首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we have observed that epidermal growth factor (EGF), a potent mitogen for cultured hepatocytes, stimulates the production of IGF-I and IGF-binding proteins (IGFBPs) by cultured hepatocytes from adult rats. This study was undertaken to investigate the possibility that other growth factors of hepatic origin could specifically be involved in the regulation of IGF-I and IGFBP expression. The effects of transforming growth factor-alpha (TGF-alpha), through EGF receptors to induce a mitogenic response, and transforming growth factor-beta1 (TGF-beta1), produced by non-parenchymal liver cells and able to inhibit hepatocyte proliferation in vivo and in culture, have been studied in cultured adult rat hepatocytes. Our results demonstrate that TGF-alpha and TGF-beta1 significantly stimulate IGF-I and IGFBP secretion by cultured hepatocytes but no change in the abundance of IGF-I and IGFBP mRNAs was observed with respect to controls. Cycloheximide is able to inhibit both basal and TGF-stimulated release of IGF-I and a similar effect was elicited by octreotide, the somatostatin analog, known to directly affect hepatic IGF-I gene expression. Our findings show the role of the liver in the secretion of IGF-I and IGFBPs, not only under endocrine and nutritional control but also under autocrine and paracrine control.  相似文献   

2.
3.
BACKGROUND/AIMS: Catabolism is associated with decreased serum concentrations of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-3 associated with elevated IGFBP-3 protease activity and increased concentrations of IGFBP-1 and -4. The effects of the acute phase mediators interleukin (IL)-6, IL-1beta and tumor necrosis factor alpha (TNFalpha) on the biosynthesis of IGF-I and IGFBPs were studied in primary rat liver cells. METHODS: mRNA levels of IGF-I and of IGFBPs were analyzed by Northern blotting, secretion of IGFBPs by [(125)I]IGF-I ligand blotting. Proteolytic activity was measured using iodinated recombinant IGFBP-3 as the substrate. RESULTS: In hepatocytes, Kupffer cells (KC) and cocultures of hepatocytes with KC, IL-6 reduced IGF-I biosynthesis dose-dependently. IL-6 stimulated mRNA expression and protein secretion of IGFBP-1 and -4 in hepatocytes and that of IGFBP-3 in KC, respectively. In cocultures, biosynthesis of IGFBP-1, -3 and -4 was increased dose-dependently by IL-6, while the effects of IL-1beta or TNFalpha were less prominent. At neutral pH, proteolytic activity against IGFBP-3 was not detected in media of cocultures treated with IL-6. CONCLUSIONS: The alterations of IGF-I, IGFBP-1 and -4 observed in catabolism correlate with the effects of IL-6 on the biosynthesis of these components in primary rat liver cells, while a neutral IGFBP-3 protease was not detectable.  相似文献   

4.
Endometrial stromal cells undergo decidual transformation, in response to epidermal growth factor (EGF) and progesterone. Since insulin-like growth factors (IGFs) and IGF-binding proteins (IGFBPs) are believed to be involved in endometrial differentiation, and insulin regulates IGFBP production in a variety of cells, we have investigated the modulatory roles of EGF, progesterone, and insulin on IGFBP secretion by long term cultures of human endometrial stromal cells. Without insulin, the principal IGFBP secreted into conditioned medium, detected by Western ligand blotting, was a 28-kilodalton (kDa) IGFBP, identified by immunoprecipitation as IGFBP-1. This was observed only when the stromal cells were decidualized. With increasing insulin, IGFBP-1 decreased to undetectable levels. Concomitantly, IGFBP-2 increased, as did a 24-kDa IGFBP (believed to be IGFBP-4) and a 28-kDa IGFBP, shown to be a glycoprotein by endoglycosidase sensitivity (and believed to be glycosylated IGFBP-4). In the nondecidualized state, insulin increased the secretion of IGFBP-3, IGFBP-2, and the 24-kDa IGFBP, which were slightly inhibited by EGF and relatively unaffected by progesterone alone. In the absence of insulin, progesterone weakly stimulated IGFBP-1 secretion, which increased markedly when the cells were decidualized by combined treatment with EGF and progesterone. These data show that IGFBP-3, IGFBP-2, IGFBP-1, and presumably IGFBP-4 and its glycosylated form are differentially regulated by peptide and steroid hormones in endometrial stromal cells and that their regulation is a function of stromal differentiation.  相似文献   

