首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alteration of the RhoA/ROCK (Rho kinase) pathway has been shown to be neuroprotective in SOD1G93A mice, the most commonly used animal model of ALS. Since previous studies indicate that, apart from neuroprotection, ROCK inhibitor Y-27632 can also accelerate regeneration of motor axons, we here assessed the regenerative capability of axons in SOD1G93A mice with and without treatment with Y-27632. Regeneration of axons was examined after sciatic nerve crush in pre- and symptomatic SOD1G93A mice. Proregenerative effects of Y-27632 were studied during the disease course in the SOD1G93A mouse model. In symptomatic SOD1G93A mice, axonal regeneration was markedly reduced compared to presymptomatic SOD1G93A mice and wild types. Treatment with Y-27632 improved functional and morphological measures of motor axons after sciatic crush in all tested conditions. Y-27632 treatment did not increase the lifespan of symptomatic SOD1G93A mice, but did improve axonal (re)innervation of neuromuscular junctions. Our study provides proof of concept that axonal regeneration of motor neurons harboring SOD1G93A is impaired, but amenable for pharmacological interventions aiming to accelerate axonal regeneration. Given the lack of treatments for ALS, approaches to improve axonal regeneration, including by inhibiting ROCK, should be further explored.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease which presently does not have any efficient therapeutic approach. Pimozide, a Food and Drug Administration (FDA)-approved neuroepileptic drug, has been recently proposed as a promising treatment for ALS patients based on apparent stabilization of right hand muscles after a short-time administration. A new clinical trial started at the end of 2017 to recruit patients with a prolonged drug delivery schedule. Here, our aim was to investigate the effects of chronic administration of pimozide on disease progression and pathological events in two mouse models of ALS. Pimozide was administered every 2 days to transgenic mice bearing the ALS-linked A315T mutation on the human TAR DNA-binding protein 43 (TDP-43) gene and to mice carrying the human superoxide dismutase 1 (SOD1) gene with the ALS-linked G93A mutation. Chronic administration of pimozide exacerbated motor performances in both animal models and reduced survival in SOD1G93A mice. In TDP-43A315T, it decreased the percentage of innervated neuromuscular junctions (NMJs) and increased the accumulation of insoluble TDP-43. In SOD1G93A mice, pimozide had no effects on NMJ innervation or motoneuron loss, but it increased the levels of misfolded SOD1. We conclude that a chronic administration of pimozide did not confer beneficial effects on disease progression in two mouse models of ALS. In light of a new clinical trial on ALS patients with a chronic regime of pimozide, these results with mouse models suggest prudence and careful monitoring of ALS patients subjected to pimozide treatment.  相似文献   

3.
Distal axonopathy is a recognized pathological feature of amyotrophic lateral sclerosis (ALS). In the peripheral nerves of ALS patients, motor axon loss elicits a Wallerian-like degeneration characterized by denervated Schwann cells (SCs) together with immune cell infiltration. However, the pathogenic significance of denervated SCs accumulating following impaired axonal growth in ALS remains unclear. Here, we analyze SC phenotypes in sciatic nerves of ALS patients and paralytic SOD1G93A rats, and identify remarkably similar and specific reactive SC phenotypes based on the pattern of S100β, GFAP, isolectin and/or p75NTR immunoreactivity. Different subsets of reactive SCs expressed colony-stimulating factor-1 (CSF1) and Interleukin-34 (IL-34) and closely interacted with numerous endoneurial CSF-1R-expressing monocyte/macrophages, suggesting a paracrine mechanism of myeloid cell expansion and activation. SCs bearing phagocytic phenotypes as well as endoneurial macrophages expressed stem cell factor (SCF), a trophic factor that attracts and activates mast cells through the c-Kit receptor. Notably, a subpopulation of Ki67+ SCs expressed c-Kit in the sciatic nerves of SOD1G93A rats, suggesting a signaling pathway that fuels SC proliferation in ALS. c-Kit+ mast cells were also abundant in the sciatic nerve from ALS donors but not in controls. Pharmacological inhibition of CSF-1R and c-Kit with masitinib in SOD1G93A rats potently reduced SC reactivity and immune cell infiltration in the sciatic nerve and ventral roots, suggesting a mechanism by which the drug ameliorates peripheral nerve pathology. These findings provide strong evidence for a previously unknown inflammatory mechanism triggered by SCs in ALS peripheral nerves that has broad application in developing novel therapies.  相似文献   

