti-CD44 antibody and hyaluronidase-preincubation on the HA-binding was determined using HA/BSA (bovine serum albumin)-coated culture plates. While all gliomas were highly positive for CD44 with no differences in the number of positive staining cells, median fluorescence intensity decreased as follows: C6>T98G>9L>85HG66> 86HG39>A172> U87MG. Using HA/BSA coated culture plates the relative levels of specific adhesion to HA were determined as T98G>A172>9L>86HG39>U87MG> 85HG66. C6 cells failed to bind HA specifically. Incubation with anti-human-CD44 MAb significantly decreased HA-adhesion of T98G, A172, 85HG66 and U87MG human glioma cells. However the binding capacity was completely blocked only in 85HG66 cells. The three other cell lines kept a specific HA-adhesion after saturation of the receptor. Hyaluronidase pretreatment markedly enhanced HA-adhesion of C6 and 9L rat glioma cells. These results suggest that (i) HA-adhesion of malignant glioma cells is mainly, but not only, mediated by CD44, (ii) expression of CD44 does not correspond with adhesion capacity and (iii) cell-bound glycosaminoglycans may influence glioma cell adhesion to extracellular HA. 相似文献
19.
Repetitive photodynamic therapy of malignant brain tumors. 总被引:5,自引:0,他引:5
Henry Hirschberg Dag R S?rensen Even Angell-Petersen Qian Peng Bruce Tromberg Chung-Ho Sun Signe Spetalen Steen Madsen 《Journal of environmental pathology, toxicology and oncology》2006,25(1-2):261-279
The probability of achieving local control with current single-shot, intraoperative photodynamic therapy (PDT) treatments of intracerebral gliomas seems improbable due to the length of time required to deliver adequate light fluences to depths of 1-2 cm in the resection margin. Additionally, due to the short doubling time of many malignant gliomas, the kill rate per cell doubling indicates that it seems unlikely that a single treatment would be sufficient to prevent tumor recurrence. Multiple repetitive treatments would therefore seem required. In this publication we primarily review our work examining the effects of repetitive PDT on malignant brain tumor cells both in vitro and in vivo. The in vitro therapy response of human and rat glioma spheroids to 5-aminolevulinic acid (ALA)-mediated PDT in repetitive form was investigated. The results indicated that PDT repeated at relatively long intervals (weeks) was more effective at inhibiting spheroid growth than either daily fractionated PDT or single-treatment regimes. The in vivo response to repetitive treatment was evaluated in a rodent glioma model where BT4C cell line tumors were established in the brains of inbred BD-IX rats. Microfluorometry of frozen tissue sections showed that PpIX is produced with a 10-20:1 tumor to normal tissue selectivity ratio 4 hr after ALA injection. Preliminary evidence of increased efficacy of repetitive PDT and low fluence rate treatment is presented. 相似文献
20.
Somayeh Tavana Mahnaz Azarnia Abdolhossein Shahverdi 《Growth factors (Chur, Switzerland)》2016,34(3-4):97-106
This study investigates the effect of hyaluronic acid (HA) containing VEGF and bFGF on restoration of ovarian function after ovarian autotransplantation. Twenty-four rats were randomly divided into three groups for ovarian autotransplantation: group A (ovaries without HA, VEGF and bFGF), group B (ovaries encapsulated with HA) and group C (ovaries encapsulated with HA containing VEGF and bFGF). The grafts were assessed using vaginal smears, histological, hormonal, and the genes expression analysis. The duration of first estrous cycle was shorter in group C than in group A (p?0.01). The mean number of primordial follicles was protected in group C. The level of estradiol was higher in group A than in group C (p?0.01). The expression level of Cellular-Myelocytomatosis (C-Myc) in group C was lower than in group B (p?0.05). HA containing VEGF and bFGF can ensure follicular survival, decrease apoptosis and recover ovarian function after auto-transplantation. 相似文献