5.
6.
In previous studies we have shown that IGF-II stimulates basal as well as ACTH-induced cortisol secretion from adult human adrenocortical cells more potently than IGF-I, and that both IGFs predominantly stimulate androgen biosynthesis. The steroidogenic effect of IGF-I and IGF-II is mediated through interaction with the IGF-I receptor, and modified by locally produced IGF-binding proteins (IGFBPs). In the present study, we identified and characterized IGFBP synthesis in normal adult human adrenocortical cells in primary culture, and investigated the effect of ACTH and recombinant human IGF-I and -II on the regulation of IGFBP expression and secretion. Using RT-PCR, we identified the mRNA of all six high-affinity IGFBPs, in both adrenocortical tissue and monolayer cell cultures of adrenocortical cells. Using Western ligand and immunoblotting and two-dimensional Western ligand blotting we confirmed the secretion of IGFBP-1, -2, -3, -4 and -5 by adrenocortical cells in primary culture. The quantification of IGFBPs indicated that IGFBP-3 accounts for almost half the binding activity in conditioned medium of unstimulated cells (47%), followed by IGFBP-4 (20%), IGFBP-5 (15%), IGFBP-2 (12%) and IGFBP-1 (6%). After treatment with ACTH, the abundance of IGFBP-1 was upregulated significantly 2.6-fold, while IGFBP-3 was induced only slightly (1.3-fold). IGFBP-2, -4 and -5 remained unchanged. In contrast, IGF-I and -II (6.5 nM) predominantly induced the abundance of IGFBP-5 (2- and 1.6-fold respectively) and IGFBP-3 (2- and 1.7-fold respectively), while IGFBP-1, -2 and -4 were unaltered. The induction of IGFBP-1 and -5 by ACTH and IGFs, respectively, was paralleled by an increase in the amount of IGFBP-1 and -5 mRNA in these cells. In conclusion, all six high-affinity IGFBPs are expressed in the adult human adrenal gland, and the presence of at least five high-affinity IGFBPs has been demonstrated in conditioned medium of adult human adrenocortical cells. Furthermore, the expression and secretion of IGFBP-1 is upregulated by ACTH, whereas IGFBP-5 is induced by IGF-I and -II. Together with earlier findings, these results suggest that IGFBPs play an important modulatory role in the regulation of the differentiated adrenocortical function.  相似文献   