4.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving motoneuron (MN) axonal withdrawal and cell death. Previously, we established that facial MN (FMN) survival levels in the SOD1G93A transgenic mouse model of ALS are reduced and nerve regeneration is delayed, similar to immunodeficient RAG2−/− mice, after facial nerve axotomy. The objective of this study was to examine the functionality of SOD1G93A splenic microenvironment, focusing on CD4+ T cells, with regard to defects in immune-mediated neuroprotection of injured MN. We utilized the RAG2−/− and SOD1G93A mouse models, along with the facial nerve axotomy paradigm and a variety of cellular adoptive transfers, to assess immune-mediated neuroprotection of FMN survival levels. We determined that adoptively transferred SOD1G93A unfractionated splenocytes into RAG2−/− mice were unable to support FMN survival after axotomy, but that adoptive transfer of isolated SOD1G93A CD4+ T cells could. Although WT unfractionated splenocytes adoptively transferred into SOD1G93A mice were able to maintain FMN survival levels, WT CD4+ T cells alone could not. Importantly, these results suggest that SOD1G93A CD4+ T cells retain neuroprotective functionality when removed from a dysfunctional SOD1G93A peripheral splenic microenvironment. These results also indicate that the SOD1G93A central nervous system microenvironment is able to re-activate CD4+ T cells for immune-mediated neuroprotection when a permissive peripheral microenvironment exists. We hypothesize that a suppressive SOD1G93A peripheral splenic microenvironment may compromise neuroprotective CD4+ T cell activation and/or differentiation, which, in turn, results in impaired immune-mediated neuroprotection for MN survival after peripheral axotomy in SOD1G93A mice.  相似文献   