7.
8.
W S Cohick  D R Clemmons 《Endocrinology》1991,129(3):1347-1354
The Madin-Darby bovine kidney cell line was used to examine regulation of insulin-like growth factor binding protein (IGFBP) synthesis by epithelial cells. Ligand and immunoblot analysis of conditioned media indicated that IGFBP-2 was the predominant IGFBP secreted by untreated cells. Treatment with forskolin decreased secretion of IGFBP-2 by 75 +/- 3% and induced the appearance of IGFBP-3 and 24,000 Mr IGFBP. Although insulin alone did not induce the appearance of either band, in the presence of forskolin it increased the IGFBP-3 and 24,000 Mr bands 4.2 +/- 1.1 and 7.3 +/- 0.9-fold, respectively, above the values for forskolin treatment alone. Exposure to forskolin resulted in a 3-fold decrease in the abundance of IGFBP-2 messenger RNA (mRNA), and a 30-fold increase in IGFBP-3 mRNA. An additional 2- to 3-fold increase in IGFBP-3 mRNA was observed when cells were treated with insulin plus forskolin. Treatment with insulin plus forskolin increased cell number 2-fold, compared to small increases (26%) observed with forskolin treatment alone. Since treatment with IGF-I or -II did not result in similar responses to those of insulin, IGF analogs with differing affinities for IGFBP and IGF type I receptor were tested. B-chain IGF-I (decreased affinity for IGFBP) increased cell number and enhanced forskolin's effects on IGFBP-3 secretion and mRNA abundance to the same extent as insulin, whereas [Leu24,1-62]IGF-I (decreased affinity for the type I IGF receptor) did not. Therefore, activation of the type I IGF receptor was required to elicit increases in cell number and IGFBP synthesis and secretion, and the actions of IGF-I and II were likely blocked by binding to the large amounts of IGFBP-2 that were secreted. These results are in direct contrast to studies with human fibroblasts in which IGF-I and [Leu24,1-62]IGF-I stimulate IGFBP-3 secretion, whereas B-chain IGF-I has only a minimal effect. The ability to differentially regulate secretion of different forms of IGFBPs by epithelial cells and the finding that regulation is distinct from that of fibroblasts may have important implications for understanding mechanisms by which IGFs and IGFBPs interact to regulate epithelial cell growth.  相似文献   

9.
Involution of the uterus induced by oestrogen depletion is associated with a decrease in uterine insulin-like growth factor (IGF)-I and an increase in IGF binding protein (IGFBP) gene expression. We examined the effects of IGF-I on primary uterine myometrial cell proliferation, and on IGFBP-3 and IGFBP-4 gene expression. IGF-I enhanced DNA synthesis in these cells. In conditioned media, IGF-I increased IGFBP-3 accumulation by release of cell associated IGFBP-3. A low dose of IGF-I increased IGFBP-4 accumulation, and a high dose caused IGFBP-4 to disappear. In cell-free conditioned media IGF-I protected IGFBP-3 and enhanced IGFBP-4 proteolysis. Co-incubation of [(125)I]-IGFBP-4 with cell-free conditioned media cleaved IGFBP-4 into 18 and 12 kDa fragments. Northern blot analysis indicated that IGF-I increased IGFBP-4 mRNA accumulation by stabilizing the mRNA while IGFBP-3 gene expression was slightly decreased. The results demonstrate that IGF-I regulates IGFBP-4 post-trancriptionally and post-translationally, whereas IGFBP-3 is only affected post-translationally. By enhancing IGFBP-4 proteolysis, increasing cell-associated IGFBP-3 and stabilizing IGFBP-3, IGF-I may initiate a mitogenic response.  相似文献   

10.
Insulin-like growth factor I (IGF-I) plays a critical role in the induction of cell cycle progression and survival in many cell types. However, there is minimal IGF-I binding to hepatocytes, and a role for IGF-I in hepatocyte signaling has not been elucidated. The dynamics of IGF-I receptor (IGF-IR) activation were examined in freshly isolated rat hepatocytes. IGF-I did not activate the IGF-IR. However, des(1-3)IGF-I, which weakly binds IGF binding protein-3 (IGFBP-3), induced IGF-IR phosphorylation. IGFBP-3 surface coating was identified by confocal immunofluorescence microscopy. In contrast with the inactivity of IGF-I, epidermal growth factor (EGF) induced the tyrosine phosphorylation of the IGF-IR in parallel with EGF receptor phosphorylation. Transactivation of the IGF-IR by EGF was inhibited by tyrphostin I-Ome-AG538, a tyrosine kinase inhibitor with high specificity for the IGF-IR. Src kinase inhibitors pyrazolopyrimidine PP-1 and PP-2 inhibited transactivation of the IGF-IR by EGF. EGF stimulated the tyrosine phosphorylation of Src, and induced its association with the IGF-IR. EGF-induced phosphorylations of insulin-related substrate (IRS)-1, IRS-2, Akt, and p42/44 mitogen-activated protein kinases (MAPKs) were inhibited variably by I-Ome-AG538. In conclusion, the data show an EGF- and Src-mediated transactivation pathway for IGF-IR activation in hepatocytes, and indicate a role for the IGF-IR in hepatocyte intracellular signaling. The findings also show a role for IGFBP-3 in the inhibition of IGF-I signaling in hepatocytes.  相似文献   

11.
12.
13.
14.
Human neonatal fibroblasts in monolayer culture secrete insulin-like growth factor-binding proteins (IGFBPs), which may modulate IGF action. To examine whether an increase in extracellular concentrations of IGFBPs in response to IGF-I is due to the release of cell-associated IGFBPs, we measured secreted and cell-associated IGFBP-3 immunologically in fibroblast monolayers treated with IGF-I and IGF analogs with altered affinities for the IGF receptors and IGFBPs. IGFBP-3 in medium conditioned by fibroblasts treated with IGF-I was significantly increased (P < 0.05) compared with that in medium from untreated cultures; concomitantly, cell-associated IGFBP-3 was significantly decreased (P < 0.05). [Ser24]IGF-I (reduced affinity for IGF receptors) also increased secreted IGFBP-3 and decreased cell-associated IGFBP-3. In contrast, IGFBP-3 concentrations in medium conditioned by fibroblasts treated with B-chain IGF-I (reduced affinity for IGFBPs) were not significantly increased, and cell-associated IGFBP-3 was unchanged. Heparin, which releases proteins attached to cell surface proteoglycans, increased medium concentrations of IGFBP-3 and decreased IGFBP-3 binding to fibroblasts. An IGFBP of 29-31 kilodaltons (kDa) showed a pattern of regulation similar to that of IGFBP-3, while a third IGFBP, of 24 kDa, was decreased in IGF-I- and [Ser24]IGF-I-conditioned medium and unchanged by B-chain IGF-I and heparin. Preincubation with transforming growth factor-beta 1 (TGF beta 1), which stimulates fibroblast IGFBP-3 production, or human serum-derived IGFBP-3 did not increase cell-associated IGFBP-3. Analysis of total RNA isolated from fibroblasts revealed that IGFBP-3 mRNA was increased by TGF beta 1, but not by IGF-I. These data suggest that IGFs and TGF beta 1 release fibroblast IGFBPs by distinct mechanisms: IGFs by binding and subsequent release of cell-associated IGFBP-3 and 29- to 31-kDa IGFBP, and TGF beta 1 by increased de novo synthesis of IGFBP-3.  相似文献   

15.
A N Corps  K D Brown 《Endocrinology》1991,128(2):1057-1064
Quiescent Swiss 3T3 cells can be stimulated to reenter the cell cycle by various mitogens used in synergistic combinations with insulin-like growth factors (IGFs). The cells constitutively secrete an IGF-binding protein (IGFBP), which can modulate the interaction of IGFs with their receptors and could, therefore, alter cellular responsiveness to IGFs. We have now characterized the IGFBP secreted by Swiss 3T3 cells and tested whether its secretion is regulated by heterologous mitogens. Ligand blotting using [125I]IGF-I revealed a major IGFBP of 40,000 mol wt, and treatment of the cells with tunicamycin reduced the mol wt of this protein to about 32,000. mRNA from Swiss 3T3 cells hybridized to a 32P-labeled oligonucleotide (50-mer) complementary to rat IGFBP-3. Taken together, these results indicate that the principal IGFBP secreted by Swiss 3T3 cells is probably the N-glycosylated IGFBP-3. Production of this IGFBP by Swiss 3T3 cells was stimulated by 50-150% by the mitogens bombesin, vasopressin, platelet-derived growth factor, epidermal growth factor, and 12-O-tetradecanoylphorbol 13-acetate and also by IGF-I. The increased production of IGFBP was first detected after 4-6h of incubation and was then maintained for 48-72 h. Agents that elevate intracellular cAMP and the glucocorticoid dexamethasone reduced IGFBP output. In cells in which protein kinase-C had been down-modulated, the stimulation of IGFBP output by 12-O-tetradecanoylphorbol 13-acetate was abolished, but the stimulation induced by the other mitogens was not prevented. Thus, the production of IGFBP by Swiss 3T3 cells can be regulated by a number of different signalling pathways.  相似文献   