5.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily targets the motor system. Although much is known about the effects of ALS on motor neurons and glial cells, little is known about its effect on proprioceptive sensory neurons. This study examines proprioceptive sensory neurons in mice harboring mutations associated with ALS, in SOD1G93A and TDP43A315T transgenic mice. In both transgenic lines, we found fewer proprioceptive sensory neurons containing fluorescently tagged cholera toxin in their soma five days after injecting this retrograde tracer into the tibialis anterior muscle. We asked whether this is due to neuronal loss or selective degeneration of peripheral nerve endings. We found no difference in the total number and size of proprioceptive sensory neuron soma between symptomatic SOD1G93A and control mice. However, analysis of proprioceptive nerve endings in muscles revealed early and significant alterations at Ia/II proprioceptive nerve endings in muscle spindles before the symptomatic phase of the disease. Although these changes occur alongside those at α‐motor axons in SOD1G93A mice, Ia/II sensory nerve endings degenerate in the absence of obvious alterations in α‐motor axons in TDP43A315T transgenic mice. We next asked whether proprioceptive nerve endings are similarly affected in the spinal cord and found that nerve endings terminating on α‐motor neurons are affected during the symptomatic phase and after peripheral nerve endings begin to degenerate. Overall, we show that Ia/II proprioceptive sensory neurons are affected by ALS‐causing mutations, with pathological changes starting at their peripheral nerve endings. J. Comp. Neurol. 523:2477–2494, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons and subsequent muscular atrophy. The quality of life of patients with ALS is significantly improved by ameliorating muscular symptoms. We previously reported that glycoprotein nonmetastatic melanoma protein B (GPNMB; osteoactivin) might serve as a target for ALS therapy. In the present study, superoxide dismutase 1/glycine residue 93 changed to alanine (SOD1G93A) transgenic mice were used as a model of ALS. Expression of the C‐terminal fragment of GPNMB was increased in the skeletal muscles of SOD1G93A mice and patients with sporadic ALS. SOD1G93A/GPNMB transgenic mice were generated to determine whether GPNMB expression ameliorates muscular symptoms. The weight and cross‐sectional area of the gastrocnemius muscle, number and cross‐sectional area of myofibers, and denervation of neuromuscular junctions were ameliorated in SOD1G93A/GPNMB vs. SOD1G93A mice. Furthermore, direct injection of a GPNMB expression plasmid into the gastrocnemius muscle of SOD1G93A mice increased the numbers of myofibers and prevented myofiber atrophy. These findings suggest that GPNMB directly affects skeletal muscle and prevents muscular pathology in SOD1G93A mice and may therefore serve as a target for therapy of ALS. © 2015 Wiley Periodicals, Inc.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of motor neurons in the CNS. Astrocytes play a critical role in disease progression of ALS. Astrocytes are interconnected through a family of gap junction proteins known as connexins (Cx). Cx43 is a major astrocyte connexin conducting crucial homeostatic functions in the CNS. Under pathological conditions, connexin expression and functions are altered. Here we report that an abnormal increase in Cx43 expression serves as one of the mechanisms for astrocyte‐mediated toxicity in ALS. We observed a progressive increase in Cx43 expression in the SOD1G93A mouse model of ALS during the disease course. Notably, this increase in Cx43 was also detected in the motor cortex and spinal cord of ALS patients. Astrocytes isolated from SOD1G93A mice as well as human induced pluripotent stem cell (iPSC)‐derived astrocytes showed an increase in Cx43 protein, which was found to be an endogenous phenomenon independent of neuronal co‐culture. Increased Cx43 expression led to important functional consequences when tested in SOD1G93A astrocytes when compared to control astrocytes over‐expressing wild‐type SOD1 (SOD1WT). We observed SOD1G93A astrocytes exhibited enhanced gap junction coupling, increased hemichannel‐mediated activity, and elevated intracellular calcium levels. Finally, we tested the impact of increased expression of Cx43 on MN survival and observed that use of both a pan Cx43 blocker and Cx43 hemichannel blocker conferred neuroprotection to MNs cultured with SOD1G93A astrocytes. These novel findings show a previously unrecognized role of Cx43 in ALS‐related motor neuron loss. GLIA 2016;64:1154–1169  相似文献   

8.

Aims

Degeneration of the distal neuromuscular circuitry is a hallmark pathology of Amyotrophic Lateral Sclerosis (ALS). The potential for microtubule dysfunction to be a critical pathophysiological mechanism in the destruction of this circuitry is increasingly being appreciated. Stabilization of microtubules to improve neuronal integrity and pathology has been shown to be a particularly favourable approach in other neurodegenerative diseases. We present evidence here that treatment with the microtubule‐targeting compound Epothilone D (EpoD) both positively and negatively affects the spinal neuromuscular circuitry in the SOD1G93A mouse model of ALS.

Methods

SOD1G93A mice were treated every 5 days with 2 mg/kg EpoD. Evaluation of motor behaviour, neurological phenotype and survival was completed, with age‐dependent histological characterization also conducted, using the thy1‐YFP mouse. Motor neuron degeneration, axonal integrity, neuromuscular junction (NMJ) health and gliosis were also assessed.

Results

EpoD treatment prevented loss of the spinal motor neuron soma, and distal axon degeneration, early in the disease course. This, however, was not associated with protection of the NMJ synapse and did not improve motor phenotype or clinical progression. EpoD administration was also found to be neurotoxic at later disease stages. This was evidenced by accelerated motor neuron cell body loss, increasing gliosis, and was associated with detrimental outcomes to motor behaviour, clinical assessment and survival.

Conclusions

The results suggest that EpoD accelerates disease progression in the SOD1G93A mouse model of ALS, and highlights that the pathophysiological involvement of microtubules in ALS is an evolving and underappreciated phenomenon.  相似文献   

9.
Exposure to environmental lead (Pb) is a mild risk factor for amyotrophic lateral sclerosis (ALS), a paralytic disease characterized by progressive degeneration of motor neurons. However, recent evidence has paradoxically linked higher Pb levels in ALS patients with longer survival. We investigated the effects of low-level Pb exposure on survival of mice expressing the ALS-linked superoxide dismutase-1 G93A mutation (SOD1G93A). SOD1G93A mice exposed to Pb showed longer survival and increased expression of VEGF in the ventral horn associated with reduced astrocytosis. Pretreatment of cultured SOD1G93A astrocytes with low, non toxic Pb concentrations upregulated VEGF expression and significantly abrogated motor neuron loss in coculture, an effect prevented by neutralizing antibodies to VEGF. The actions of Pb on astrocytes might explain its paradoxical slowing of disease progression in SOD1G93A mice and the improved survival of ALS patients. Understanding how Pb stimulates astrocytic VEGF production and reduces neuroinflammation may yield a new therapeutic approach for treating ALS.  相似文献   

10.
Approximately 20 % of cases of familial amyotrophic lateral sclerosis (ALS) are caused by mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Recent studies have shown that Withaferin A (WA), an inhibitor of nuclear factor-kappa B activity, was efficient in reducing disease phenotype in a TAR DNA binding protein 43 transgenic mouse model of ALS. These findings led us to test WA in mice from 2 transgenic lines expressing different ALS-linked SOD1 mutations, SOD1G93A and SOD1G37R. Intraperitoneal administration of WA at a dosage of 4 mg/kg of body weight was initiated from postnatal day 40 until end stage in SOD1G93A mice, and from 9 months until end stage in SOD1G37R mice. The beneficial effects of WA in the SOD1G93A mice model were accompanied by an alleviation of neuroinflammation, a decrease in levels of misfolded SOD1 species in the spinal cord, and a reduction in loss of motor neurons resulting in delayed disease progression and mortality. Interestingly, WA treatment triggered robust induction of heat shock protein 25 (a mouse ortholog of heat shock protein 27), which may explain the reduced level of misfolded SOD1 species in the spinal cord of SOD1G93A mice and the decrease of neuronal injury responses, as revealed by real-time imaging of biophotonic SOD1G93A mice expressing a luciferase transgene under the control of the growth-associated protein 43 promoter. These results suggest that WA may represent a potential lead compound for drug development aiming to treat ALS.

Electronic supplementary material

The online version of this article (doi:10.1007/s13311-014-0311-0) contains supplementary material, which is available to authorized users.Key Words: ALS, Neuroinflammation, Withaferin A, SOD1G93A, SOD1G37R  相似文献   

11.
Microglial NLRP3 inflammasome activation is emerging as a key contributor to neuroinflammation during neurodegeneration. Pathogenic protein aggregates such as β-amyloid and α-synuclein trigger microglial NLRP3 activation, leading to caspase-1 activation and IL-1β secretion. Both caspase-1 and IL-1β contribute to disease progression in the mouse SOD1G93A model of amyotrophic lateral sclerosis (ALS), suggesting a role for microglial NLRP3. Prior studies, however, suggested SOD1G93A mice microglia do not express NLRP3, and SOD1G93A protein generated IL-1β in microglia independent to NLRP3. Here, we demonstrate using Nlrp3-GFP gene knock-in mice that microglia express NLRP3 in SOD1G93A mice. We show that both aggregated and soluble SOD1G93A activates inflammasome in primary mouse microglia leading caspase-1 and IL-1β cleavage, ASC speck formation, and the secretion of IL-1β in a dose- and time-dependent manner. Importantly, SOD1G93A was unable to induce IL-1β secretion from microglia deficient for Nlrp3, or pretreated with the specific NLRP3 inhibitor MCC950, confirming NLRP3 as the key inflammasome complex mediating SOD1-induced microglial IL-1β secretion. Microglial NLRP3 upregulation was also observed in the TDP-43Q331K ALS mouse model, and TDP-43 wild-type and mutant proteins could also activate microglial inflammasomes in a NLRP3-dependent manner. Mechanistically, we identified the generation of reactive oxygen species and ATP as key events required for SOD1G93A-mediated NLRP3 activation. Taken together, our data demonstrate that ALS microglia express NLRP3, and that pathological ALS proteins activate the microglial NLRP3 inflammasome. NLRP3 inhibition may therefore be a potential therapeutic approach to arrest microglial neuroinflammation and ALS disease progression.  相似文献   