16.
The growth of the male external genitalia is primarily regulated by androgens. However, human genital fibroblast growth is also stimulated by insulin-like growth factor (IGF) I. In this study, we report that IGF-binding protein (IGFBP) production in human foreskin fibroblasts is regulated by androgens and IGF-I. Human foreskin fibroblasts secrete IGFBP-3, IGFBP-4, and IGFBP-5. IGF-I increased the abundance of both intact IGFBP-3 and -5 in the culture medium. Testosterone increased IGFBP-3, and the combination of IGF-I and testosterone had an additive effect. Following its secretion, IGFBP-5 was degraded, but the effect of IGF-I on IGFBP-5 peptide abundance in conditioned media did not seem to be due to inhibition of proteolysis. Testosterone had no effect on IGFBP-5 degradation. Intact IGFBP-4 was decreased by IGF-I, and the combination resulted in a similar reduction. The mechanism seemed to be decreased synthesis, since IGFBP-4 messenger RNA was also decreased. The increase in IGFBP-5 synthesis was associated with an increase in the abundance of intact IGFBP-5 in the extracellular matrix. The combination of testosterone and IGF-I resulted in a synergistic stimulation of total protein synthesis by the fibroblast cultures, suggesting that a maximum anabolic response requires both hormones. These observations suggest that combined exposure to androgen and IGF-I altered the abundance of some forms of IGFBPs and that the IGFBPs that are regulated may play a role in modulating the effects of IGF-I on the anabolic response.  相似文献   

17.
Rhesus monkeys follow a developmental pattern of serum insulin-like growth factor-I (IGF-I) levels similar to that found in humans. In these monkeys, serum IGF-I levels peak during puberty (2.5-4.5 yr of age in males). We have examined the developmental pattern of IGF-binding protein-1 (IGFBP-1), -2, and -3 in serum by Western ligand blotting, the levels of IGFBP-3, IGF-I, and IGF-II in serum by RIA, and the IGFBP mRNA levels of IGFBP-1, -2, and -3 in the livers of rhesus monkeys from fetal life through adulthood by Northern analysis. The pattern of the serum levels of the IGFBPs reflected the liver mRNA levels of the IGFBPs. The IGFBP-1 and IGFBP-2 liver mRNA and serum levels were highest in the fetus and first year of life and were very low after 4 yr of age. Conversely, the IGFBP-3 liver mRNA and serum levels were relatively low early in life and peaked during puberty. The serum levels of IGF-I and IGF-II were strongly correlated with the level of IGFBP-3. We conclude that the developmental pattern of IGFBPs in the rhesus monkey is similar to that in the human, and that serum IGFBP levels are probably regulated by the rate of IGFBP mRNA synthesis.  相似文献   

18.
Summary. Bone marrow stromal cells synthesize and secrete insulin-like growth factor (IGF)-I and IGF-binding proteins (IGFBP). IGFBPs may modulate the action of IGF-I or IGF-II on haemopoiesis. However, the specific IGFBPs produced by various stromal cell types have not been identified. We examined six different stromal phenotypes for IGFBP protein and IGFBP-1 to -6 mRNA expression. [125I]IGF-I ligand blot analysis of conditioned medium demonstrate different patterns of IGFBP secretion by each cell type. The most prominent IGFBPs were 24 and 29 kD species, consistent with IGFBP4 and IGFBP5, respectively. RNase protection assays demonstrate that, overall, stromal cells express IGFBP-2 to -6 mRNAs, with IGFBP4, IGFBP5 and IGFBP6 mRNAs predominating. Since agents that modulate cAMP levels may influence haemopoiesis via the release of stromal-derived cytokines, we determined the effect of forskolin, a cAMP agonist, on IGFBP4 expression in TC-1 cells. Forskolin (10 5 M) up-regulated IGFBP4 mRNA and protein secretion in a time-dependent manner. These findings suggest that IGFBP-4, -5 and -6 released by stromal cells may be key modulators of the haemopoietic response to IGFs. Release of IGFBP4 by agents that increase cAMP may be an important mechanism involved in regulating IGF bioavailability in the marrow microenvironment.  相似文献   

19.
AIM:To evaluate the effects of betaine on the ethanol-induced secretion of IGF-I and IGFBP-1 using radioimmunoassay and Western blotting, respectively, in primary cultured rat hepatocytes. METHODS: Hepatocytes isolated from male Sprague-Dawley rats were incubated with various concentrations of ethanol and PD98059 procedures. The hepatocytes were also treated with different doses of betaine (10(-5), 10(-4), and 10(-3) mol/L). We measured IGF-I and IGFBP-1 using radioimmunoassay and Western blotting, respectively. RESULTS:The ethanol-induced inhibition of IGF-I secretion was attenuated by betaine in a concentration-dependent manner in primary cultured rat hepatocytes. At 10(-3) mol/L, betaine significantly increased IGF-I secretion but decreased IGFBP-1 secretion. In addition, p42/44 mitogen-activated protein kinase (MAPK) activity was accelerated significantly from 10 min to 5 h after treatment with 10(-3) mol/L betaine. Furthermore, the changes in IGF-1 and IGFBP-1 secretion resulting from the increased betaine-induced p42/44 MAPK activity in primary cultured rat hepatocytes was blocked by treatment with the MAPK inhibitor PD98059. Betaine treatment blocked the ethanol-induced inhibition of IGF-I secretion and p42/44 MAPK activity, and the ethanol-induced increase in IGFBP-1 secretion. CONCLUSION: Betaine modulates the secretion of IGF-I and IGFBP-1 via the activation of p42/44 MAPK in primary cultured rat hepatocytes. Betaine also alters the MAPK activations induced by ethanol.  相似文献   

20.
AIM: To evaluate the effects of betaine on the ethanol-induced secretion of IGF-I and IGFBP-1 using radioim-munoassay and Western blotting, respectively, in primary cultured rat hepatocytes. METHODS: Hepatocytes isolated from male Sprague-Dawley rats were incubated with various concentrations of ethanol and PD98059 procedures. The hepatocytes were also treated with different doses of betaine (10-5, 10-4, and 10-3 mol/L). We measured IGF-I and IGFBP-1 using radioimmunoassay and Western blotting, respectively. RESULTS: The ethanol-induced inhibition of IGF-I secretion was attenuated by betaine in a concentration-dependent manner in primary cultured rat hepatocytes. At 10?mol/L, betaine significantly increased IGF-I secretion but decreased IGFBP-1 secretion. In addition, p42/44 mitogen-activated protein kinase (MAPK) activity was accelerated significantly from 10 min to 5 h after treatment with 10-3 mol/L betaine. Furthermore, the changes in IGF-1 and IGFBP-1 secretion resulting from the increased betaine-induced p42/44 MAPK activity in primary cultured rat hepatocytes was blocked by treatment with the MAPK inhibitor PD98059. Betaine treatment blocked the ethanol-induced inhibition of IGF-I secretion and p42/44 MAPK activity, and the ethanol-induced increase in IGFBP-1 secretion. CONCLUSION: Betaine modulates the secretion of IGF-I and IGFBP-1 via the activation of p42/44 MAPK in primary cultured rat hepatocytes. Betaine also alters the MAPK activations induced by ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号