12.
Amyotrophic lateral sclerosis (ALS) is a neurologic disease characterized by progressive weakness that results in death within a few years of onset by respiratory failure. Myostatin is a member of the TGF-β superfamily that is predominantly expressed in muscle and acts as a negative regulator of muscle growth. Attenuating myostatin has previously been shown to produce increased muscle mass and strength in normal and disease animal models. In this study, a mouse model of ALS (SOD1G93A transgenic mice) was treated with a soluble activin receptor, type IIB (ActRIIB.mFc) which is a putative endogenous signaling receptor for myostatin in addition to other ligands of the TGF-β superfamily. ActRIIB.mFc treatment produces a delay in the onset of weakness, an increase in body weight and grip strength, and an enlargement of muscle size whether initiated pre-symptomatically or after symptom onset. Treatment with ActRIIB.mFc did not increase survival or neuromuscular junction innervation in SOD1G93A transgenic mice. Pharmacologic treatment with ActRIIB.mFc was superior in all measurements to genetic deletion of myostatin in SOD1G93A transgenic mice. The improved function of SOD1G93A transgenic mice following treatment with ActRIIB.mFc is encouraging for the development of TGF-β pathway inhibitors to increase muscle strength in patients with ALS.  相似文献   

13.
NADPH oxidase has recently been identified as a promising new therapeutic target in ALS. Genetic deletion of NADPH oxidase (Nox2) in the transgenic SOD1G93A mutant mouse model of ALS was reported to increase survival remarkably by 97 days. Furthermore, apocynin, a widely used inhibitor of NADPH oxidase, was observed to dramatically extend the survival of the SOD1G93A ALS mice even longer to 113 days (Harraz et al. J Clin Invest 118: 474, 2008). Diapocynin, the covalent dimer of apocynin, has been reported to be a more potent inhibitor of NADPH oxidase. We compared the protection of diapocynin to apocynin in primary cultures of SOD1G93A-expressing motor neurons against nitric oxide-mediated death. Diapocynin, 10 μM, provided significantly greater protection compared to apocynin, 200 μM, at the lowest statistically significant concentrations. However, administration of diapocynin starting at 21 days of age in the SOD1G93A-ALS mouse model did not extend lifespan. Repeated parallel experiments with apocynin failed to yield protection greater than a 5-day life extension in multiple trials conducted at two separate institutions. The maximum protection observed was an 8-day extension in survival when diapocynin was administered at 100 days of age at disease onset. HPLC with selective ion monitoring by mass spectrometry revealed that both apocynin and diapocynin accumulated in the brain and spinal cord tissue to low micromolar concentrations. Diapocynin was also detected in the CNS of apocynin-treated mice. The failure to achieve significant protection with either apocynin or diapocynin raises questions about the utility for treating ALS patients.  相似文献   

14.
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons within the brain and spinal cord are lost, leading to paralysis and death. Recently, a correlation between head trauma and the incidence of ALS has been reported. Furthermore, new invasive neurosurgical studies are being planned which involve inserting needles directly to the spinal cord. We therefore tested whether acute trauma to the spinal cord via a knife wound injury would lead to accelerated disease progression in rodent models of ALS (SOD1G93A rats). A longitudinal stab injury using a small knife was performed within the lumbar spinal cord region of presymptomatic SOD1G93A rats. Host glial activation was detected in the lumbar area surrounding a micro-knife lesion at 2 weeks after surgery in both wild type and SOD1G93A animals. However, there was no sign of motor neuron loss in the injured spinal cord of any animal and normal motor function was maintained in the ipsilateral limb. These results indicate that motor neurons in presymptomatic G93A animals are not affected by an invasive puncture wound injury involving reactive astrocytes. Furthermore, acute trauma alone does not accelerate disease onset or progression in this ALS model which is important for future strategies of gene and cell therapies directly targeting the spinal cord of ALS patients.  相似文献   

15.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by motoneuron degeneration. Although viral delivery of IGF-I has shown therapeutic efficacy in the SOD1G93A mouse model of ALS, clinical trials of IGF-I in ALS patients have led to conflicting results. Here we examine the effects of an IGF-I splice variant, mechano-growth factor (MGF) which has previously been shown to have greater neuroprotective effects than IGF-I in a number of models of neurodegeneration. A mammalian expression plasmid containing either MGF or, for comparison, the IGF-I cDNA sequence was delivered to the hindlimb muscles of SOD1G93A mice at 70 days of age, at symptom onset. Treatment with either IGF-I or MGF resulted in a significant improvement in hindlimb muscle strength, and an increase in motor unit and motoneuron survival. Significantly more motoneurons survived in MGF treated mice.  相似文献   

16.
Myelin is a specialized membrane that wraps around nerve fibers and is essential for normal axonal conduction in neurons. In the central nervous system, oligodendrocytes are responsible for myelin formation. Recent studies have reported pathological abnormalities in oligodendrocytes in human patients with amyotrophic lateral sclerosis (ALS) and a mouse model of ALS expressing the G93A mutation of the human superoxide dismutase 1 (mtSOD1). However, it is unclear whether oligodendrocyte pathology in ALS represents the primary dysfunction induced by mtSOD1 and how mtSOD1 contributes to oligodendrocyte degeneration and ALS pathogenesis. We analyzed GAL4-VP16-UAS transgenic zebrafish selectively expressing mtSOD1 in mature oligodendrocytes. We observed that mtSOD1 directly induced oligodendrocyte degeneration by disrupting the myelin sheath and downregulating monocarboxylate transporter 1 (MCT1), thereby causing spinal motor neuron degeneration. Pathological changes observed in this transgenic zebrafish were similar to the pathology observed in the SOD1G93A mouse model of ALS, which is characterized by expression of mtSOD1 in all cells. In addition, oligodendrocyte dysfunction induced by mtSOD1 was associated with anxiety-related behavioral abnormalities, learning impairments, and motor defects in the early symptomatic stage. We also found that treatment with potassium channel inhibitors rescued behavioral abnormalities without rescuing MCT1 expression, suggesting that myelin disruption induces behavioral abnormalities independently of MCT1. These results indicate that mtSOD1-induced dysfunction of mature oligodendrocytes is sufficient to induce motor neuron degeneration, thus informing future therapeutic strategies targeted at oligodendrocytes in ALS.  相似文献   

17.
Non‐invasive excitability studies of motor axons in patients with amyotrophic lateral sclerosis (ALS) have revealed a changing pattern of abnormal membrane properties with disease progression, but the heterogeneity of the changes has made it difficult to relate them to pathophysiology. The SOD1G93A mouse model of ALS displays more synchronous motoneuron pathology. Multiple excitability measures of caudal and sciatic nerves in mutant and wild‐type mice were compared before onset of signs and during disease progression (4–19 weeks), and they were related to changes in muscle fiber histochemistry. Excitability differences indicated a modest membrane depolarization in SOD1G93A axons at about the time of symptom onset (8 weeks), possibly due to deficient energy supply. Previously described excitability changes in ALS patients, suggesting altered sodium and potassium conductances, were not seen in the mice. This suggests that those changes relate to features of the human disease that are not well represented in the animal model. Muscle Nerve, 2010  相似文献   

18.
Glial cell line–derived neurotrophic factor (GDNF) is a powerful neuroprotective growth factor. However, systemic or intrathecal administration of GDNF is associated with side effects. Here, we aimed to avoid this by restricting the transgene expression to the skeletal muscle by gene therapy. To specifically target most skeletal muscles in the mouse model of amyotrophic lateral sclerosis (ALS), SOD1G93A transgenic mice were intravenously injected with adeno-associated vectors coding for GDNF under the control of the desmin promoter. Treated and control SOD1G93A mice were evaluated by rotarod and nerve conduction tests from 8 to 20 weeks of age, and then histological and molecular analyses were performed. Muscle-specific GDNF expression delayed the progression of the disease in SOD1G93A female and male mice by preserving the neuromuscular function; increasing the number of innervated neuromuscular junctions, the survival of spinal motoneurons; and reducing glial reactivity in treated SOD1G93A mice. These beneficial actions are attributed to a paracrine protective mechanism from the muscle to the motoneurons by GDNF. Importantly, no adverse secondary effects were detected. These results highlight the potential of muscle GDNF-targeted expression for ALS therapy.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13311-021-01025-6.Key Words: GDNF, Amyotrophic lateral sclerosis, Motoneuron, Gene therapy, AAV, Neuromuscular junction  相似文献   

19.
Mutations in SOD1 cause amyotrophic lateral sclerosis (ALS), an incurable motor neuron disease. The pathogenesis of the disease is poorly understood, but intracellular copper dyshomeostasis has been implicated as a key process in the disease. We recently observed that metallothioneins (MTs) are an excellent target for the modification of copper dyshomeostasis in a mouse model of ALS (SOD1G93A). Here, we offer a therapeutic strategy designed to increase the level of endogenous MTs. The upregulation of endogenous MTs by dexamethasone, a synthetic glucocorticoid, significantly improved the disease course and rescued motor neurons in SOD1G93A mice, even if the induction was initiated when peak body weight had decreased by 10 %. Neuroprotection was associated with the normalization of copper dyshomeostasis, as well as with decreased levels of SOD1G93A aggregates. Importantly, these benefits were clearly mediated in a MT-dependent manner, as dexamethasone did not provide any protection when endogenous MTs were abolished from SOD1G93A mice. In conclusion, the upregulation of endogenous MTs represents a promising strategy for the treatment of ALS linked to mutant SOD1.

Electronic supplementary material

The online version of this article (doi:10.1007/s13311-015-0346-x) contains supplementary material, which is available to authorized users.  相似文献   

20.
Mutations in copper/zinc superoxide dismutase (SOD1) cause a form of familial amyotrophic lateral sclerosis (ALS). The pathogenesis of familial ALS may be associated with aberrant copper chemistry through a cysteine residue in mutant SOD1. Ammonium tetrathiomolybdate (TTM) is a copper-chelating drug that is capable of removing a copper ion from copper-thiolate clusters, such as SOD1. We found that TTM exerted therapeutic benefits in a mouse model of familial ALS (SOD1G93A). TTM treatment significantly delayed disease onset, slowed disease progression and prolonged survival by approximately 20%, 42% and 25%, respectively. TTM also effectively depressed the spinal copper ion level and inhibited lipid peroxidation, with a significant suppression of SOD1 enzymatic activity in SOD1G93A. These results support the hypothesis that aberrant copper chemistry through a cysteine residue plays a critical role in mutant SOD1 toxicity and that TTM may be a promising therapy for familial ALS with SOD1 mutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号